
REVIEW ARTICLES 
 

CURRENT SCIENCE, VOL. 111, NO. 5, 10 SEPTEMBER 2016 823 

e-mail: Rolf.Mjelde@geo.uib.no 

Late Cenozoic global pulsations in hotspot 
magmatism and their possible interplay with 
plate tectonics, Earth’s core and climate 
 
Rolf Mjelde 
Department of Earth Science, University of Bergen, Allegt. 41, 5007 Bergen, Norway 
 

A study of the Earth’s main hotspots indicates an in-
crease in magmatism during the last 1.5 myr, support-
ing a previous hypothesis on global magmatic co-
pulsation on c. 10 myr scale through the Cenozoic. A 
similar pattern is found for magmatism dominantly 
related to plate tectonics since 15 Ma. It is suggested 
that the inferred syncronicity in magmatism is related 
to two large areas under Africa and the central Pacific 
expressing anomalously slow S-wave velocities in the 
lower mantle. Heterogeneous heat flux in the fluid 
outer core related to the lower mantle anomalies may 
cause spatially related aspherical inner core growth 
and rotation of the inner core with respect to the 
lower mantle. It is speculated that the heterogeneous 
heat flux in the outer core can be modulated by inner 
core processes of aspherical growth and rotation on 
10 myr scale, subsequently leading to syncronized 
plume pulses from the rim of the hot lower mantle 
anomalies. Some of the magmatic pulses appear to co-
incide with abrupt drops in eustatic sea level, and it is 
suggested that these were caused by glaciations trig-
gered by the volcanism. 
 
Keywords: Climate, hotspot magmatism, hotspot pulsa-
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TECTONO-magmatic observations on the Earth are gener-
ally interpreted within the plate tectonics or mantle plume 
theories respectively1,2. Plate tectonics refers to domi-
nantly upper mantle convection leading to construction 
and destruction of lithospheric plates, whereas mantle 
plumes causing hotspots on the Earth’s surface may 
dominantly originate from the deep mantle. Although the 
basic concepts of both theories are fairly well developed, 
the interaction between the two remains poorly under-
stood. 
 Both plate tectonics and mantle plume are strongly re-
lated to magmatism, and its variation in space and time 
may hold the key to reveal the link between the phenom-
ena. Mjelde et al.3 presented evidence on Cenozoic co-
pulsation of mantle plumes originating from the deep 
mantle. Spectral analysis indicated a dominant period at 
about 10 myr (10, 22, 30 Ma, etc.) and predicted another 

pulse at present3. The main objective of the present study 
is to test this hypothesis. Furthermore, the Late Cenozoic 
hotspot magmatism will be compared with plate tectonics 
magmatism in order to identify any link between the two 
phenomena. It will be shown how the observations possi-
bly might be linked to processes in the Earth’s core.  
Finally, the interaction between magmatism and climate 
will be discussed. 
 Hotspot production rate is obtained using a combina-
tion of the following methods: crustal thickness estimates 
from wide-angle seismic data4–6, hotspot swell flux7–9, 
age of oceanic magnetic anomalies10,11 and radiometric 
dating12. The article follows the methodology described 
in detail in Mjelde et al.3. 

Results 

Magmatic events for the studied hotspots since 5 Ma 

Mjelde et al.3 estimated the magmatic variations in hot-
spots during the period 70–2 Ma (Figure 1). Their results 
for the late Cenozoic indicated a magmatic peak at 
10 Ma, and a weaker peak at 4 Ma (Figure 2). In the fol-
lowing, the same hotspots will be investigated with  
regard to possible magmatic events during the last 5 myr, 
for 0.5 myr intervals. In view of the uncertainty of the 
method ( 0.2 myr), one cannot expect to resolve more 
than one event per hotspot in this period, in addition to 
the 4 Ma peak. 
 The St Helena hotspot reveals a steady increase in 
magmatic production during the last 5 myr (ref. 9). Cape 
Verde and the Canaries show an increase in magmatism 
since about 3 Ma, but it is likely that the peak occurred at 
0.5 Ma (refs 13–17). The Madeira Province shows the 
same trend, with increasing magmatism since 3.5 Ma, 
probably reaching a peak at about 1 Ma (ref. 18). 
 One of the Earth’s most active hotspots, Hawaii, recor-
ded roughly a doubling of magmatism since 5 Ma (refs 8, 
19). The magmatic production at the Hollister Ridge, 
which most likely represents the present location of the 
Louisville hotspot, is modest, but appears to have in-
creased from about 3 Ma (ref. 20). The same applies to 
the more active Easter hotspot, which may have reached a 
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Figure 1. Ocean gravity map with present-day locations of studied hotspots indicated by dots. The Eifel hotspot is shown as example of the wide-
spread European magmatism134. See Hillier135 for location of Pacific seamounts. Shaded areas show locations of the Pacific and African lower man-
tle shear wave anomalies (2850 km) depth136. The studied non-hotspot magmatic areas are also indicated. 
 
