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Obstacle avoidance and navigation is a demanding 
task for an autonomous underwater vehicle (AUV) 
due to the complex nature of the underwater envi-
ronment. However, an automatic detection and track-
ing system is the primary element for an AUV or an 
aqueous surveillance network. Tracking underwater 
objects in an active context, represents an ongoing 
challenge in the field of signal processing. In order to 
detect the target’s presence under water, the echoes 
reflected by the target are analysed by the receiver. 
Track accuracy is one of the paramount performance 
measures of a tracking system. Towards this, various 
methods such as Kalman filter (KF), extended Kalman 
filter (EKF) and least squares (LS) have been  
explored. However, all these methods have their own 
drawbacks. In this study, a new approach called modi-
fied gain EKF has been implemented on the simulated 
data for tracking of underwater moving object using 
bearing and elevation measurements. AUV fitted with 
a single sonar is used for validating the proposed 
bearing and elevation only tracking (BEOT) algo-
rithm. The performance of the algorithm is evaluated 
in Monte Carlo simulations and results are presented 
in stipulated geometries. 
 
Keywords: AUV, BEOT, EKF, obstacle avoidance, 
tracking. 
 
IN underwater environment, automatic detection and 
tracking are very much important for safe navigation of 
autonomous underwater vehicle (AUV). In many military 
and scientific applications including sonar-based robotic 
navigation, underwater weapon systems and infrared 
seeker based tracking, bearing only tracking (BOT) is 
used. For underwater weapon guidance system, passive 
tracking sensors are used in BOT applications. For aero-
space and naval applications, target tracking is generally 
performed using seekers or sonars. The sensor provides 
either only bearing angle information or both range and 

bearing information or bearing and elevation information. 
Passive tracking of maneouvering objects using line of 
sight (LOS) angle measurements only is an important 
field of research in the application areas of submarine 
tracking, aircraft surveillance, autonomous robotics and 
mobile systems1–5. 
 Due to immanent property of environment, the sensor 
data such as range, bearing and elevation are often noisy, 
which also result in nonlinear relation between the states 
and measurements. These inaccuracies of the measure-
ments have a direct impact on the performance of the 
tracking algorithm. 
 In the ocean environment, two approaches are com-
monly used for target tracking. The first approach is a  
linear Kalman filter (KF)6, designed by R. E. Kalman in 
1960, wherein the measurements are linear functions of 
the states and designed for prediction/estimation problem. 
KF can be defined as an optimal recursive data process-
ing algorithm and is characterized by accurate estimation 
of state variables under noisy condition. It is suitable for 
drives, robotic manipulators and other industrial applica-
tions. The algorithm is formulated in two steps which in-
volve prediction and updating. The second approach is an 
extended Kalman Filter (EKF)7, wherein the measure-
ments are nonlinear functions of the states. It is well-
established fact that in EKF the initial covariance is based 
on the initial converted measurement and the gain is 
based on the accuracies of the subsequent linearization; 
and therefore the overall performance depends on these 
accuracies. 
 In earlier research, the bearing-only filtering problem 
is considered as discrete-time EKF with relative Carte-
sian coordinates8 in two-dimension (2-D). The filter was 
implemented on basis of the nearly constant velocity 
model (NCVM)9 and nonlinear measurement model for 
bearing-only tracking. The EKF, unscented Kalman filter 
(UKF), Gauss–Hermite Kalman filter (GHKF) and cuba-
ture Kalman filter (CKF) are implemented only for 2-D 
tracking problems proposed by Scala et al.10 and Jouni  
et al.11. 
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 The EKF is implemented for both the predicted state 
estimate and covariance using a discretized linear appro-
ximation12. All the approaches mentioned use a 2-D state  
estimation. The performance of the EKF, UKF, and parti-
cle filter (PF) for the angle-only filtering problem in three 
dimension (3-D) using bearing and elevation measure-
ments from a single manoeuvring sensor are compared13. 
Estimation of the kinematics such as position and velo-
city of a target, using noisy measurements of the target 
from a single moving observation platform is a nonlinear 
function. 
 Earlier research algorithms, based on EKF which lin-
earizes the measurement model, often result in unstable  
performances, including poor track accuracy and diver-
gences7,8. A new approach of EKF tracking algorithm has 
been proposed here to solve the problems of underwater 
environment. Examining the case of single manoeuvring 
sensor/observer, bearing and elevation only tracking 
(BEOT) problem authenticates good accuracy and effi-
ciency as the inaccuracies can be handled effectively in 
this method. 
 The target tracking basics are covered by Bar–Shalom 
et al.14 and most aspects of tracking are covered by 
Blackman et al.15. Comparison of different tracking  
methods derives a tracking filter that is well-suited for 
angle-only target tracking16,17. The approach followed in 
this study is that the non-linearities are modified before 
being subjected to the tracking algorithm with angle-only 
measurements. Modified gains for the bearings and eleva-
tion problem have also been derived in an elegant man-
ner. The results have been promising and have shown 
improved performance over the standard EKF. 
 A modified gain extended Kalman filter (MGEKF) for 
nonlinear estimation problems was derived by Song et 
al.18. This MGEKF algorithm was further developed by 
Galkowiski et al.19 based on pseudo measurements.  
Further, the improved modified gain functions for 3-D 
angles-only tracking was presented by Longbin et al.20,21. 
The non-linearities are modified and then applied to a 
tracker with bearing and elevation only measurements. It 
shows an improved performance over the standard EKF. 
Modified gains in a simpler manner for the bearings and 
elevations problem have been derived. 

