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India is one of the fast developing countries in the 
world with a growth rate of 6.4%. Rapid industriali-
zation is the main cause behind such growth.  
Although industrialization is of utmost importance for 
growth, sustainability of ecology is also a matter of 
concern. India has a vast coastline, but the saline  
water is not suitable for industrialization; so ground-
water is the primary source for both industrialization 
and human consumption. Agriculture plays a major 
role in India’s economy and irrigation is also depend-
ent on groundwater to some extent. Hence the study of 
groundwater levels is the need of the hour. In this 
study, time-series techniques like fuzzy time-series 
analysis and ARIMA are utilized for forecasting 
monthly groundwater levels. Experiments are per-
formed on the datasets collected from different re-
gions of India. The experimental results demonstrate 
that fuzzy time series analysis yields more accurate 
forecast of groundwater levels compared to the ARIMA 
model. The results of this study can be utilized for 
planning a suitable policy for groundwater use and its 
proper regulation to avoid future crisis. 
 
Keywords: Fuzzy logic, groundwater level, prediction 
models, time-series forecasting. 
 
GROUNDWATER is a major resource in our country. In 
fact, India tops the list of groundwater abstracting coun-
tries. Groundwater is essential for sustainability of  
ecosystem; it provides stream water during drought con-
ditions. Considering the effects of climate change, land-
use change and global environmental changes like change 
in the amount of precipitation, increase in temperature 
and increase in demand of groundwater because of popu-
lation growth, it is important to assess them1. Water being 
a dynamic resource, its storage undergoes continuous 
change either by recharge from various sources or dis-
charge due to extraction or natural basin outflow. Hence 
periodic monitoring of groundwater levels is imperative 
for planning systematic development and management of 
groundwater resources2. 
 Groundwater level prediction in India is of utmost im-
portance as our large population is heavily dependent on 
groundwater for daily consumption. Also groundwater is 
heavily used both for irrigation and industrialization in 
India. Due to faulty irrigation system, a lot of ground-
water is wasted. Prediction of groundwater levels is the 
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need of the hour to avoid future crisis. Earth science data 
like groundwater level are large and complex and often 
represent a time series, making them difficult to analyse3. 
A wide variety of data mining, machine learning and  
information theoretic approaches are applicable to 
groundwater-level data. Artificial neural network and 
model tree ensembles methods have generally been em-
ployed for future prediction of groundwater levels3. This 
communication focuses on methods like auto-regressive 
integrated moving average (ARIMA) using Box–Jenkins 
methodology and fuzzy time-series analysis for forecast-
ing groundwater level. 
 In the past, various approaches have been suggested for 
predicting water level, including physical and statistical 
models. However, none of them is considered best  
because of the high degree of uncertainty and time-
varying characteristics of the hydro-system. Principal 
component analysis (PCA) and neural network models 
have been designed for predicting water level of Hoek 
Van Holland during storm situations by van de Weg4. 
However, the PCA method has the disadvantage of diffi-
culty in calculation of covariance matrix in an accurate 
manner5. Chang and Chang6 have proposed an adaptive 
neuro-fuzzy inference system for forecast of water level 
in reservoirs. Not having any systematic method for  
designing the controller is the main issue with fuzzy logic 
while a lot of computational resource is needed to fully 
implement a standard neural network. Scitovski et al.7 
have utilized the periodicity of water-level behaviour  
using trigonometric regression for long-term forecasting 
and nearest neighbour method for short-term forecasting. 
Forecasting of groundwater level using conceptual physi-
cal models has also been proposed. But these are con-
strained with the limitation of too many dependent 
variables8. A hybrid model combining genetic algorithm 
and wavelet network model has been proposed by Wang 
and Zhao8. But the genetic algorithm does not assure of a 
global optimal solution. 
 The ARIMA model and fuzzy time-series model used 
in this study have been designed based on past data and 
some random noise component with mathematical ma-
nipulation and can predict the groundwater levels more  
accurately. As the fuzzy time-series analysis provides a 
better result in comparison to ARIMA, the latter model 
can be used in combination with various parametric and 
non-parametric methods of forecasting. Artificial neural 
network (ANN), k-nearest neighbour (k-NN), Markov 
chains, etc. can be used with the ARIMA model to reduce 
the forecasting error. The ARIMA forecast models are 
usually governed by three components: variables of the 
model, coefficients of the variables and some unobserved 
errors or random shock9. All the three components con-
tribute towards the uncertainty of forecasting. In this 
communication, all the three components have undergone 
thorough analysis experimentally. The effect of temporal 
aggregation on ARIMA processes has been discussed by 

