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The present article analyses the accuracy of application 
of higher-order nonlinear interaction models on hyper-
spectral data to identify mangrove mixtures present in 
the Sunderbans Delta – a World Heritage Site in West 
Bengal, India. It is observed that intra-species interac-
tion between similar mangrove species (interaction be-
tween the same type of end-members) in a homogeneous 
mangrove stand is more accurately modelled by the 
linear–quadratic model and hence results in more ac-
curate fractional abundance estimations after unmix-
ing when compared with linear–unmixing models. 
Specifically, we observe that quadratic models provide 
more accurate estimates than linear and bilinear mod-
els for the study area (Henry Island of Sunderbans), 
which is mostly dominated by pure and mixed man-
grove species of Avicennia marina, Excoecaria agallo-
cha, Avicennia alba, Phoenix paludosa, Avicennia 
officinalis, Ceriops decandra, Bruguiera cylindrica and 
Aegialitis. In this study, the quadratic nonlinear model 
successfully characterizes the interaction of end-
member mixtures comprising E. agallocha, A. offici-
nalis, B. cylindrica and A. alba in the study area.  
 
Keywords: Higher-order interaction models, hyper-
spectral data, mangrove species, nonlinear interactions. 
 
HYPERSPECTRAL remote sensing (HSRS) is a powerful 
tool for detailed spatio-temporal mapping and sustainable 
management of large forested lands. The wide spectral 
range of hyperspectral data and their high spectral resolu-
tion allows for accurate detection and classification of 
surface canopies and ground features through the applica-
tion of hyperspectral image processing algorithms1,2. For 
example, the characteristic bio-optical properties of dif-
ferent mangrove species in a dense mangrove forest can 
be integrated into spectral libraries for improved dis-
crimination and mapping of mangrove eco-types. 
 Outside India, researchers have made a detailed study 
of mangroves at species level using hyperspectral data3–5. 
Studies in India have also established the capability of 
hyperspectral data for species-level discrimination of 
mangroves in distantly located islands of the Sunderban 