Tracking algorithm 

The foremost problem in bearing and elevation only 
tracking is in estimating the target trajectory from noisey-
corrupted sensor data22. In this scenario, the observer 
tracks a moving target with sensor, which measures only 
the bearings and elevations of the target, with respect to 
positions of the sensor. There is one moving target in the 
scene and one sensor for tracking it. The state of the  
target motion model (TMM) is described by a nearly con-
stant velocity model (NCVM) and at time step (k)  

consists of the position in 3-D Cartesian coordinates x, y 
and z and the velocity towards those coordinate axes x, 
y and z. Thus, the dynamics of the target is modelled as 
a state space model. The state of the target is defined in 
the tracker coordinate frame (T frame) for which the X, Y, 
and Z axes are along the local east, north, and upward  
directions, respectively as shown in Figure 1. The target 
and ownship/observer states in Cartesian coordinates are 
defined. 
 
 [ ] ,t xt yt zt t t tX x y z     (1) 
 
and 
 
 [ ] .o xo yo zo o o oX x y z     (2) 
 
The relative state vector in the T frame is defined by 
 
 .t oX X X   (3) 
 
Let the relative state vector in the T frame be 
 
 [ ] .x y zX x y z     (4) 
 
Then, x = xt – xo, x = xt – xo, etc. 
 The range vector of the target from the observer (or 
sensor) in the T frame is 
 
 [ ] [ ] .t t o t o t or x y z x x y y z z       (5) 
 
Then, the range is defined as 
 

 2 2 2 .r x y z    (6) 
 
The range vector can be expressed in terms of range, 
bearing () and elevation ( ), as defined in Figure 1 by 
 

 
cos sin*
sin sin .*

cos
tr r

 
 



 
   
  

 (7) 

 
TMM is described in the Cartesian coordinate system by 
linear discrete–time difference equation with some addi-
tive noise as  
 
 ( ) ( ) ( 1) ( 1),t tX k F k X k w k     (8) 
 
where the state vector (Xt) consists of the position and velo-
city components of the target moving in the 3-D space, i.e. 
 