Stram and Wei10. Fuzzy time-series analysis on ground-
water level dataset is performed by following the work of 
Song and Chissom11. Trend analysis of pre- and post-
monsoon groundwater levels has been performed by 
Gokhale and Sohoni12. The ARIMA model takes care of 
the seasonal variation of groundwater level in addition to 
the trend component. 
 For the ARIMA model monthly groundwater-level data 
have been collected from Groundwater Information Sys-
tem, Government of India (GoI), Ministry of Water  
Resources, Central Ground Water Board (CGWB)13. In 
this study the ARIMA model is used for future prediction 
of groundwater level utilizing Box–Jenkins methodology. 
As multiple ARIMA models can be proposed for a single 
dataset, a suitable model has been chosen by studying as-
pects such as mean square error (MSE) and mean magni-
tude of relative error (MMRE). 
 The Box–Jenkins methodology is useful for stationary 
time series, i.e. it must have a stable mean, variance and 
autocorrelation over the series14. For a stationary series, 
the correlogram dies down rapidly, or it lasts for four to 
five lags above the significant level. One way of remov-
ing non-stationarity from time series is by simply apply-
ing difference operation to the time series. 
 The first-order differencing is expressed as 

1t t tX X X    , where Xt is the value of the time-series 
variable at time t, Xt–1 the value of the time-series vari-
able at time t – 1 and tX   is the first differenced time-
series value. Likewise second-order differencing is  
expressed as 1.tt tXX X     In most cases, up to second-
order differencing is performed for a time series. The 
backshift operator B is often used to represent the equa-
tion in a compact manner; the first-order difference op-
eration is expressed as (1 )t tX B X    and the second-
order difference operation as 2(1 ) .t tXX B   
 A time series generally consists of two parts: a deter-
ministic part representing the time-series values and a 
white noise part induced implicitly. The ARIMA model 
includes both parts. The auto-regressive part represents 
the deterministic component and determines how the data 
values of a time series regress upon themselves. The 
moving average part corresponds to the memory of the 
time series for the preceding random noise components23. 
The integrated part represents the degree of differencing 
needed to convert a time series to a stationary one. 
 An auto-regressive model of order p (AR(p)) suggests 
how the current time series value is regressed upon p 
number of past time-series values. So an AR(p) model 
can be mathematically represented as 
 
 1 1 2 2 ,t t t p t p tX X X X           (1) 
 
where {Xi} are the time-series values at instance i, {i} 
are the auto-regressive parameters and t is the white 
noise component at instance t. Equation (1) can be writ-
ten in terms of backshift operator as 
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 ( ) ,p t tB X   (2) 
 

where 2
1 2( ) 1 p

p pB B B B         is the AR char-
acteristic polynomial calculated on B (ref. 16). 
 A moving-average model of order q (MA(q)) indicates 
the current value of the time series as a linear regression 
of q previous white noise values15. Mathematically, an 
MA(q) model can be expressed as 
 
 1 1 2 2 ,t t t t q t qX              (3) 
 
where { }i  are the moving-average parameters. Equation 
(3) can be written in terms of backshift operator as 
 

 ( ) ,t q tX B   (4) 
 

where 2
1 2( ) 1 q

q qB B B B         is the MA chara-
cteristic polynomial calculated on B (ref. 16). 
 A d order differenced time series can be expressed in 
terms of backshift operator B as (1 ) .d

tB X  So an 
ARIMA(p, d, q) model is a combination of an auto-
regressive model of order p and a moving-average model 
of order q applied over a d times differenced time series. 
Mathematically, an ARIMA(p, d, q) can be expressed as 
 