 
peak in magmatism at about 1 Ma (refs 21, 22). Also, the 
Samoan hotspot has recorded increased magmatic activity 
during the last few million years (myr)23–25. 
 The most active hotspot in the Indian Ocean, the La 
Réunion hotspot, shows an increase in magmatism since 
3 Ma (refs 26, 27). The same applies to the Kerguelen 
hotspot28. 
 Also the Yellowstone hotspot appears to have in-
creased it activity since 3 Ma, but the magmatic peak may 
have been reached at 1 Ma (ref. 29). The magmatic pro-
ductivity for the remainder of the studied hotspots  
appears to have been relatively stable for the last 3 myr. 
No sign of decrease has been inferred for any of the hot-
spots studied. The reader is referred to Mjelde et al.3 for a 
full list of references concerning all hotspots. 
 Figure 3 provides a summary of the present findings. 
After the broad magmatic peak at about 4 Ma (ref. 3), the 
magmatism decreased to a minimum at about 1.5 Ma. 
Thereafter, a clear increase in magmatism is observed, 
leading to significantly enhanced hotspot productivity in 
the last 5 myr. 

Non-hotspot related magmatic events since 5 Ma 

The study of magmatism dominantly related to plate  
tectonics is based on the same methods as used for the 
hotspot-related magmatism. The global study has been 
divided into the following areas: East Pacific Rim, West 

Pacific Rim, Central Asia, Southeast Asia and the Antil-
les (Figure 1). Table 1 lists the references used in this 
study and the results are summarized in Figure 4 for each 
area, as well as globally. The global sum (Figure 4 f ) also 
includes two studies from Antarctica providing one count 
at 1, 0.5 and 0 Ma respectively30,31. Figure 4 shows that 
all areas shows a first-order increasing trend since 5 Ma. 
Harangi et al.32 reviewed the subduction-related magma-
tism in the Alpine–Mediterranean region, which shows no 
clear evidence of increase or decrease since 5 Ma. It 
should also be noted that the seafloor production rate at 
spreading ridges appears to have decreased steadily by 
about 10% during the last 20 myr (ref. 33). 

Discussion 

Co-pulsation of Cenozoic hotspot magmatism 

The hotspot-related magmatism during the last 2 myr has 
been plotted in Figure 2 at 1 myr intervals in order to  
allow direct comparison with the older part of the time 
curve. Plotting with this interval removes the apparent, 
and probably insignificant, local minima at 0.5 Ma (Fig-
ure 3). It is likely that the increase in magmatism contin-
ues at present. These results appear to confirm the 
c. 10 myr periodicity in magmatism, as inferred by 
Mjelde et al.3. Note that the results of Mjelde et al.3 have 
been modified slightly, by moving one count from 18 to 
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Figure 2. Variation of Cenozoic magmatism related to the hotspots studied. Pulses of magmatism are indicated with blue circles. The red 
column shows (unfiltered) cumulative count per Ma for all hotspots, whereas green column shows the filtered version where one count has 
been subtracted for each Ma. The curve from 70 to 2 Ma is from Mjelde et al.3, whereas 1–0 Ma represents the present study. 
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Figure 3. Same as Figure 2 (right column) during the last 5 myr, for 0.5 myr intervals. 
 