 ( ) [ ( ) ( ) ( ) ( ) ( ) ( )],t x y zX k k k k x k y k z k    (9) 
 
where F(x) and w(k) are the state transition matrix and in-
tegrated process noise respectively, for the time interval 
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[t(k), t(k – 1)] and process noise is assumed to be zero 
mean white Gaussian noise. 
 
 d ( ) ( 1),t t k t k    (10) 
 

 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

( ) .
d 0 0 1 0 0
0 d 0 0 1 0
0 0 d 0 0 1

F k
t

t
t

 
 
 
 

  
 
 
 
  

 (11) 

 
The target is tracked by a sonar under water which pro-
vides measurements of bearing (m) and elevation (m). 
 The measurement model is given as 
 
 ( ) ( ) ( 1).m tZ k hX k k    (12) 
 

 
2 2

( )1
( )

( ) ( )1
( )

tan( )
( ) ,

( ) tan

y k
x km

t x k y km
z k

k
hX k

k







 
           

 (13) 

 
where (k) is uncorrelated, zero-mean white Gaussian 
noise with variances 2 2,    in the bearing () and ele-
vation () measurements respectively. 
 The measured range, bearing and elevation from sonar 
are converted to target positions in Cartesian coordinates 
with respect to ownship as origin using the following  
relations. 
 
 ( ) cos sin ,* *m m mx k r    
 
 ( ) sin sin ,* *m m my k r    
 
 ( ) cos ,*m mz k r   
 
 [ ( ) ( ) ( )].mR x k y k z k  (14) 
 
As the measurement model is non-linear, we replace KFA 
with EKF. The dynamic model using NCVM in 3-D is  
linear and the measurement model for bearing and eleva-
tion is nonlinear for this problem. In general, EKF is 
based on linearized approximations to non-linear dyna-
mic and/or measurement models9,23 and is widely used. 
For this problem, the linearized approximation is per-
formed in the measurement update step9,23. 
 The basic idea of this algorithm is to estimate the state 
of the object Xn at nth instant based on the measured data 
up to and including (n – 1)th state estimate iteratively. 
 

 1k k kX F X
 , (15) 

 

 1 ,T
k k k k kP F P F Q

   (16) 

 ( ),k k k k k kX X K Z H X     (17) 
 
 1( ) ,T T

k k k k k kK P H H P H R     (18) 
 
 ( ( , ))k k k kP I K g Z X   ( ( , ))T

k k k kP I K g Z X   
 

   ,T
k kK RK  (19) 

 
where Xk–1 = State estimate at time k – 1; Fk = State tran-
sition matrix at time k; kX   = Predicted state estimate at 
time k; 1kP

  = State covariance matrix estimate at time 
k – 1; kP  = Predicted state covariance matrix at time k; 
Qk = Process noise covariance matrix at kth time; 
Xk = Updated state estimate at time k; Kk = Filtergain  
at time k; Zk = Measurement data at time k; Hk = 
Measurement matrix at time k; Pk = Updated state covari-
ance matrix at time k; R = Measurement noise covariance 
matrix; ( , )k xg Z X   = Modified gain function and I is the 
identity matrix. 
 The main difference between the EKF and MGEKF is 
the function in the covariance update. 
 To determine the modified gain function g, we write 
 

 
ˆ( )ˆ( )
ˆ( ) ,ˆ( ) ˆ( )

x x
g y y

z z

 

 

            

 (20) 

 
where ̂  is estimated bearing from the states ˆ,x  ŷ  and 
ẑ . ̂  is estimated elevation from the states ˆ,x  ŷ  and ẑ . 
 Since g is not a function of target velocity, we removed 
those states for the derivation of g. 
 The measurement matrix H is given by 
 

 

ˆ ˆsin cos0 0 0 0
ˆ ˆ

.ˆ ˆ ˆˆ ˆcos cos sin cos sin0 0 0
ˆ ˆ ˆ

xy xy

xyz xyz xyz

r r
H

r r r

 

    

 
 
    
  

 (21) 

Updated measurement of bearing data 

If the range in horizontal plane is 
 

 2 2 ,xyr x y   
 
then, the estimated range will be 
 

 2 2ˆ ˆ ˆ .xyr x y   
 
By adding rxy with x̂yr  we can get 
 
 ˆ ˆˆ ˆ ˆcos sin cos sin .xy xyr r x y x y         (22) 
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Adding ˆ ˆ ˆ ˆcos sin cos sinx y x y        to both sides 
 

 
ˆ ˆˆ ˆ( )(cos cos ) ( )(sin sin )ˆ .

