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Genetic recombination and high rate of mutations in 
the HIV-1 genome increase the diversity of HIV-1, 
which allows viruses to escape more easily from host 
immune system or develop resistance for antiretrovi-
ral drugs. Consequently, it is indispensable to devise 
an effective method for recognition of recombination 
in HIV-1 strains. This article presents ensemble mod-
els of artificial neural network for the classification of 
recombinant and non-recombinant sequences of HIV-
1 genome. We have evaluated the performance of 
these ensemble models using different classification 
measurements like specificity, sensitivity and classifi-
cation accuracy. Furthermore, model performance was 
measured on receiver operating curve and using cali-
bration graph. High classification accuracy up to 
93.43% was achieved on tenfold cross validation. 
 
Keywords: Artificial neural network, bagging, boost-
ing, ensemble, HIV-1 genome. 
 
MILLIONS of people have been infected with HIV which 
severely affects life and economy of several countries,  
especially developing countries that do not have proper 
resources to combat the AIDS epidemic. It is difficult to 
cure HIV/AIDS because these viruses change strains. The 
recent approach is to treat patients with multiple drugs1. 
Nevertheless, the drug combinations must be designated 
to cure a particular strain of virus and it is critical to 
know the strain which has infected a patient in order to 
recommend effective course of treatment. HIV-1 strains 
have been categorized into three major groups known as 
major (M), outlier (O), and non-M, non-O (N) group. 
Additionally, there are circulating recombinant forms 
(CRFs) which are the result recombination of two or 
more HIV1-subtypes2, this further complicates the devel-
opment for effective treatment for HIV/AIDS. It is there-
fore indispensable to develop competent and effective 
classification techniques for the determination of HIV-1 
subtypes. Most of the techniques developed targetted to 
classify HIV-1 and HIV-2 sequences or for the classifica-
tion of subtypes3; however no significant work has been 
done for the effective classification of CRF and non-CRF 

sequences. Moreover, these techniques are based on find-
ing pairwise distance between sequences or on the basis 
of phylogenetic distances. It can be envisioned that  
phylogenetic analysis based on whole genomes is more 
trustworthy than those based on small segments of the 
HIV-1 genome. However, such an analysis with is infea-
sible and intractable due to inherent computational com-
plexity of these techniques. 
 In this study we propose supervised machine learning 
technique for the effective classification of recombination 
and non-recombination HIV-1 sequences. To further  
enhance the discerning ability of the classifiers, we use 
artificial neural network (ANN) ensemble and two  
approaches for ensemble learning – bagging and boost-
ing – have been evaluated for their performance. 
 The objective of this work is manyfold. First, utilizing 
entire genome sequences of HIV-1 strains available at 
Los Alamos National Laboratory4, for the classification 
of recombinant and non-recombinant strains. Secondly, to 
apply ANNs and their ensembles for classification and 
comparing their performance on various performance  
indices. 
 ANNs have been applied in various field of life sci-
ences, including biomedical science, computational biol-
ogy and bioinformatics5. Recently, ANN ensemble has 
become an encouraging technique of machine learning. In 
ANN ensemble learning, a group of networks are used to 
perform the same task and then their predictions are com-
bined. There are different ensemble techniques, but the 
most frequently used techniques are bagging and boost-
ing. Both use a base classifier for constructing different 
classifiers for classification. In this study, we use ANN as 
a base classifier. We show that the ANN ensemble displays 
significant improvement in the performance6. The central 
idea of the ensemble is to use multiple ANNs which  
contain more information than any single ANN. This  
information can be used to improve dependability and 
generalization of performance7. Commonly, several 
ANNs in the last generation are joined to create an en-
semble that has improved generalization performance7. 
Every net contained by the ensemble has in theory dis-
similar weight in the output of the ensemble8,9. It has 
been shown by various researchers that the ANN ensem-
ble has a smaller error of generalization than that obtained 
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by a single ANN8. In the direction of maximization of the 
consequence of coalescing numerous ANNs, an enormous 
assortment of ANNs should be used. When input x is pre-
sented to the network, the output from a characteristic  
ensemble having K component networks is given by  
eq. (1)8,10 
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where output of network i is yi and weight connected with 
the network is wi. 
 Only the adequate solution of the previous generation 
is used in the next generation. When such solutions are 
combined, it results in greater accuracy than using the 
best option amongst them. A number of studies have  
focused on different approaches for combining these  
solutions, including negative correlation learning, back-
propagation and using multi-objective criteria11–13. In this 
article multiple ANNs are produced independently and 
then combined using two different ensemble techniques, 
bagging and boosting. Finally the performances of ANN, 
boosting14 and bagging15 ensemble of ANN are compared 
on different classification performance indices. More-
over, performance is evaluated using receiver operating 
curve (ROC)16 and calibration graph17. Experiment is  
designed and framework developed using data mining 
toolbox in python programing language18,19. 