Delta. The Delta is well-known for its homogeneous and 
heterogeneous patches of mangrove species that include a 
particular form or various forms of mangrove species 
within the ecosystem. Application of remote sensing 
technologies for accurate identification and discrimina-
tion of mangrove species is being considerably encour-
aged in recent times. Homogeneous mangrove areas 
could be identified through linear spectral unmixing, 
which follows the principle of singular reflection with 
negligible multiple scattering6. However, in natural forests 
such as the Sunderban Biosphere Reserve, intra- and  
inter-species scattering occurs, thus making the reflec-
tions nonlinear in nature7. Nonlinear spectral unmixing is 
expected to provide a more accurate estimate of fractional 
abundance estimation of mangrove mixtures along with 
their identification. 
 Nonlinear models have been developed at microscopic 
scale for materials which are intimately mixed8. Such 
mixtures have been observed and studied for imaged 
scenes composed of sand or mineral mixtures. Based on 
ray tracing theory, several hypotheses have been derived 
to precisely illustrate the relationship between radiation 
interactions of surfaces comprising microscopic particles. 
Another type of nonlinear interaction occurring at  
macroscopic scale has also been studied, particularly in 
multilayered configurations. Such interactions normally 
take place when the radiation reflected by an object hits 
an adjacent object and suffers further reflections before 
being finally intercepted by the sensor. These cases are 
common for images acquired over forests where there are 
multiple reflections between adjacent objects. This is  
often the case for scenes acquired over forested areas, 
where there may be many interactions between the 
ground and the canopy. The models of Fan et al.9 and 
Nascimento and Bioucas-Dias10 have been developed to 
analytically describe these interactions. They are usually 
considered for second-order interactions; orders greater 
than two are neglected. However, in natural forests such 
as the Sunderban mixed mangrove forest, there exist  
mixtures of mangrove species with more than two species 
within a pixel area. Hence, we have developed a non-
linear model considering higher-order interactions  
between different end-members up to the order of n to 
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overcome the limitations of the previous models. Moreover, 
all these interaction models only include inter-component 
interactions, but no intra-component interactions. As the 
target end-members in the study area may occur in pure 
patches, multiple scattering between similar end-members 
should not be ignored. Hence, our model also includes in-
teraction terms of similar end-members to get a more ac-
curate representation of abundance values and their 
contribution to the final reflectance. 
 Nonlinear mixture models developed till date suggest 
that if linear spectral unmixing is applied to a nonlinear 
system, the error in fractional abundance estimates for 
mineral congregations may be about 30% (ref. 11). In 
studies regarding vegetation landscapes also, the effect of 
nonlinearity has been reported12–15. Nonlinear models 
have been applied on AVIRIS imagey of surfaces com-
prising mineral ensembles. Roberts et al.14 estimated end-
member fractional abundances from nonlinear mixtures 
of vegetation and canopy shade. Guilefoyle et al.16 and 
Plaza et al.17 designed neural networks for spectral un-
mixing of pixel mixtures. The quality of training data for 
neural networks is responsible for their performance to a 
great extent. Nonlinear algorithms derived from linear 
ones have also been used for develop kernel-based 
nonlinear models18–20. In this case kernels have been  
applied to the spectral profile of each end-member, inde-
pendent of radiation interactions between objects, conse-
quently working as nonlinear distortion functions. Other 
studies on nonlinear unmixing include polynomial post-
nonlinear mixing model21,22, nonlinear spectral umixing 
for abundance estimates of tree cover in orchards23,  
unmixing based on a nonlinear fluctuation model24 and 
enhancement of unmixing with spatial correlations25. 
 The major goal of this study is to extract hyperspectral 
data for mangrove species discrimination with use of 
higher-order nonlinear interaction models. This higher-
order representation considers radiation interaction bet-
ween different mangrove species (end-members) located 
in close proximity, which has been overlooked in linear 
mixing models. An effort has been made to apply this 
theory in the natural state of the mangrove forests of the 
Sunderban and perceive how best it can explain the  
resulting spectra for specific mixed end-member distribu-
tions. Pure end-members in the diverse mangrove forest 
of the Sunderban largely comprise of mangrove species 
like Avicennia officinalis, Phoenix paludosa, Avicennia 
marina, Avicennia alba, Bruguiera cylindrica, etc. 
 It is of significance to mention that the application of 
linear–quadratic model for identification of mangrove 
species is an unexplored field of research. 

Study area 

The mangrove habitats of Henry island (Figure 1),  
extending from 213600N to 213400N lat. and 

861630E to 881830E long. of the Sunderban Bio-
Geographic Province, West Bengal, India, have been  
chosen for the present study. The Island is spread out 
over an area covering 10 sq. km. Henry Island offers a 
perfect location of hyperspectral remote sensing for man-
grove species monitoring and mapping. 
 A broad depiction of mangrove distribution in Henry 
Island is that Excoecaria agallocha, A. marina and  
A. alba dominate the seaward face. Following this pre-
cinct is a zone of mixed mangroves comprising A. offici-
nalis, Phoenix paludosa, Brugueria cylindrica, Ceriops, 
Xylocarpus, Aegialitis and E. agallocha. 

Methodology 

Data collection 

The Hyperion image of Henry Island has been procured 
from the United States Geological Survey, EROS Center 
through Data Request and was acquired on 27 May 2011. 
The acquired imagery has a spatial resolution of 30 m and 
a wide spectral range from 355 to 2577 nm with a narrow 
bandwidth of 10 nm. 

Data preprocessing 

Atmospheric correction has been done on the Hyperion 
data using FLAASH and QUAC algorithm available in 
the image processing software, ENVI21. FLAASH has 
been found to be highly proficient for atmospheric cor-
rection of data captured by the Hyperion sensor. Execu-
tion of FLAASH algorithm exhibits improved correction 
results in comparison to QUAC, as it considers informa-
tion of the atmospheric setting of Henry Island at the time 
of attainment of data. QUAC does not consider the envi-
ronmental conditions as in FLAASH. Figure 2 a–c shows 
 
 

 
 