ˆ1 cos( )xy xy
x x y yr r    

 
    

 
 

 

 (23) 
 
Similarly, 
 

 
ˆ ˆˆ ˆ( )(cos cos ) ( )(sin sin )ˆ .

ˆ1 cos( )xy xy
x x y yr r    

 
    

 
 

  

  (24) 
 

 
ˆ ˆcos cos cos cosˆ ˆ2 ( )
ˆ ˆ1 cos( ) 1 cos( )xyr x x    

   
  

       
 

 

     
ˆ ˆsin sin sin sinˆ( ) .
ˆ ˆ1 cos( ) 1 cos( )

y y    
   

  
       

 (25) 

 
Taking eq. (25) and simplifying, we get 
 

 
ˆ ˆcos cos cos cos
ˆ ˆ1 cos( ) 1 cos( )

   
   

  
     

 

 

   2
ˆ ˆcos cos( ) cos sin2 2 .

ˆsin( )ˆ1 cos ( )
    

  
 

   
 

 (26) 

 

 
ˆ ˆsin sin sin sin
ˆ ˆ1 cos( ) 1 cos( )

   
   

  
     

 

 

   2
ˆ ˆsin cos( ) sin cos2 2 .

ˆsin( )ˆ1 cos ( )
    

  
 

 
 

 (27) 

 
Now the coefficients of ˆ( )x x  and ˆ( )y y  are 
 

 sin cosˆ ˆ ˆ( ) ( )
ˆ ˆsin( ) sin( )xyr x x y y 

   


   
 

. (28) 

 
Equation (28) rewritten as 
 

 
ˆ ˆsin ( ) cos ( )ˆsin( )

x̂y

x x y y
r

 
 

   
   (29) 

Updated measurement of elevation data 

As can be seen from the above analysis 
 

 1tan y
x

   generates 

 

 
ˆ ˆsin ( ) cos ( )ˆsin( ) .

x̂y

x x y y
r

 
 

   
   (30) 

In a similar way 
 

 
2 2

1 1tan tan xyrx y
z z

 
   generates 

 

 
ˆˆsin ( ) cos ( )ˆsin( ) .

ˆ
xy xy

xyz

z z r r
r

 
 

   
   (31) 

 

From eq. (24), we get 
 

 

ˆ ˆˆ ˆ( ) cos ( )sin
2 2ˆ .

ˆ
cos

2

xy xy

x x y y
r r

   

 

         
    

 
 
 

 (32) 

 
Now replacing eq. (32) in (31) 
 

 
ˆsin ( )ˆsin( )

x̂yz

z z
r


 
 

   

 

 

ˆ ˆˆ ˆ( ) cos ( )sin
cos 2 2 .

ˆˆ cos
2

xyz

x x y y

r

   


 

                
  

    

 (33) 

 
By rearranging, eq. (33) becomes 
 

 

ˆ
cos cos

2ˆ ˆsin( ) ( )
ˆˆ cos

2xyz

x x
r

 
 

 

 
 
   
 

 
 

 

 

   

ˆ
cos sin

ˆsin ( )2 ˆ( ) .
ˆ ˆˆ cos

2
xyz

xyz

z zy y
rr

 


 

 
      

 
 
 

 (34) 

 

 
ˆ( )
ˆ( )

 

 

 
 

 
 

 

 

sin cos
0

ˆ ˆ

ˆ ˆ
cos cos cos sin

sin2 2
ˆ ˆ ˆˆ ˆcos cos

2 2

xy xy

xyz
xyz xyz

r r

rr r

 

    


   

 
 
 
               
     
    

    

 

 

  
ˆ( )
ˆ( ) .
ˆ( )

x x
y y
z z

 
  
  

 (35) 
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Since the true bearing and elevation angles are not avail-
able in practice, the measured bearing and elevations are 
used to compute the modified gain. Hence eq. (35) can be 
rewritten as 
 