Materials and methods 

Datasets 

Genome sequences of all available strains of HIV-1 and 
HIV-1 CRFs were retrieved from GIV database at Los 
Almos Laboratory4. A total of 4233 complete genomes of 
HIV-1 were retrieved and clustered in two sets, CRF 
(1206) and NON-CRF (3027), according to their strain 
types. The composition of every sequence on their oligo-
nucleotide use (nucleotide and dinucleotide composition) 
was calculated using software DAMBE20, and used to 
construct the training set for the classification. 
 For genome-level studies we used nucleotide composi-
tion, i.e. the percentage of all nucleotides in each genome 
(four attributes) and similarly, dinucleotide composition, 
i.e. percentage of dimer frequency in each genome (16  
attributes). These two features were used as genome sig-
natures. We also used trinucleotide frequency, but results 
did not significantly improve in this study in comparison 
to the time and memory demand; so we have incorporated 
only nucleotide and dinucleotide composition. 
 Total number of (4233) records with (20) features was 
incorporated into the training set. All records were  
labelled as CRF or NON-CRF according to the class they 
belongs. 

Artificial neural network for classification 

There are different architectures of ANN, but in this 
study we have used combinations of multi-layer  
perceptron (MLP)21,22. We have selected MLP because  
it is the most suitable choice for non-linear data23,24. Our 
objective was also to show that MLP can be used to clas-
sify this data. Our result indicates that it is one of the best 
choices because we achieved classification accuracy up to 
94.19% using MLP and its ensemble. 
 An MLP is arranged in layers like a multistage directed 
graph. Each node at each layer receives an input from the 
connected node of previous layer. Then it calculates the 
value of a function and provides input to the connected 
node in the next layer. The layers are designated as ‘input 
layers’, ‘hidden layers’ and ‘output layers’. The interme-
diate layers which do not have direct connection with  
input and output are called hidden layers. The activation 
of hidden layers and output layers is calculated by a  
function, which is a weighted summary of the inputs it 
collects. This is then passed through an activation func-
tion. In a particular layer the activation of node j is  
defined as 
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where oi represents the yield of node i in the preceding 
layer and wi j is the weight on the link from node i to the 
present node j. The weights are real-valued numbers and 
typically initialized randomly in a small range, for exam-
ple, [–1, 1]. For particular input and output pairs, there is 
a set of weight values which will decrease the mean 
squared error. The output oj is produced by the activation 
function 
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This is known as the logistic function which has been 
used in this study. Several methods can be used to find 
values of the weights21,22. 
 
Methods for updating the weights: Back-propagation is 
common algorithm for updating the weights25, which uses 
a gradient descent approach in which the weight changes 
in ratio to the gradient of the error function. The follow-
ing equation is used to calculate the error single input for 
output f 
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Equation (5) is used to calculate updates to a weight wi j 
within the system that yields output f 
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where  is known as the learning rate. The updates are 
accomplished iteratively by making small changes to 
every weight in the system until a minimum of the error 
function is achieved22. 
 
Approaches for joining a set of predictors: The amal-
gamation approach for a collection of predictors is of  
ultimate importance which can decide the performance of 
the entire system by managing the limitations of each 
base component estimator26. The modest possible organi-
zation strategy is one which takes a weighted summation 
of the diverse predictor outputs in a linear fashion. Then 
the output of this arrangement is 
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where the number of predictors is represented by M, out-
put of the ith predictor is fi, and wi is the analogous real-
valued non-negative weight. 
 