 

Table 1. References related to the non-hotspot  
  magmatic study 

East Pacific Rim 
 California: Refs 66–70 
 Alaska: Ref. 71 
 Mexico: Refs 72–80, 137 
 Andes: Refs 81–100 
West Pacific Rim 
 Fiji: Ref. 101 
 New Zealand: Refs 102–106 
 Kamchatka: Ref. 107 
 Izu-Bonin, Japan: Refs 108–110 
Southeast Asia 
 Philippines: Refs 111–114 
 Taiwan: Refs 115–117 
 New Guinea: Ref. 118 
 S. Korea: Ref. 119 
 Indonesia: Refs 120–121 
Central Asia: Refs 122–129 
Antilles: Refs 130–133 
Antarctica: Refs 31–32 

 
 
16 Ma based on new results from Yellowstone34. Simi-
larly, new dates from the Hawaiian-Emperor chain have 
induced the following changes35: the dating of Suiko sea-
mount has been moved from 65 to 61 Ma, Koko from 50 
to 51 Ma, and Diakakuji from 42 to 46 Ma. 

Miocene–present non-hotspot magmatic events 

Figure 4 shows that the increasing trend in magmatism 
since 5 Ma exists for all the studied areas. For the East 
Pacific Rim and Central Asia, the histograms may sug-
gest a slight secondary increase from about 2.5 Ma. The 
local peak in magmatism at about 0.5 Ma is not real, as 
the last column covers only 250 kyr. 
 These results refine and corroborate the work of Ken-
neth et al.36, who documented a circum-Pacific volcanic 
event from 2 Ma to the present. Their conclusions were 
based on a compilation of the number of radiometric 
dates reported for terrestrial volcanic sequences and the 

number of volcanic ash horizons recorded by deep-sea 
drilling. A correlation was found between activity in the 
southwestern Pacific, Central America and the Cascade 
Range of western North America. Furthermore, these au-
thors documented similar volcanic events at 16–14 Ma, 
11–8 Ma and 6–3 Ma. The mid-Miocene (18–13 Ma) and 
the most recent event (5–0 Ma) were elaborated by Cam-
bray and Cadet37. These events correspond to the mag-
matic peaks since 15 Ma shown in Figure 2. The Late 
Cenozoic event (after 3 Ma) has also been documented 
from the dating of volcanic ash layers in the Atlantic38. 

Hotspot versus non-hotspot magmatism: interaction 
and causality 

Mjelde et al.3 concluded that it is unlikely that the obser-
ved global variations in magmatic productivity for hot-
spots can be explained by differences in lithospheric 
thickness, fluctuations in intraplate stress levels follow-
ing plate tectonic reorganizations and/or interaction with 
spreading ridges. Instead they related the observations to 
two large areas under Africa and the central Pacific ex-
pressing anomalously slow S-wave velocities in the lower 
mantle39 (Figure 1). Most of the studied hotspots are  
located near the edges of these anomalies40, indicating 
that the hotspots are sourced predominantly from the 
deepest mantle. The faster regions in the lower mantle 
have been suggested to dominantly contain colder sub-
ducted material in slab graveyards40,41. Numerical  
experiments have shown that plumes are expected to form 
near the intersection between the different lower-mantle 
reservoirs40,42. The dynamics in the lowermost mantle 
may be strongly related to the different properties of 
perovskite, located within the hot regions and post-
perovskite that may exist within the colder regions43. 
 Anderson44 noted the relationship between subduction 
and the African and Pacific anomalies, and argued that 
subduction was the main driving force (top-down causal-
ity). On the other hand, Potter and Szatmari45 argued that 
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Figure 4. Variation of non-hotspot related magmatism during the last 5 myr for (a) the Antilles, (b) Western Pacific Rim, (c) Southeast Asia, (d) 
Eastern Pacific Rim, (e) Central Asia and ( f ) sum of (a)–(e). 
 