 ( )(1 ) ( ) .d
p t q tB B X B     (5) 

 
The values of p, d, q, {i} and {i} can be calculated by 
building appropriate ARIMA models. 
 Generally the ARIMA model is expressed as 
ARIMA(p, d, q). While applying ARIMA model to a time 
series, first the differencing is performed to convert the 
time series to a stationary one and then auto-regressive 
moving average (ARMA) model is applied to the differ-
enced series. The ARIMA(p, d, q) model can be repre-
sented as given in eq. (5). Sometimes the time series 
displays seasonality, i.e. dependency on past data seems 
prominent at multiples of some seasonal lag s. So the 
ARIMA model for such time series comprises a seasonal 
auto-regressive component and a seasonal moving-
average component employed over a seasonally differ-
enced time series. The model is referred as 
ARIMA(P, D, Q)s and is expressed as 
 
 ( )(1 ) ( ) ,s s D s

P t Q tB B X B      (6) 
 
where 2

1 2( ) 1s s s Ps
P PB B B B       and 

2
1 2( ) 1s s s QsQ QB B B B       are the seasonal 

AR and MA operators of orders P and Q respectively, 
with seasonal lag s (ref. 27). In general the seasonal and 
non-seasonal operators can be aggregated into a multipli-
cative seasonal ARIMA, denoted by SARIMA(p, d, q) 
(P, D, Q)s and expressed as 
 

( ) ( )(1 ) (1 ) ( ) ( ) .s d s D s
p P t q Q tB B B B X B B        (7) 

For a given time series, first the order of difference d is 
determined. Then, the order of auto-regression p and  
order of moving average q are determined. There can be 
multiple possible sets of p, q, d, P, Q and D for a particu-
lar time series. So to derive a suitable model, three steps20 
are followed according to the Box–Jenkins models: (a) 
Model structure identification; (b) Parameter estimation 
and calibration; (c) Validation or model testing. 
 In model structure identification, the order of auto-
regression (p), order of seasonal auto-regression (P), 
moving average (q), order of seasonal moving average 
(Q), order of differencing (d) and seasonal order of dif-
ferencing (D) are estimated. The order of difference is  
determined from the number of difference (time period 
changes) operations applied on the time series to make it 
a stationary one. The order of auto-regression is deter-
mined from the number of significant partial auto-
correlation values and the order of moving average is the 
number of significant auto-correlation values with either 
exponentially decaying or in a dampened sine wave. Af-
ter obtaining a stationary time-series model, it can be 
identified from the theory20,21 given in Table 1. 
 The seasonal differencing (D) can be indicated by a 
correlogram decaying gradually at multiples of some  
seasons, but negligible between consecutive periods17. 
The seasonal auto-regression order (P) is the number of 
significant partial auto-correlation values occurring at 
some season and the seasonal moving average order (Q) 
is the number of significant auto-correlation values  
occurring at some season. The seasonality orders can be 
identified from Table 2. 
 In parameter estimation and calibration, after determin-
ing the order of auto-regression (p) and order of moving 
average (q), the next big task is to estimate the auto-
regressive parameters {i} and the moving average  
parameters {i}. The auto-regressive parameters can be  
determined by the Yule–Walker’s equation21,22 and  
the moving average parameters can be determined using 
the equation 
 

 1 1 2 2
2 2 2

1 2

( )
,

(1 )
k k k q k q

k
q

      


  
      


   




 (8) 

 
for k = 1, 2, ..., q. There are various algorithms like  
Marquadt’s algorithm, ‘armax’ toolbox in ‘MATLAB’ 
and ‘arima’ functions in R available for parameter estima-
tion23. Maximum likelihood estimation is also used for 
estimating parameters24. 
 