Constructing ANN ensembles using bagging: Nilson27 
first provided the idea of ANN ensembles in which  
perceptions are organized in layers, and outputs are 
joined with a second layer based on vote ranking. In this 
study we used, bagging and boosting, two of the most  
extensively used approaches for constructing ANN en-
sembles. 
 In bagging15, a new training set is generated randomly 
based on the original set for each ensemble member. For 
generating a training set of size N, we take random sam-
ple of N items uniformly with replacement, then the  
ensemble member is trained with this resample. This pro-
cedure is repeated for any new ensemble members. These 
resampled sets are frequently called bootstrap repli-
cates28. Breiman15 showed that on average 63.2% of the 
original training set will exist in each replicate. Bagging 
has demonstrated to be a prevalent technique, appropriate 
to many problems. Friedman29 proposed that bagging 
thrives by decreasing the variance constituent of the error 
and leaving the bias unaffected; while Grandvalet30 shown 
that bagging can converge without reducing variance. 
 In this study we have used bagging procedure for the 
construction of ANN ensemble. Several ANNs were 
trained independently using bootstrap technique and then 
they were aggregated using suitable grouping method. 
We need to construct K training sample sets from a give 
single training set {( ; ) | 1, 2,..., }i iTR x y i l   with K  
independent ANNs. In order to obtain greater improve-

ment of the aggregation results, it is necessary to create 
different training sample sets. To do this, we frequently 
use the bootstrap procedure. Bootstrapping constructs K 
duplicate training datasets B{ | 1, 2,..., }kTR k K  by random 
resampling, but with replacement, from the given training 
dataset TS repeatedly. Each instance xi in a certain train-
ing set, TS may appear several times or not at all in any 
specific duplicate training dataset. Then these replicated 
training sets are used to train different ANNs. 
 
Constructing ANN ensembles using boosting: 
Boosting31 resamples the datasets with non-uniform dis-
tribution as opposed to bagging, which resamples datasets 
with uniform distribution. Several boosting algorithms 
have been developed since the preliminary work by 
Schapire31, which include cost-sensitive versions32,33  
and those which can deliver confidence approximations 
in their forecasts34. The most widely used variant of 
boosting methods is AdaBoost35. This technique works  
in rounds, where in a new network is trained in each 
round. 
 Initially a network is trained with equal weight on all 
training patterns. The misclassified patterns are identified 
at the end of each round and their weights are increased 
in a new training set. These new weights are fed back for 
training in the next round. Subsequently, when the  
required number of networks has been trained, the 
weighted votes are used to combine them based on their 
error in training. In case of boosting (AdaBoost.M1)36, 
each sample from the training set is assigned with 
weights. If m classifiers are to be generated, they are 
done so sequentially such that one classifier is generated 
in a single iteration. The classifier Ci is generated by  
updating the weights of training samples based on classi-
fication results of classifier Ci–1. 
 This indicates that boosting retains a weight for each 
instance instead of drawing a sequence of independent 
bootstrap samples from the original instances. At  
every test, the vector of weights is attuned to reveal the per-
formance of the resultant classier, with the consequence 
that the weights of misclassified instances are improved. 
The final classier is constructed by aggregating the  
results of learned classifiers by voting in which each vote 
of the classifiers is calculated as a function of its accu-
racy37. 
 Bauer and Kohavi38 compared the performance of  
bagging and boosting in a large experimental study.  
The analysis indicates that even though bagging yields an 
ensemble which is superior to any of its constituent  
classifiers, and is comparatively less vulnerable to noise, 
it is on average not considerably better than a simple en-
semble. The authors38 found boosting to be a suitable 
method, but it can quickly overfit and can be vulnerable 
to noise; similar difficulties of overfitting have been  
observed by several authors in AdaBoost. 
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Estimation of classification performance 

The following indices were used to measure the classifi-
cation performance. Here, the number of actual CRFs 
predicted as CRF is true positive (TP), the number of 
NON-CRFs predicted as NON-CRF is true negative 
(TN), the number of NON-CRFs predicted as CRF is 
false positive (FP) and the number of CRFs predicted as 
NON-CRF is false negative (FN). 
 