 
the main plate tectonics changes since mid-Miocene are 
driven by renewed heat flow from the African and Pacific 
anomalies (base-up causality). 
 The similar increasing trend in hotspot and non-hotspot 
magmatism since 5 Ma (Figures 2 and 4) and the apparent 
syncronicity in magmatic events since mid-Miocene 
might suggest a common cause. The remaining variations 
in magmatism expressed in Figures 2 and 4 can be related 
to complexities in the interaction with the lithosphere, as 

well as differences in magma-generating processes at  
upper mantle/lithospheric levels for hotspot and non-
hotspots regions. 
 It is possible that syncronized slab avalanches into the 
lower mantle might occur, but since these slabs are al-
ready detached from their corresponding subduction 
zones, it is unlikely that they could cause syncronicity in 
surface magmatism as discussed by Mjelde et al.3 and 
further elaborated here. The new results from the present 
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study are in favour of the base-up causality, implying 
syncronized pulses from the rim of the African and  
Pacific lower mantle anomalies. The resulting pulses in 
hotspot magmatism will induce stress on the correspond-
ing lithospheric plates, which subsequently might be 
transferred to the non-hotspot magmatic regions dis-
cussed here. The continental break-up in the North Atlan-
tic represents an example of such stress transfer, in that 
the break-up induced by the Icelandic Plume11 caused an 
apparently simultaneous kink in the motion of the Eura-
sian Plate46. This interpretation is supported by studies of 
non-hotspot magmatism around the Pacific Rim, where 
volcanic pulses were related to variations in the tectonic 
stress regime of the arc lithosphere, not changes in sub-
duction rate37. 

Core–mantle interaction 

The hot lower mantle regions extract less heat from the 
fluid outer core than the colder regions. This heterogene-
ous heat flux can maintain convective structures in the 
outer core, causing spatially related aspherical inner core 
growth47. This pattern of aspherical growth is compatible 
with measurements of inner core seismic anisotropy and 
attenuation48. Large-scale deformations of the inner core 
may also be caused by Joule heating related to the mag-
netic field49. This process implies fluid motion in the  
inner core and mass exchange through the inner core 
boundary. 
 The interpretation of Aubert et al.47 requires a small ro-
tation of the inner core with respect to the lower mantle. 
The rotation is assumed to be caused by surface stresses 
at the inner core boundary induced by a mean eastward 
flow in the fluid outer core, counteracted by a gravita-
tional torque caused by misaligned inner core topography 
and density anomalies in the mantle50. The present-day 
inner core rotation rate has been estimated from different 
seismological methods, and the results vary from zero to 
about 1/yr (ref. 48). The gravitationally driven rotational 
rate at 50/myr (one rotation in about 7 myr) estimated by 
Dumberry50, is of the same order of magnitude as the rate 
of magmatic pulsing discussed here (about 10 myr). It is 
possible that the heterogeneous heat flux in the outer core 
can be modulated by inner core processes of aspherical 
growth and rotation on 10 myr scale, subsequently lead-
ing to plume pulses from the rim of the hot lower mantle 
anomalies. If this hypothesis is correct, it implies that the 
observation of 10 myr pulsations can be used as a con-
straint in testing various geodynamical models for inner 
core growth and rotation. 
 It is also possible that the pulsations might be related 
to a nuclear fission chain reactor at the center of the 
Earth’s core. Herndon51 discussed the feasibility of a geo-
reactor consisting of an inner subcore of radioactive ele-
ments, surrounded by a shell with decay products. If 

present, it is likely that such a georactor will lead to fluc-
tuating heat production52, and thereby mantle plume pul-
sations. 