 

Table 1. Behaviour of ACF and PACF for ARMA models 

Model ACF PACF 
 

AR(p) Dies down Cuts off after p lags 
MA(q) Cuts off after q lags Dies down 
ARMA(p, q) Dies down Dies down 
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Table 2. Behaviour of ACF and PACF for seasonal ARMA models 

Model ACF* PACF* 
 

AR(P)s Tails off at lags ks, k = 1, 2, ... , Cuts off after lag PS 
MA(Q)s Cuts off after lags Qs Tails off at lags ks, k = 1, 2, ... , 
ARMA(P, Q)s Tails off at lags ks Tails off at lags ks 

*Values at non-seasonal lags h  ks for k = 1, 2, ... , are zero. 
 
 
 As there are many possible models, choosing the  
appropriate one is of utmost importance in time-series 
analysis. Model testing and validation are used to validate 
the proposed model. Among the various possible models, 
the one best suitable for the time series is determined  
either by maximum likelihood estimation (MLE)22, 
MSE23 or MMRE criteria. Also criteria like AIC, AICc 
and BIC are used to decide the suitable model for a par-
ticular time series17. More often, MLE method is used for 
long-term data generation, whereas MSE and MMRE  
methods are advisable for short-term forecasting of the 
time series. In this study, MMRE was calculated for each 
model and the one with minimum MMRE selected as the 
best model for forecasting. Residual analysis was also 
performed to check the fitness of the model. 
 Fuzzy time-series analysis is a recent technique of  
future forecasting. It is basically established on the fuzzy 
set theory. The drawback of conventional set theory is 
that in the real world, many concepts cannot be explained 
by their membership or non-membership within the set. 
So fuzzy set theory appears as the solution to the prob-
lems posed by conventional set theory. 
 Let U be the universe of discourse divided into n inter-
vals as 1 2{ , , , },nU u u u   where ui is an interval in the 
universe of discourse U. A fuzzy set Ai of U is defined as 
 

 1 1 2 2( )/ ( )/ ( )/ ,i Ai Ai Ai n nA f u u f u u f u u     
 

where fAi is the membership function for fuzzy set Ai, 
: [0, 1].Aif U   uk is the element of fuzzy set Ai and 
( )Ai kf u  is the degree of membership of uk to Ai. 
( ) [0,1]Ai kf u  , where 1 .k n   

 Let ( ) ( , 0, 1, 2, )Y t t    be a subset of R, the uni-
verse of discourse on which fuzzy sets ( ) ( 1, 2, )if t i    
are defined, and let F(t) be a collection of fi(t). Then, F(t) 
is called a fuzzy time series on ( ) ( , 0, 1, 2, )Y t t   . 
F(t) can be called a linguistic variable28 and ( )if t  
( 1, 2, )i    can be viewed as possible linguistic values of 
F(t) and are presented by fuzzy sets. As F(t) is time-
dependent and according to Song and Chissom11, if F(t) 
is caused by F(t – 1) only, then the relationship can be 
represented by F(t – 1)  F(t). The above dependency 
can be represented by ( ) ( 1) ( 1, ),F t F t R t t     where 
R(t – 1, t) represents the fuzzy relationship between F(t) 
and F(t – 1), and ‘’ represents an operator (can be max–
min11, min–max29 or arithmetic operator30). If F(t – 1) can 
be represented by Ai–1 and F(t) by Ai, then F(t – 1)  F(t) 
can be represented as Ai–1  Ai. 

 A fuzzy logical relationship group can be constructed 
by grouping all right-hand-side fuzzy sets preceded by 
the same fuzzy set in the left-hand-side of fuzzy logical 
relationship28. If there are fuzzy logical relationships such 
that , , , ,ji i k i lA A A A A A     then they can be 
merged into a fuzzy logical relationship group 
as , , , .ji k lA A A A   
 Determining the length of the interval to divide the 
fuzzy time series into multiple fuzzy sets is an important 
task as different lengths of intervals may produce differ-
ent forecasting results. An effective length of interval 
should not be too large or too small, as too large intervals 
lead to no fluctuation in the fuzzy time series and too 
small, intervals will diminish the mining of fuzzy time 
series31. A heuristic for determining the effective length 
of the interval is set in a manner so that at least half of the 
fluctuations in the time series should be reflected by the in-
terval. Based on this concept, two approaches are pro-
posed31. They are average-based length and distribution-
based length. In this communication, the distribution-based 
approach is used for effective length determination. 
 The calculations of forecasting are carried out by the 
following procedure as given by Chen28. 
 (a) If fuzzified value of time i is Ai and there exists a 
fuzzy logical relationship Ai  Aj and the maximum 
membership value of Aj occurs in the interval uj, then fo-
recasted value of time i + 1 is mj, where mj is the mid-
point of uj. 
 (b) If fuzzified value of time i is Ai and there exists 
fuzzy logical relationships 1 2, , ,i j i jA A A A    