Classification accuracy: The proportion of instances 
which are correctly classified by the classification  
learner. 
 
 Accuracy = (TN + TP)/(FP + FN + TP + TN).  
 
Sensitivity: The ratio of detected positive sample with 
the total positive samples; for instance, the proportion of 
CRFs classified as CRFs to total CRFs 
 
 Sensitivity TP /(TP FN).   
 
Recall: This is similar to sensitivity, but commonly 
used in text mining. 
 
Specificity: This is measured by finding the proportion 
of discovered negative samples with all negative samples, 
for instance, the proportion of NON-CRFs correctly clas-
sified as NON-CRFs 
 
 Specificity TN /(TN FP).   
 
Precision: The ratio of true positive instances with all 
instances classified as positive. 
 
 Precision TP /(TP FP).   
 
Rate of true positive: 
 

 TPRate of TP .
Total positive

  

 
Rate of false positive: 
 

 FPRate of FP .
Total negative

  

 
Area under receiver-operating curve (AUC): This is  
defined as the total area under ROC39. 
 
Brier score: This defines the degree of accuracy of like-
lihood calculations, which calculate the average aberra-
tion between the forecast probabilities of measures and 
the real events. 

The Matthews correlation coefficient (MCC): The emi-
nence of binary classifier is measured using MCC in  
machine learning. It is considered as a composed measure 
which take all cases of true positive, false positive, true 
negative and false negative into account and can be  
applied to datasets of diverse sizes. MCC can be consid-
ered as a correlation coefficient between the predicted 
and observed binary classifiers. The value of MCC is  
between −1 and +1. The value +1 illustrates a perfect  
estimate, 0 represents random prediction, and −1 speci-
fies total disparity between observation and prediction. 
 The following formula is used to calculate MCC 
from confusion matrix 
 

 1/2

TN × TP FN  FPMCC = .
((FN + TP)(FP + TP)(FP + TN)(FN + TN))

   

Results and discussion 

We have used ANN as a base classifier in the ensemble 
learning techniques, bagging and boosting (AdaBoost.M1), 
for classification of recombinant and non-recombinant 
HIV-1 genome sequences. A total of 4233 genomes of 
HIV-1, including 1206 CRF and 3027 NON-CRF genome 
strains were used in the classification. We have used ten-
fold cross-validation techniques for validation of the 
model. The model was also used for classification of test 
datasets. 
 We found that the base classifier (ANN) is itself  
adequate for classification HIV-1 genome strains with 
classification accuracy of 93.36% in tenfold cross-
validation and 99.88% classification accuracy for the test 
on training data (Tables 1–4). 
 Classification accuracy of ANN model and its ensem-
ble models are more or less the same (Table 4) when 
techniques are applied on the training set. However,  
merits differ significantly, when tenfold cross-validation 
technique is used to validate the model (Table 3). While 
using ANN ensembles the classification accuracy and 
other merits were improved on tenfold cross validation. 
Though classification can be done using classic ANN 
model, the objective of this study is to use ensemble 
technique for improvement of the result, which is impli-
cated by the result on tenfold cross validation (Table 3). 
However, using an ensemble does not add any complex-
ity to the model because the difference is in training and 
only training sets are chosen differently which does not 
add any further complexity to the MLP model. 
 However, close resemblance of CRF sequence with 
multiple HIV-1 strains, causes misclassification of 164, 
161, and 159 CRFs by ANN, ANN AdaBoost.M1 and ANN 
bagging respectively (Tables 1 and 2). Nevertheless, only 
a small fraction of non-CRFs was misclassified, 0.038%, 
0.038% and 0.028% by ANN, AdaBoost.M1 and bagging 
respectively, on tenfold cross validation (Table 1). A high
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Table 1. Confusion matrix for tenfold cross validation using artificial neural network (ANN), ANN 
AdaBoostin.M1 and ANN bagging (with 100 layers, regularization factor – 0.1, maximum number of  
iteration – 1000, number of created classifiers for bagging and boosting – 50) for classification of circu-
lating recombinant form (CRF) and NON-CRF HIV-1 genome sequences using nucleotide and  
  dinucleotide composition as sequence attributes 