Figure 1. Satellite image of Henry Island, Sunderban, India (courtesy: 
Google Earth). 
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the spectral profile of a mangrove patch before and after 
executing FLAASH and QUAC. The visible segment of 
the electromagnetic spectrum in the FLAASH-corrected 
spectral profile shows that the chlorophyll pigments in 
flora strongly reflect the green wavelength and absorb 
blue and red, displaying a typical reflectance crest inside 
the green range (which is a representative vegetation sig-
nature). However, after QUAC correction the rise in re-
flectance in the green wavelength is not so prominent. 
 Topographic sheets of Henry Island have been used for 
precise geo-registration of the Hyperion image26. The 
SOI Mapsheet No. 79C6SW and 796C6NW has been 
used for geo-registration. Dimensionality reduction of the 
hyperspectral bands has been done using Minimum Noise 
Fraction (MNF) algorithm, which adequately retains the 
vital data for successful spectral unmixing in the lower 
dimension. 

Ground survey 

A ground assessment of the area under study has been 
made to recognize and gather samples of mangrove  
 
 

 
 

Figure 2. Spectral profile of mangrove forest area: a, original data; b, 
after FLAASH correction; c, after QUAC correction. 

species whose image-based categorization has been car-
ried out. Field visit for initial ground truthing was made 
in the month of June 2011 immediately after acquisition 
of data. GPS (accuracy 4 m) was used to accurately posi-
tion the geographical coordinates of the study track.  
In the initial visit for ground truthing, a quadrat of 
30 m  30 m dimension that is equal to the spatial resolu-
tion of Hyperion imagery was chosen to estimate the 
presence of dominant mangrove species on the ground. 
Thirty sample plots were recognized in homogeneous and 
mixed patches of mangrove species and plotted on the 
geometrically corrected hyperspectral data with the help 
of GPS27. A pure or mixed patch was considered depend-
ing on the size of a mangrove tree crown or canopy. The 
number of trees of different species present within the 
quadrat was counted. The quadrat with tree species hav-
ing more than 50% presence and selected as the dominant 
species in that location, represented a homogeneous stand 
of the mangrove species. The quadrat in which none of 
the mangrove species had 50% presence was considered 
as a mixed mangrove patch. These coordinates served as 
checkpoints to assess precision among image-derived and 
field-located values of the mangrove species. Ground 
survey for validation of unmixing results was again done 
in May 2012 and June 2013. It was observed that the 
changes in physical abundance of trees within a span of 
1–2 years in the island are negligible. Table 1 displays 
some geographic coordinates of the study area that have 
been considered as sample plots. 

Automated end-member detection 

End-member detection is the task of identifying and  
extracting spectrally pure pixels present in the image 
scene. The NFINDR (N Finder, where N stands for the 
number of end-members) algorithm, a well-known tech-
nique of end-member identification has been used for  
extraction of pure mangrove spectra dataset28–30. The  
algorithm requires some familiarity of the number of  
dominant end-members that are likely to exist in the 
study area and searches for the set of input pixels that re-
sult in the maximum volume. 

Nonlinear model 

The Sunderban Biosphere Reserve is characterized by both 
‘homogeneous’ and ‘mixed’ mangrove species patches 
that comprise a particular or several types of mangrove 
species in a closed ecosystem. Appropriate recognition 
and categorization of such homogeneous and mixed man-
grove patches using various technologies of remote sens-
ing is being encouraged throughout the globe. Detection 
of mangrove species existing in homogeneous patches 
might be achieved through linear spectral unmixing6. A 
linear model assumes singular reflection from the target
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Table 1. Sample quadrats during ground survey 

 Mangrove species Percentage of mangrove Type of cover 
Geographic coordinates identified trees in the quadrat (pure/mixed) 
 

2134.621; 8816.502 Excoecaria agallocha 100 Pure 
2134.626; 8816.499 Avecennia officinalis 100 Pure 
2134.630; 8816.490 A. officinalis 100 Pure 
2134.616; 8816.512 E. agallocha  17 Mixed 
 A. officinalis  74 
 Avicennia alba   9 
 
2134.650; 8816.788 Avicennia marina 100 Pure 
2134.642; 8816.799 A. marina 100 Pure 
2134.631; 8816.810 A. marina 100 Pure 
2134.621; 8816.823 A. marina 100 Pure 
2134.380; 8817.807 Ceriops decandra  65 Mixed 
 E. agallocha  35 
 