Interaction between volcanism and glaciations 

Sea-level changes reflect evolution from the existence of 
ephemeral ice sheets in Antarctica from about 100 to 
33 Ma, large ice sheets in Antarctica from 33 to 2.5 Ma, 
to a state of a large ice sheet in Antarctica and variable 
northern hemisphere ice sheets from 2.5 Ma to the pre-
sent53. The existence of feedback mechanisms between 
glaciations and volcanism is well documented54. In this 
section, a possible link between the magmatic pulses 
(Figure 2) and sea-level changes will be discussed. 
 The increase in volcanism after the last glaciation at 
12 kyr is particularly well documented in Iceland, where 
a 30-fold increase in lava production at the onset of the 
Holocene has been reported55. The ice unloading may en-
hance volcanism due to stresses induced above shallow 
magma chambers, accumulated magma may be released 
from decreased overburden pressure, or increased de-
compression melting in the mantle may occur55. On the 
other hand, Bay et al.56 argued that volcanism docu-
mented in Antarctica triggered millennium timescale 
cooling observed in Greenland, while Prueher and Rea57 
suggested that explosive volcanic eruptions in the Kam-
chatka–Kurile and Aleutian arcs triggered the mid-
Pliocene onset of northern hemisphere glaciations. The 
cooling effect from volcanism has been documented from 
studies of the 1991 Mount Pinatubo eruption58. These au-
thors estimated the emission of aerosols from this erup-
tion to half a degree Celsius for about a year at the 
Earth’s surface. The mutual influence between glaciation 
and volcanism may in some cases lead to syncroniza-
tion59. 
 Ice unloading cannot explain the inferred co-pulsation 
of hotspot magmatism, since only Iceland, Europe, 
Kerguelen and Yellowstone have been strongly influ-
enced by glaciations54. On the other hand, more than half 
of the non-hotspot areas studied have been covered by 
Quaternary ice sheets. These are: Alaska, California 
(partly), Andes (partly) for the East Pacific Rim, New 
Zealand and Kamchatka for the West Pacific Rim, as well 
as Central Asia and Antarctica. Figure 5 shows data from 
Figure 4 sorted into glaciated and non-glaciated areas. 
The two curves show the same trend, documenting that 
the increase in magmatism cannot be caused by interac-
tion between volcanism and local ice sheets. 
 Figure 6 shows the eustatic sea-level curve of Haq et 
al.60. The first-order fall in sea level from Late Creta-
ceous (85–270 m higher than today) can be primarily  
attributed to a slow decrease in seafloor production rate 
from about 5 to 3 km2/yr, caused by a decrease in the  
average spreading rate61. A second important influence 
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Figure 5. Same as Figure 4 sorted into glaciated (left) and non-glaciated (right) areas. 
 
 
from plate tectonics through the Cenozoic was the closing 
of four equatorial deep-water gateways and opening of 
three polar gateways, altering the global heat transfer 
from a Greenhouse to an Icehouse world45. 
 Sea-level changes related to glaciations can be related 
to orbital forcing on 10 and 100 kyr scale, but eustatic 
changes with periods of 3 and 6–10 myr, as documented 
by Miller et al.53, have defied explanation. In Figure 6, 
these events appear as large sea-level drops followed by a 
3–5 myr long period of slight sea-level increase. Such 
events are identified at 40, 30, 21 and 11 Ma, which is 
coincident with the main magmatic pulses discussed in 
this article. The inferred syncronized magmatic pulsa-
tions since 15 Ma cannot be related to glaciations, since 
large changes in sea level have contrasting effect on 
coastal and island volcanoes. Finite-element analysis in-
dicates that a 100 m fall in sea level will reduce radial 
compressive stresses by 1 MPa for island volcanoes 
thereby favouring expulsion of stored magma, whereas a 
rise in sea level of 100 m is needed in order to reduce 
compressive stresses near a coastal volcano by about 
0.1 MPa (ref. 62). Based on this it is suggested that the 10 
myr period sea-level falls were triggered by volcanism, 
causing glaciations due to the cooling effect from the 
emission of aerosols. Such components are removed from 
the atmosphere within a few years after each eruption, 
whereas CO2 released from magmatism may induce more 
steady warming54, explaining the 3–5 myr periods of sea-
level increase after the abrupt drops. Significant amounts 
of CO2 may be released gradually from cooling magma 
(e.g. Yellowstone)63 and ice sheets may form an imper-
meable layer over such passive emission regions inhibit-
ing CO2 release during glaciations54. 