 Predicted class 
 

 ANN ANN–AdaBoost.M1 ANN bagging 
 

  CRF NON-CRF CRF NON-CRF CRF NON-CRF 
 

Actual class CRF 1042 164 1045 161 1047 159 
 1206 89.9% 5.3% 89.9% 5.2% 92.3% 5.1% 
 NON-CRF 117 2910 117 2910 87 2940 
 3027 10.1% 94.7% 10.1% 94.8% 7.7% 94.9% 
 

Total 4233 1159 3074 1162 3071 1134 3099 

 
 
 

Table 2. Confusion matrix for testing on training data using ANN, ANN AdaBoostin.M1 and ANN 
bagging (with 100 layers, regularization factor – 0.1, maximum number of iterations – 1000, number of 
created classifiers for bagging and boosting – 50) for the classification of CRF and NON-CRF HIV-1  
 genome sequences using nucleotide and dinucleotide composition as sequence attributes 

  Predicted class 
 

 ANN ANN–AdaBoost.M1 ANN bagging 
 

  CRF NON-CRF CRF NON-CRF CRF NON-CRF 
 

Actual class CRF 1201 5 1203 3 1199 7 
 1206 100.0% 0.2% 100.0% 0.1% 100.0% 0.2 
 NON-CRF 0 3027 0 3027 0 3027 
 3027 0.0% 99.8% 0.0% 99.9% 0.0% 99.8% 
 

Total 4233 1201 3032 1203 3030 1199 3034 

 
 
Table 3. Classification performance measure indices for tenfold cross validation using ANN, ANN AdaBoostin.M1 and ANN bagging (with  
100 layers, regularization factor – 0.1, maximum number of iterations – 1000, number of created classifiers for bagging and boosting – 50) for  
  classification of CRF and NON-CRF HIV-1 genome sequences using nucleotide and dinucleotide composition as sequence attributes 

    Area     Matthews 
 Classification   under Information F1  Brier correlation 
 accuracy Sensitivity Specificity curve score measure Precision score coefficient 
 

ANN 0.9336 0.8640 0.9613 0.9671 0.6909 0.8812 0.8991 0.1032 0.8355 
ANN AdaBoost.M1 0.9343 0.8665 0.9613 0.9400 0.7134 0.8826 0.8993 0.1174 0.8373 
ANN bagging 0.9419 0.8682 0.9713 0.9720 0.7020 0.8949 0.9233 0.0904 0.8555 

 
 
 
level of classification accuracy (100%) is achieved by 
all three models when training data are used for testing 
(Table 4). On tenfold cross validation, ANN bagging is 
better than ANN AdaBoost.M1 and ANN in the sense 
that only 7.7% of predicted CRFs was misclassified in 
comparison of 10.1% by the other two classifiers and  
only 5.1% of predicted non-recombinants were misclassi-
fied (Table 1). However, all three models have classifica-
tion accuracy of 99%, when tested on nontraining set; ANN 
AdaBoost.M1 is better than the other two models in the 
number of incorrectly predicted NON-CRFs (Table 2). 

Performance evaluation using ROC 

ROC39 plots false positive rate (X-axis) and true positive 
rate (Y-axis). It is independent of number of positive and 
negative cases. ROC is useful when the number of posi-
tive and negative cases varies during the training. For the 
best classifier, area under ROC must be near to 1. Figures 
1 and 2 indicate that ANN bagging outperforms the other 
two techniques. AUC for ROC is nearly equal to one 
(0.9720) for this technique, which is better than ANN and 
ANN AdaBoost.M1 (0.9671 and 0.9400 respectively) on 
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Table 4. Classification performance measure indices for testing on training data using ANN, ANN AdaBoostin.M1 and 
ANN bagging (with 100 layers, regularization factor – 0.1, maximum number of iterations – 1000, number of created clas-
sifiers for bagging and boosting – 50) for classification of CRF and NON-CRF HIV-1 genome sequences using nucleotide  
 and dinucleotide composition as sequence attributes 