2134.385; 8817.811 C. decandra  70 Mixed 
 E. agallocha  30 
 
2134.374; 8816.810 Ceriops tagal  60 Mixed 
 E. agallocha  40  
 
2134.374; 8816.812 C. tagal  70 Mixed 
 E. agallocha  30 

 
 
end-member and negligible interaction between its  
surrounding end-members. In linear spectral unmixing,  
assuming y as the intensity value of each pixel in the  
hyperion image and mr as the matrix representing the  
signature of pure mangrove species identified by 
NFINDR, the fractional abundance ar is estimated using 
the equation 
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However, in mixed natural forests like the Sunderban 
nonlinear models that consider radiation interaction  
between several objects within a pixel area and manifold 
scattering between the plant canopies are likely to  
provide precise end-member detection of species and 
their abundance estimation. 
 In bilinear models, it is implicit that the radiation inci-
dent on each mangrove end-member suffers reflections 
with other mangrove species existing in close vicinity31. 
The radiation reflected from the initial end-member is  
reflected once more by the subsequent end-member and 
then intercepted by the satellite sensor. This is known as 
second-order interaction amongst mangrove species end-
members. Thus, for R different end-members, it should 
have R*(R + 1)/2 reflections. The nonlinear reflection 
model is given below 
 

 
1

,
1 1 1 1

.
R R R

r r i j i j
r i j

y a m m m n


   

       (1) 

Here y is the intensity value of each pixel in the image, 
mr a matrix representing the signature of pure mangrove 
species identified by NFINDR and ar, is the estimated 
fractional abundance of the identified end-members and 
their mixtures. In this model, reflections of orders larger 
than two are ignored. Nevertheless, in naturally occurring 
forests such as the Sunderban Delta, there exist mixtures 
of mangrove species with more than two species co-
existing within a pixel area. We have developed a nonlinear 
unmixing algorithm for considering higher-order reflec-
tions involving dissimilar end-members up to the order of 
n and observed how well they portray the mixed spectral 
signatures for specific end-member distributions. The 
model also includes interaction terms between similar 
end-members to get a more accurate representation of 
fractional abundances in the pixel reflectance values. 

Unmixing model 

Intra-species interaction model: The target end-
members in the study area may occur in pure patches 
covering the entire pixel area or in mixed proportions. In 
such a situation, multiple scattering between similar end-
members should not be ignored. In such cases, applica-
tion of linear or bilinear model would lead to inaccurate 
results. Hence, it becomes essential to include interaction 
terms of similar end-members besides different end-
members to get a more accurate representation of abun-
dance values and their contribution to the final reflec-
tance. The algorithm in this model considers intra-end-
member interaction of the second-order. 
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 The total number of interactions in this model has been 
calculated as 
 
 (R + R + RC2) = R + R + ((R*(R – 1))/2) = (R*(R + 3)/2). 
 
The model is represented by the equation 
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Inter-species interaction model of higher-order: Earlier 
studies indicate that nonlinear models have considered 
only bilinear interactions. However, it is observed that in 
natural forests such as the Sunderban Biosphere Reserve, 
the mangrove species mostly coexist in mixed form, i.e. a 
pixel may contain more than two types of end members. 
In this article we have considered a model with n number 
of variables representing higher-order interaction of nth 
order between mangrove species end-members. 
 The total number of interactions of the third-order in 
this model has been calculated as 
 

= (R + R + RC2 + RC3) = R + R + {[R*(R – 1)]/2} 
 

 + {[R*(R – 1)*(R – 2)]/6} = {R*(R + 3)/2} 
 

    + {[R*(R – 1)*(R – 2)]/6} 
 

 = {[(3*R*R + 3)] + [R*(R – 1)*(R – 2)]}/6. 
 
The model extends the linear and bilinear interaction as 
above with third-order interaction terms as 
 

 ,
1 1

*
R R

r r i j i j
i j

Y a m m m
 

    

 

 
2 1

, ,
1 1 1

( * , ) .
R R R

i j k i j k g
i j i k j

m m m n
 

    

     (3) 

 
Here (mi * mj * mk) denotes the Hadamard product, i.e. 
term-by-term multiplication of the ith, jth and kth end-
member spectra. 
 
Nth order interaction: The Nth order interaction model 
can be defined as 
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where ng is the noise and n is the number of interactions. 