ˆ( )
ˆ( )

 

 

 
 

 
 

 
sin cos

0
ˆ ˆsin sin

ˆ ˆ
cos cos cos sin

sin2 2
ˆ ˆ ˆˆ ˆcos cos

2 2

m m

xyz m xyz m

m m
m m

m

m m xyz
xyz xyz

r r

rr r

 
 

   
 


   

 
 
 
               
     
    

    

 

 

  
ˆ( )
ˆ( ) .
ˆ( )

x x
y y
z z

 
  
  

 (36) 

 
By considering the velocity components x, y and z, g is 
given by 
 
g   

sin cos0 0 0 0
ˆ ˆsin sin

ˆ ˆ .cos cos cos sin
sin2 20 0 0

ˆ ˆ ˆˆ ˆcos cos
2 2

m m

xyz m xyz m

m m
m m

m

m m xyz
xyz xyz

r r

rr r

 
 

    


   

 
 
 
              
     
    

    

  

 (37) 

Results and discussions 

The simulated data with different measurement inaccura-
cies have been generated for validating the algorithm. At 
the instant of the first angle measurements, ownship is 
considered at the origin. It has also been assumed that the 
target movement has a constant velocity and travels in a 
straight path. Figure 1 shows the tracking angles of the 
observer and target and Figure 2 shows the trajectories of 
ownship, true target and predicted target. Figure 3 shows 
the time history in x, y and z positions. 
 The performance of the algorithm is evaluated in  
terms of: 
 
 The percentage fit error (PFE) in x and y 
 

 
ˆnorm( )PFE 100 ,* norm( )x

x x
x


  (38) 

 
 

Figure 1. Tracking angles (bearing and elevation). 
 
 

 
 

Figure 2. Observer, true (simulated) target and predicted target tra-
jectories. 

 
 

 
 

Figure 3. Time history of x, y and z positions (true and predicted). 
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ˆnorm( )PFE 100 ,* norm( )y

y y
y


  (39) 

 

 
ˆnorm( )PFE 100 .* norm( )z

z z
z


  (40) 

 
 The root mean square position error 
 

 
2 2 2

1

ˆ ˆ ˆ( ) ( ) ( )1RMSPE ,
3

N
i i i i i i

i

x x y y z z
N 

    
   (41) 

 
where, N = 1, 2, 3…1000 Monte Carlo runs. 
 
 The root mean square velocity error 
 

2 2 2

1

ˆ ˆ ˆ( ) ( ) ( )1RMSVE ,
3

i i i i i i
N

x x y y z z

i

v v v v v v
N 

    
    

  (42) 
 
where N = 1, 2, 3…1000 Monte Carlo runs. 
 
 Root sum square position error  
 

 2 2 2ˆ ˆ ˆRSSPE ( ) ( ) ( ) .x x y y z z       (43) 
 
 Root sum square velocity error 
 

 2 2 2ˆ ˆ ˆRSSVE ( ) ( ) ( ) ,x x y y z zv v v v v v       (44) 
 
where x, y and z are the measurements, x̂ , ŷ  and ẑ  are 
the estimated target positions, x, y and z are the meas-
urements, ˆxv , ˆyv  and ˆzv  are the estimated target veloci-
ties in x, y and z coordinates respectively. Here, RMSPE 
and RMSVE are calculated at each time step as given in 
the eqs (41) and (42). 
 The simulated data has been generated as follows: 
 
 Simulation 1: 
 Initial target velocity = 10 m/sec 
 Initial target course = 135 
 Initial range between ownship/observer and target = 
10 km 
 Initial bearing between ownship/observer and target = 
0.5. 
 Initial elevation between ownship/observer and tar-
get = 45. 
  = 0.0015 
 r = 30 
  = 0.0015. 
 