 CA Sens. Spec. AUC IS F1 Prec. Brier MCC 
 

ANN 0.9988 0.9959 1.0000 1.0000 0.8310 0.9979 1.0000 0.0059 0.9971 
ANN AdaBoost.M1 0.9993 0.9975 1.0000 0.9988 0.8604 0.9988 1.0000 0.0014 0.9983 
ANN Bagging 0.9983 0.9942 1.0000 1.0000 0.8166 0.9971 1.0000 0.0127 0.9959 

 
 

 
 

Figure 1. Recover operating curve (ROC) on tenfold cross validation using artificial neural network (ANN), ANN  
AdaBoostin.M1 and ANN bagging (with 100 layers, regularization factor – 0.1, maximum number of iterations – 1000, number 
of created classifiers for bagging and boosting – 50) for classification of circulating recombinant form (CRF) and NON-CRF 
HIV-1 genome sequences using nucleotide and dinucleotide composition as sequence attributes. Red, green and blue curves 
represent ROC for ANN, AdaBoost.M1 and Bagging respectively. (a) Predicted class – CRF and (b) predicted class – NON-
CRF. 

 

 

 
 

Figure 2. Calibration graph on tenfold cross validation using ANN, ANN AdaBoostin.M1 and ANN Bagging (with 100  
layers, regularization factor – 0.1, maximum number of iterations – 1000, number of created classifiers for bagging and boost-
ing – 50) for classification of CRF and NON-CRF HIV-1 genome sequences using nucleotide and dinucleotide composition  
as sequence attributes. Red, green and blue curves represents ROC for ANN, AdaBoost.M1 and bagging respectively.  
(a) Predicted class – CRF and (b) predicted class – NON-CRF. 
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Figure 3. Calibration graph for testing on training data using ANN, ANN AdaBoostin.M1 and ANN bagging (with 100 
layers, regularization factor – 0.1, maximum number of iterations – 1000, number of created classifiers for bagging and 
boosting – 50) for classification of CRF and NON-CRF HIV-1 genome sequences using nucleotide and dinucleotide com-
position as sequence attributes. Red, green and blue curves represents ROC for ANN, AdaBoost.M1 and bagging respec-
tively. (a) Predicted class – CRF and (b) Predicted class – NON-CRF. 

 
 
tenfold cross validation (Tables 3 and 4). Moreover, AUC 
for all three algorithms is nearly equal when techniques 
are applied on training datasets (Table 4). 

Performance evaluation on calibration graph 

Calibration graph17 plots estimated probabilities (X-axis) 
against actual probabilities (Y-axis) and is different  
compared to ROC. A suitable classifier must also have 
the property that its predicted probabilities are well cali-
brated. Nonetheless, even after improvement in the cali-
bration ability, ROC properties and classification ability 
remain unchanged17. A perfect calibration graph has the 
property that it is represented on the diagonal of the 
graph, which indicates no difference between the esti-
mated and actual probabilities. Calibration graph for three 
classifiers on tenfold cross validation is shown in Figure 
2 a and b for CRF and NON-CRF as target class respec-
tively, which clearly indicates that ANN bagging is far 
better calibrated than ANN and ANN AdaBoos.M1. Fur-
thermore, the calibration ability is not much affected 
when CRF or NON-CRF is used as target class. Figure 
3 a and b indicates significantly different results with all 
three techniques when training set is used for testing. The 
figure shows that ANN AdaBoost.M1 is far calibrated on 
training set than ANN and ANN bagging. It also indicates 
that the calibration abilities of ANN and ANN bagging 
are quite different for CRF and NON-CRF genome  
sequences. 
 Thus ANN and its ensemble can effectively and effi-
ciently classify recombinant and non-recombinant geno-
mes of HIV-1 strains. Moreover, their characteristics are 
different on different evaluation measures. 