jpiA A  and the maximum membership values 
of 1 2,, , jpj jA A A  occur in the interval 1 2, , , pu u u  re-
spectively, then forecasted value for time i + 1 is 

1 2( ) / ,pm m m p    where 1 2, , , pm m m  are the mid-
points of intervals 1 2, , , pu u u  respectively. 
 (c) If fuzzified value of time i is Ai and there does not 
exist any fuzzy logical relationship group whose current 
state of value is Ai and the maximum membership value 
of Ai occurs in the interval ui with a midpoint mi, then the 
forecasted value for time i + 1 is mi. 
 We now explain details of the experiment, performed 
on monthly groundwater level of Jainath region, Adilabad 
district, Andhra Pradesh, India, based on the methodology 
described above. 
 The dataset used here is taken from the Groundwater 
Information System, GoI. The datasets taken are monthly 
groundwater level data from 2005 to 2012. 
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 The obtained dataset has some missing values and is 
filled in by linear interpolation. The dataset is also ana-
lysed for possible outliers and these have been replaced 
by the average value of the corresponding month. 
 The steps for designing the ARIMA model for the da-
taset are explained using the R software package25. Like 
R, there are several other software packages available for 
time series analysis. The time-series for the monthly 
groundwater level has been used for building the ARIMA 
models. 
 Figure 1 shows the dataset taken for the analysis. It 
shows the monthly groundwater level of Jainath region 
from 2005 to 2012. Figure 2 shows the time plot for the 
dataset. The time (in years) is represented on the X-axis 
and the monthly groundwater level (in metres) is repre-
sented on the Y-axis. The plot presents a stationary time 
series with a seasonality s = 12. Hence, no difference op-
eration is needed for the dataset and the order of integra-
tion (d) for the time series is zero. 
 Then the order of auto-regression and moving average 
is determined by drawing the ACF and PACF plot of the 
 
 

 
 

Figure 1. Dataset of monthly groundwater level. 
 
 

 
 

Figure 2. Plot of monthly groundwater level. 

stationary series, as shown in Figures 3 and 4 respec-
tively. The dotted line around the abscissa represents the 
95% confidence interval, and the ACF and PACF values 
within the confidence interval are considered as insignifi-
cant. The ACF shows a damping sine wave with signifi-
cant auto-correlation values at lag 1, lag 12 and lag 24. 
So the order of moving average (q) and seasonal moving 
average order (Q) are determined as 1 and 2 respectively. 
Significant partial auto-correlation values at lag 0 and lag 
12 can be observed from the PACF plot. So the order of 
auto-regression (p) and seasonal auto-regression (P) can 
be determined as 1 and 1 respectively. Hence the model 
identified for the monthly groundwater level is 
ARIMA(1, 0, 1)(1, 0, 2)12. 
 The auto-regressive parameters 1 and 1 are to be 
0.7735 and 0.9181 respectively and the moving average 
 
 

 
 

Figure 3. ACF plot of monthly groundwater level. 
 
 

 
 

Figure 4. PACF plot of monthly groundwater level. 
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parameters 1, 1 and 2 are –0.3038, –0.6261 and 
0.1494 respectively. There is an intercept of 6.0654 for 
the time series. So, the mathematical expression for the 
built model is as follows: 
 
 12(1 0.9181 )(1 0.7735 ) tB B X  6.0654   
 

  12 24(1 0.6261 0.1494 )(1 0.3038 ) .tB B B     (9) 
 
Equation (9) can be simplified as given in eq. (10). 
 