The estimated errors in simulations 1 are plotted in Fig-
ure 4. It has been observed that the convergence duration 

is 200 sec in case of range, 50 sec in case of bearing, 
200 sec in case of velocity, 600 sec in case of course and 
800 sec in case of elevation, which indicate the suitability 
of this method in aiding the AUV for its safe navigation. 
The root mean square errors in position (RMSPE) and  
velocity (RMSVE), root sum square errors in position 
(RSSPE) and velocity (RSSVE) are shown in Figures 5 
and 6. 
 Simulation 2: 
 Initial target velocity = 10 m/sec 
 Initial target course = 145 
 Initial range between ownship/observer and target = 
20 km 
 Initial bearing between ownship/observer and target = 
0.1 
 Initial elevation between ownship/observer and target 
= 25 
  = 0.0015 
 r = 30 
  = 0.0015. 
 

 
Figure 4. Range, bearing, velocity, course and elevation errors for 
simulation 1. 

 

 
 

Figure 5. RMSPE, RMSVE, RSSPE and RSSVE in predicted posi-
tion for simulation 1. 
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Figure 6. RSSPE in x, y and z positions for simulation 1. 
 
 

 
 

Figure 7. Range, bearing, velocity, course and elevation errors for 
simulation 2. 

 
 

 
 

Figure 8. RMSPE, RMSVE, RSSPE and RSSVE in predicted posi-
tion for simulation 2. 

 
 

Figure 9. RSSPE in x, y and z positions for simulation 2. 
 
 
 

 
 

Figure 10. Range error of proposed BEOT algorithm with EKF. 
 
 
 

 
 

Figure 11. Bearing error of proposed BEOT algorithm with  
EKF. 
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The estimated errors in simulations 2 are plotted in  
Figure 7. It has been observed that the convergence dura-
tion is 350 sec in case of range, 70 sec in case of bearing, 
300 sec in case of velocity, 850 sec in case of course and  
900 sec in case of elevation. The RMSPE and RMSVE, 
RSSPE and RSSVE are shown in Figures 8 and 9 respec-
tively. 
 Observer motion is assumed to be stationary and at 
origin (0, 0, 0). Bearing and elevation measurements are 
taken at every 1 sec for 1000 Monte Carlo updates. 
 Filter initializations are as follows: 
 The initial state has been defined as 
 

0 [10 10 10 cos sin sin sin cos ],m m m m m m m mX r r r      
 (45) 
 
where rm, m and m are initial bearing and elevation 
measurements. 
 
 

 
 

Figure 12. Velocity error of proposed BEOT algorithm with EKF. 
 
 

 
 

Figure 13. Course error of proposed BEOT algorithm with EKF. 
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Initial covariance matrix is assumed as per the standard 
procedure24. The initial covariance matrix of process and 
measurement noises are taken as follows. 
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
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  

 (48) 

 
where dt is the time step. 2

  is the variance of noise in 
bearing measurement. 2

  is the variance of noise in ele-
vation measurement. 
 
 

 
 

Figure 14. Elevation error of proposed BEOT algorithm with EKF. 
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Comparison of proposed BEOT algorithm with  
conventional EKF 

In Figures 10–14, the range, bearing, velocity, course and 
elevation errors for methods proposed, BEOT and con-
ventional EKF are compared for every time step of 1000 
Monte Carlo runs and found to be minimum. 
 It is observed that the range, bearing, velocity, course 
and elevation errors are optimum for the proposed algo-
rithm. 

Conclusions 

In this study, EKF has been extended to estimation with 
bearing and elevation measurements for underwater mov-
ing object tracking. Convergence issues associated with 
the newly designed algorithm have been analysed. It is 
observed that the errors are small and settle down after a 
filter learns the dynamics. The performance of this algo-
rithm has been evaluated using 1000 Monte Carlo simula-
tions. The results of the proposed method are compared 
with the existing EKF method and it was observed that 
range, course, velocity, bearing, and elevation errors of 
the target are minimized. Due to the reduced measure-
ment residual covariance, the accuracy has been im-
proved when compared to the conventional EKF method. 
Also, the convergence of the covariance matrix into 
steady state is improved with the proposed method. 
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