Conclusion 

Effective treatment of HIV-AIDS becomes complicated 
due to the presence of CRFs. CRFs are the consequence 
of recombination between two or more HIV-1 subtypes. 
For this reason conventional phylogenetic classification 
is not appropriate for HIV-1 classification and genome-
scale phylogenetic methods are infeasible. In this study 
we have devised supervised machine learning technique 
for effective classification of recombinant HIV-1 se-
quences. This study reveals the capability of ANN and its 
ensemble for the classification of non-recombinant and 
recombinant HIV-1 sequences genome-scale. ANN pro-
vides good generalization competencies, but the profi-
ciencies are limited to availability of positive datasets. In 
such a scenario we propose using ANN ensemble and the 
performance of ANN ensemble training algorithms, namely 
bagging and boosting, have been evaluated. Additionally 
recital of these ensembles was corroborated using tenfold 
cross validation and tested on training data. On tenfold 
cross validation we achieved substantial classification 
correctness of 99.93%. Our results are also significant 
because almost all available HIV-1 strain genome  
sequences have been used in the study and highest classi-
fication accuracy 100% achieved on training sets. 
Moreover, our study also demonstrates that different  
machine learning techniques have different characteris-
tics depending on the nature of the data and evaluation 
criteria. Thus techniques should be preferred according to 
the requirement of the problem on hand. This method  
can be extended to classify different sub-types of non-
recombinant HIV-1 sequences, i.e. for subtyping of HIV-
1 sequences. However, classification accuracy and other 
merits may be different. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 111, NO. 5, 10 SEPTEMBER 2016 860 

 

1. Palella Jr, F. J. et al., Declining morbidity and mortality among 
patients with advanced human immunodeficiency virus infection. 
N. Engl. J. Med., 1998, 338, 853–860. 

2. Robertson, D. L., Hahn, B. H. and Sharp, P. M., Recombination in 
AIDS viruses. J. Mol. Evol., 1995, 40, 249–259. 

3. Rambaut, A., Robertson, D. L., Pybus, O. G., Peeters, M. and 
Holmes, E. C., Human immunodeficiency virus: phylogeny and 
the origin of HIV-1. Nature, 2001, 410, 1047–1048. 

4. Kuiken, C. et al., HIV Sequence Compendium 2009, Theoretical 
Biology and Biophysics, Los Alamos National Laboratory, Los 
Alamos, New Mexico, 2009. 

5. Baxt, W. G., Shofer, F. S., Sites, F. D. and Hollander, J. E.,  
A neural computational aid to the diagnosis of acute myocardial 
infarction. Ann. Emer. Med., 2002, 39, 366–373. 

6. Hansen, L. K. and Salamon, P., Neural network ensembles. IEEE 
Trans. Pattern Anal. Mach. Intel., 1990, 12, 993–1001. 

7. Liu, Y., Yao, X. and Higuchi, T., Evolutionary ensembles with 
negative correlation learning. Evol. Comput., IEEE Trans., 2000, 
4, 380–387. 

8. García-Pedrajas, N., Hervás-Martínez, C. and Ortiz-Boyer, D., 
Cooperative coevolution of artificial neural network ensembles for 
pattern classification. Evol. Comput., IEEE Trans., 2005, 9, 271–302. 

9. Ortiz-Boyer, D., Hervás-Martínez, C. and García-Pedrajas, N., 
Cooperative coevolution of artificial neural network ensembles for 
pattern classification. IEEE Trans. Evol. Comput., 2005, 9(3), 
271–302. 

10. Yao, X. and Liu, Y., Making use of population information in evo-
lutionary artificial neural networks. IEEE Trans. Syst. Man Cy-
ber., Part B (Cybernetics), 1998, 28(3), 417–425. 

11. Chan, Z. and Kasabov, N., Fast neural network ensemble learning 
via negative-correlation data correction. IEEE Trans. Neural Net-
work, 2005, 16(6), 1707–1710. 

12. Yang, J. Y., Li, G.-Z., Liu, L.-X. and Yang, M. Q., Classification 
of brain glioma by using neural networks ensemble with multi-
task learning. In BIOCOMP 2007. Proceedings of the International 
Conference on Collective Dynamics: Topics on Competition and 
Cooperation in the Biosciences, Vietri, Italy, 24–28 September 
2007, pp. 515–522. 