 Huybers and Langmuir54 showed that the feedback  
between volcanism and glaciations was consistent with 
fluctuations of about 40 ppm atmospheric CO2 concentra-
tions, similar to magnitudes inferred from ice core obser-
vations. Pagani et al.64 estimated a strong decrease in 
atmospheric CO2 concentrations from 1000 to 1500 ppm 
in middle Eocene to modern levels (300   100 ppm) at 
about 25 Ma (Figure 6). The Early Cenozoic decrease in 
CO2 concentrations may be partly related to plate tectonic 
reorganizations, forming the Eurasian-Himalaya moun-
tain belt45. This orogenic rejuvenation caused increased 
continental erosion and chemical weathering, thereby re-
ducing the atmospheric CO2 content65. In addition, the 
decrease in seafloor production rate would reduce the 
CO2 output from ocean ridge volcanoes. 

Uncertainties 

A statistical analysis of the Cenozoic hotspot curve (Fig-
ure 2) suggests that the apparent co-pulsation might be 
statistically insignificant (S. Howell and E. Gaidos, pers. 
commun.). This does not imply that the co-pulsation hy-
pothesis is falsified, but suggests that more data points 
are needed to allow robust statistical analyses to be per-
formed. The hotspot curve is a result of a variety of 
measurements with different uncertainties, which are dif-
ficult to assess. 
 It is recommended that future sampling and dating of 
magmatic rocks are related to estimates of magmatic pro-
duction. In parts of the present-day literature it is difficult 
to verify if a magmatic age peak is related to a true  
magmatic pulse, or whether it is primarily a function of 



REVIEW ARTICLES 
 

CURRENT SCIENCE, VOL. 111, NO. 5, 10 SEPTEMBER 2016 830 

 
 

Figure 6. (Left) Atmospheric CO2 concentrations from Pagani et al.64. (Middle) Eustatic sea level curve from Haq et 
al.60. (Right) Variation of Cenozoic magmatism related to the hotspots studied (same as Figure 2, right column). 
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logistic accessibility to exposed rocks. The co-pulsation 
hypothesis is strengthened by the analysis of the non-
hospot magmatism since 15 Ma. 

Conclusion 

The Earth’s main hotspots have been studied with regard 
to variations in magmatism during the last 5 myr. A mag-
matic peak appears at present, supporting the c. 10 myr 
copulsation hypothesis discussed by Mjelde et al.3. A 
study of magmatism dominantly related to plate tectonics 
at the East Pacific Rim, West Pacific Rim, Central Asia, 
Southeast Asia and the Antilles, indicates the same pat-
tern of co-pulsation since 15 Ma. 
 These observations are related to two large areas under 
Africa and the central Pacific expressing anomalously 
slow S-wave velocities in the lower mantle. Most of the 
studied hotspots are located near the edges of these 
anomalies, indicating that the hotspots are sourced pre-
dominantly from the deepest mantle. It is proposed that 
syncronized pulses from the rim of lower mantle anoma-
lies will induce stress on the corresponding lithospheric 
plates, which might be subsequently transferred to the 
non-hotspot magmatic regions.  
 The hot lower mantle regions extract less heat from the 
fluid outer core than the colder regions. This heterogene-
ous heat flux can maintain convective structures in the 
outer core, causing spatially related aspherical inner core 
growth. This interpretation requires a small rotation of 
the inner core with respect to the lower mantle. It is 
speculated that the heterogeneous heat flux in the outer 
core can be modulated by inner core processes of 
aspherical growth and rotation on 10 myr scale, subse-
quently leading to plume pulses from the rim of hot lower 
mantle anomalies. If this hypothesis is correct, it implies 
that the observation of 10 myr pulsations can be used as a 
constraint in testing geodynamical models for inner core 
growth and rotation. 
 The magmatic pulses at 40, 30, 22 and 10 Ma appear to 
coincide with abrupt drops in eustatic sea level followed 
by 3–5 myr long periods of slight sea-level increase. The 
inferred syncronized magmatic pulsations cannot be re-
lated to glaciations, since large changes in sea-level have 
contrasting effect on coastal and island volcanoes. It is 
thus suggested that the 10 myr period sea-level falls were 
triggered by volcanism, causing glaciations due to cool-
ing effect from the emission of aerosols. Such compo-
nents are removed from the atmosphere within a few 
years after each eruption, whereas CO2 released from 
magmatism may induce more steadily warming, explain-
ing the 3–5 myr periods of sea level increase after the 
abrupt drops. 
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