 1 12 130.7735 0.9181 0.7101t t t tX X X X      
 

    25 24 130.045 0.1494 0.1902t t t        
 

    12 10.6261 0.3038 6.0654t t t       . (10) 
 
Forecast of the monthly groundwater level for the year 
2013 is performed using the model designed above and is 
shown in Figure 5. The plot indicates a seasonal ground-
water-level fluctuation within a confidence interval of 
80% and 95%. 
 In this experiment, groundwater-level data from 2005 
to 2012 have been used for the design of the model and 
data of 2013 have been used for verifying the designed 
model. As the groundwater-level data of 2013 only con-
tains information for the months of January, May, August 
and November, the forecast values of the corresponding 
months only have been used for the calculation of the 
MMRE. After forecasting, the MMRE for forecast values 
has been calculated followed by calculation of the  
percentage error, which is 9.39. So the predicted model is 
 
 

 
 

Figure 5. Forecast plot of monthly groundwater level. 

better for the prediction of earth science data like 
groundwater level. Again to test the goodness of the  
desired model, diagnosed checking has been performed. 
Residual analysis is used here as a method of diagnostic 
checking. The quantile–quantile (Q–Q) plot shown in 
Figure 6 is almost linear, which implies a normal distri-
bution of residuals. Figure 7 shows a symmetric histo-
gram with a normal curve. Figures 6 and 7 validate a 
good fitness of the model26. 
 The dataset considered here for implementation pur-
pose is the monthly groundwater-level data of Jainath  
region from 2005 to 2012. The groundwater level varies 
from 3.07 to 10.17 m. So the universe of discourse is 
 

 
 

Figure 6. Quantile–quantile plot for monthly groundwater level. 

 

 
 

Figure 7. Histogram of the residuals of monthly groundwater level. 
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chosen from 3.00 to 10.20. To fuzzify the universe, divi-
sion of the overall interval is performed using the distri-
bution-based length approached as discussed by Huarng31. 
Initially the average value the absolute values of the first 
difference of the series is calculated; it is 0.85 m. Then 
the base for the length of the interval is calculated as 0.1 
according to Table 3. The length of the interval is chosen 
as 0.4, which is the largest value less than at least half of 
the first differences. 
 After determining the effective length of the intervals, 
the universe of discourse is divided into 18 intervals as 
shown in Table 4. 
 While defining fuzzy sets on the universe, the linguis-
tic variable is ‘monthly water level’ and the universe of 
discourse is divided into 18 fuzzy sets, A1, A2, ..., A18 and 
each Ai (i = 1,2, ..., 18) is defined by intervals u1, u2,..., 
u18 as follows: 
 

 1 1 2{1/ ,0.5/ };A u u   
 

 2 1 2 3{0.5/ ,1/ ,0.5/ };A u u u  
 

 3 2 3 4{0.5/ ,1/ ,0.5/ };A u u u  
 

 4 3 4 5{0.5/ ,1/ ,0.5/ };A u u u  
 

 5 4 5 6{0.5/ ,1/ ,0.5/ };A u u u  
 

 6 5 6 7{0.5/ ,1/ ,0.5/ };A u u u  
 

 7 6 7 8{0.5/ ,1/ ,0.5/ };A u u u  
 

 8 7 8 9{0.5/ ,1/ ,0.5/ };A u u u  
 

 9 8 9 10{0.5/ ,1/ ,0.5/ };A u u u  
 

 10 9 10 11{0.5/ ,1/ ,0.5/ };A u u u  
 

 11 10 11 12{0.5/ ,1/ ,0.5/ };A u u u  
 

 12 11 12 13{0.5/ ,1/ ,0.5/ };A u u u  
 

 13 12 13 14{0.5/ ,1/ ,0.5/ };A u u u  
 

 14 13 14 15{0.5/ ,1/ ,0.5/ };A u u u  
 

 15 14 15 16{0.5/ ,1/ ,0.5/ };A u u u  
 

 16 15 16 17{0.5/ ,1/ ,0.5/ };A u u u  
 

 17 16 17 18{0.5/ ,1/ ,0.5/ };A u u u  
 

 18 17 18{0.5/ ,1/ }.A u u  
 
After defining the fuzzy sets, each value of the monthly 
groundwater level series is assigned with its correspond-
ing fuzzy sets. 
 After fuzzifying the whole dataset, the fuzzy logical re-
lationship group is obtained from each fuzzy logical rela-