Accuracy assessment 

To authenticate the results estimated using the linear and 
nonlinear higher-order models, the fractional abundances 
of the recognized mangrove species have been calculated. 
The absolute error in the estimated abundance values  
of every end-member is the absolute difference between 
the fraction abundance values obtained by the linear  
or nonlinear higher-order models and that by the real 
ground information of a particular pixel coordinate.  
The root mean square error (RMSE) has been estimated 
as 
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where fck is the real ground information fraction results, 
and fmk is the linear/nonlinear model abundance output, N 
the number of mangrove end-members and R is the num-
ber of pixel coordinates whose error values are to be  
calculated. 

Results and analysis 

The NFINDR extracted end-members have been taken as 
input for execution of linear and nonlinear algorithms. 
With seven principal mangrove species recognized, we 
have assumed that mixed mangrove species consist of a 
blend of single and additional variety of these species. 
The execution of bilinear model (second-order) has  
resulted in 28 outcomes (seven single (linear) interactions 
of the end-member and 21 inter-species interactions 
amongst different end-members). Consideration of intra-
end-member interaction in a bilinear model has led to the 
linear–quadratic model that results in 35 interactions  
(7 linear reflections, 7 intra-end-member interactions and 
21 inter-end-member interactions. The pixel areas that 
have three end-member mixtures follow the model with 
third-order interactions and consider a total of 70 interac-
tions (7 linear reflections, 7 intra-end-member interac-
tions, 21 inter-end-member interactions of the second-
order and 35 inter-end-member interactions of third-
order). Depending upon the type of end-members present 
within a pixel area, an Nth-order nonlinear model (eq. (4)) 
has been developed. If the pixel is pure, then the model is 
reduced to an intra-species interaction model (eq. (2)). If 
the pixel is a two-species mixture, then it reduces to a  
bilinear model (eq. (1)), and if it is a three-species  
mixture, the model reduces to eq. (3). Table 2 shows the 
abundance estimates and RMSE values of an A. alba–A. 
officinalis–E. agallocha–B. cylindrica mixed mangrove 
patch. 
 It is observed that the fourth-order and then the third-
order models are most accurate for 3–4 mangrove species 
mixture. As the linear model does not consider mixture
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Table 2. Abundance estimates and RMSE values of E. agallocha–A. officinalis–B. cylindrica–A. alba patch 

   Linear–quadratic Model of third-order Model of fourth-order 
End-members Linear model Bilinear model model interaction interaction Ground truth 
 

1 E. agallocha 0.5833 0.3710 0.2412 0.2274 0.2264 0.24 
4 A. alba 0.1009 0.0587 0.0369 0.0406 0.0404 0.04 
6 B. cylindrica 0.1110 0.0657 0.0499 0.0469 0.0467 0.05 
7 A. officinalis 0.2048 0.1299 0.0810 0.0804 0.0800 0.08 
1, 1 – – 0.2916 0.2604 0.2592 0.24 
1, 4 – 0.0713 0.0446 0.0465 0.0463 0.05 
1, 6 – 0.0799 0.0603 0.0537 0.0534 0.05 
1, 7 – 0.1579 0.0979 0.0920 0.0916 0.09 
4, 4 – – 0.0068 0.0083 0.0083 0.01 
4, 6 – 0.0126 0.0092 0.0096 0.0095 0.01 
4, 7 – 0.0250 0.0150 0.0164 0.0164 0.02 
6, 6 – – 0.0125 0.0111 0.0110 0.02 
6, 7 – 0.0280 0.0202 0.0190 0.0189 0.02 
7, 7 – – 0.0329 0.0325 0.0324 0.03 
1, 4, 6 – – – 0.0110 0.0109 0.01 
1, 4, 7 – – – 0.0188 0.0187 0.02 
1, 6, 7 – – – 0.0217 0.0216 0.03 
4, 6, 7 – – – 0.0039 0.0039 0.01 
1, 4, 6, 7    – 0.0044  0.005 
RMSE 0.2315 0.0761 0.0398 0.0211 0.0188   

 
Table 3. Abundance estimate and RMSE values of E. agallocha pure patch 

Coordinate (96, 126): Linear spectral Linear–quadratic mixing 
End members unmixing model (LQM) Ground truth 
 

1 1.000 0.5000 0.5 
1, 1  0.5000 0.5 
RMSE 0.2673 0.1109  

 

 
 

Figure 3. Abundance of Avicennia alba: a, Linear model; b, Bilinear 
model; c, Linear–quadratic model (pixels showing 40% abundance  
and above). d, Abundance of A. alba–Excoecaria agallocha–Bruguiera 
cylindrica mixture (pixels showing abundance values of 1% and 
above). 
 
interactions at all, it shows least accuracy. The bilinear 
model considers only two end-member mixture interac-
tions; hence, it shows lower accuracy compared to the 
third- and fourth-order models. The abundance estimated 

for four-species interactions is very low, which indicates 
that the mixture presence of the four species is almost 
negligible, though there is presence of individual end-
members to an extent. Figure 3 a–d shows a comparison 
of fractional abundance images generated with the four 
models for E. agallocha and A. alba patch and their inter-
actions for the above coordinates. 
 Table 3 shows the abundance estimate and RMSE  
value of E. agallocha pure patch. The linear–quadratic 
model shows higher accuracy than the linear model, as it 
considers interaction between similar species which the 
linear model does not. The pixel value of a 30 m  30 m 
pure mangrove species patch represents the reflectance of 
that particular mangrove species. When linear interac-
tions are considered, the final pixel value is a representa-
tion of single scattering of radiation from the target 
species to the sensor. This model gives accurate results if 
the trees are set side by side as in a checkerboard. In such 
cases, the final reflectance value of a pixel represents 
single reflection (radiation falling on a tree and getting 
reflected back and intercepted by the sensor). However, 
in pure and dense mangrove patches, the same type of 
mangrove species occur close to each other and hence  
encounter multiple bounces of reflection between the 
closely spaced trees. In these cases, the final pixel value 
is a combination of single and multi-level reflections. As 
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our intra-species interaction model considers linear as 
well as multiple-level reflections, it gives more accurate 
fractional abundance information for pixels representing 
a pure mangrove patch than a linear model (Table 3). 
 Figure 4 displays the increase in the number of identi-
fied mangrove species (pure and mixed) with increase in 
the order of nonlinearity. Though higher-order models re-
sult in more accurate identification of end-members and 
fractional abundance estimation, they have some limita-
tions. The increase in order leads to an increase in com-
putational complexity and processing time. However, in 
the study of mangrove species identification and their 
mixtures, possibility of the presence of more than four 
species within a hyperspectral pixel area is almost negli-
gible. Hence for mangrove forests in particular, computa-
tional complexity up to fourth-order is manageable. For 
higher number of end-members we may separate linearly 
separable end-members before we apply nonlinear  
models on them. 

Conclusion 

This study analyses the precision of applying the non-
linear higher-order interaction model on mangrove spe-
cies mixtures in the Henry Island of the Sunderban Delta. 
With the goal of class separation of mangrove species in 
a mixed mangrove forest, the fractional abundance values 
of the mangrove end-members and their mixed composi-
tion in each pixel area have been calculated using the 
above stated models. The models developed for similar 
end-member interactions and Nth-order interactions have 
been analysed and compared with the existing linear and 
bilinear models in terms of performance accuracy to rec-
ognize mixed mangrove species within a pixel. It has 
been found that in mixed natural mangrove forests, higher-

order nonlinear models are more appropriate than  
linear mixing models. Linear models are known to be 
more suitable for detection of end-members that are set in 
distinct and isolated patches and have given accurate  
results in areas of pure mangrove. From the results it has 
also been observed that the similar end-member interac-
tion models are better suited for interactions between 
similar species in a pure patch and hence give more accu-
rate abundance estimates for pure patches when com-
pared with linear spectral unmixing models. The higher-
order nonlinear model has effectively recognized the  
interfaces among two or more dissimilar end-members in 
mixed mangrove areas. The study area is found to be 
dominated by E. agallocha, A. marina and A. alba. Other 
predominant mangrove species recognized from the hy-
perspectral image scene are A. officinalis, P. paludosa, C. 
decandra and B. cylindrica along with their mixtures. 
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