tionship by following the theory as mentioned earlier in 
the text. The fuzzy logical relationship groups are as  
given in the Table 5. 
 Using the monthly groundwater level dataset of Jainath 
region, the groundwater level for the last 12 months of 
the dataset has been forecast and relative error calculated 
by comparing the forecasted groundwater level against 
their actual values for January, May, August and Novem-
ber. Table 6 shows details of the forecasting. MRE is ob-
tained as 0.0687 and the percentage error is calculated to 
be 6.87.  
 
 

Table 3. Base mapping table 

Range Base 
 

0.1 to 1.0 0.1 
1.1 to 10   1 
11 to 100  10 
101 to 1000 100 

 
 

Table 4. Fuzzy set intervals 

1 [3.0,3.4]u   2 [3.4,3.8]u   3 [3.8,4.2]u   
4 [4.2,4.6]u   5 [4.6,5.0]u   6 [5.0,5.4]u   
7 [5.4,5.8]u   8 [5.8,6.2]u   9 [6.2,6.6]u   
10 [6.6,7.0]u   11 [7.0,7.4]u   12 [7.4,7.8]u   
13 [7.8,8.2]u   14 [8.2,8.6]u   15 [8.6,9.0]u   
16 [9.0,9.4]u   17 [9.4,9.8]u   18 [9.8,10.2]u   

 
 

Table 5. Monthly groundwater level fuzzy  
 logical relationship group 

9 11 7 12 10, , ,A A A A A  
11 13 1 12 3 11 10 15, , , , , ,A A A A A A A A  
13 15A A  
15 16 18,A A A  
16 12 5 18 10, , ,A A A A A  
12 8 2 9 15 18 16, , , , ,A A A A A A A  
8 4 9 10 7, , ,A A A A A  
4 4 5 3 7, , ,A A A A A  
5 5 6 4 7, , ,A A A A A  
6 6 7 5 8, , ,A A A A A  
7 8 9 3 4 7 6 14 11 5, , , , , , , ,A A A A A A A A A A  
1 2A A  
2 2 4 7, ,A A A A  
3 4 7 3 5, , ,A A A A A  
10 12 10 11 1 3, , , ,A A A A A A  
14 16A A  
18 12 11,A A A  

 
 

Table 6. Forecast details of monthly groundwater level 

Year Month AGL FC FGL RE 
 

2013 January 4.69 A5 5 0.066 
2013 May 6.35 A9 6.8 0.0708 
2013 August 4.27 A4 4.7 0.1007 
2013 November 4.82 A5 5 0.0373 
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 In this study, different models for groundwater-level 
prediction have been proposed for ‘Jainath’ region using 
ARIMA and fuzzy time-series analysis. The models have 
been built using the past groundwater-level fluctuation 
patterns. The current predicted groundwater level is  
linearly related to its previous value because the ARIMA 
models are based on auto-correlations. The models are 
verified using the groundwater-level values of year 2013 
of the dataset. Percentage error is calculated for both 
ARIMA and fuzzy time-series analysis as 9.35 and 6.87 
respectively. This clearly indicates that the fuzzy  
time-series analysis is better than the ARIMA model for 
forecasting. The CGWB along with the state groundwater 
agencies can apply these models for the quinquennial  
periodic groundwater assessment (GWA) for estimating 
the dynamic groundwater resource. The groundwater esti-
mation committee conducting the national GWA exercise 
can adopt these models for the estimation of groundwater 
level of individual GWA units. There is scope for further 
improvement of the present model by combining it with 
other parametric and non-parametric models. 
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