13. Li, G.-Z., Liu, T.-Y. and Wu, G.-F., Improving generalization 
ability of neural networks ensemble with multi-task learning.  
J. Comput. Inf. Syst., 2006, 2, 1235–1239. 

14. Schapire, R. E., Theoretical views of boosting and applications. In 
Algorithmic Learning Theory, Springer, pp. 13–25. 

15. Breiman, L., Bagging predictors. Mach. Learn., 1996, 24, 123–
140. 

16. Centor, R. M., Signal detectability the use of ROC curves and 
their analyses. Med. Decis. Making, 1991, 11, 102–106. 

17. Cohen, I. and Goldszmidt, M., Properties and benefits of cali-
brated classifiers. In 8th European Conference on Principles of 
Knowledge Discovery in Databases, Pisa, Italy, 20–24 September 
2004, pp. 125–136. 

18. Demšar, J. et al., Orange: data mining toolbox in python. J. Mach. 
Learn. Res., 2013, 14, 2349–2353. 

19. Demšar, J., Zupan, B., Leban, G. and Curk, T., Orange: from  
Experimental Machine Learning to Interactive Data Mining, 
Springer, 2004. 

20. Xia, X. and Xie, Z., Dambe: software package for data analysis in 
molecular biology and evolution. J. Hered., 2001, 92, 371–373. 

21. Bishop, C. M., Neural Networks for Pattern Recognition, 1995. 

22. Haykin, S. and Lippmann, R. L., Neural networks: a comprehen-
sive foundation. Int. J. Neural Systems, 1994, 5.4, 363–364. 

23. Sozou, P. D., Cootes, T. F., Taylor, C. J., Di Mauro, E. and Lani-
tis, A., Non-linear point distribution modelling using a multi-layer 
perceptron. Image Vision Comput., 1997, 15, 457–463. 

24. Asoh, H. and Otsu, N., Nonlinear data analysis and multilayer 
perceptrons. In Neural Networks, 1989 IJCNN, International Joint 
Conference on Neural Network, IEEE, pp. 411–415. 

25. Chauvin, Y. and Rumelhart, D. E., Backpropagation: Theory,  
Architectures, and Applications, Psychology Press, 1995. 

26. Sharkey, A. J. C. (ed.), Combining Artificial Neural Nets: Ensem-
ble and Modular Multi-net Systems, Springer, 2012. 

27. Nilsson, N. J., Learning Machines: Foundations of Trainable Pat-
tern-Classifying Systems, McGraw-Hill, 1925. 

28. Efron, B. and Tibshirani, R. J., An Introduction to the Bootstrap, 
CRC Press, 1994. 

29. Friedman, J. H., On bias, variance, 0/1 – loss, and the curse- 
of-dimensionality. Data Mining Knowledge Discov., 1997, 1, 55–
77. 

30. Grandvalet, Y., Bagging can stabilize without reducing variance. 
In Artificial Neural Networks, icann 2001 Springer, pp. 49–56. 

31. Schapire, R. E., The strength of weak learnability. Mach. Learn., 
1990, 5, 197–227. 

32. Fan, W., Stolfo, S. J., Zhang, J. and Chan, P. K., Adacost: mis-
classification cost-sensitive boosting. In Proceedings – ICML ’99, 
Proceedings of the Sixteenth International Conference on Machine 
Learning, 1999, pp. 97–105. 

33. Joshi, M. V., Kumar, V. and Agarwal, R. C., Evaluating boosting 
algorithms to classify rare classes: comparison and improvements. 
In Proceedings IEEE International Conference on Data Mining, 
2001, pp. 257–264. 

34. Schapire, R. E. and Singer, Y., Improved boosting algorithms  
using confidence-rated predictions. Mach. Learn., 1999, 37, 297–
336. 

35. Freund, Y. and Schapire, R. E., A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. In Compu-
tational Leaving Theory, Springer, 2005, pp. 23–37. 

36. Freund, Y. and Schapire, R. E., A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. In Compu-
tational Learning Theory, Springer, pp. 23–37. 

37. Quinlan, J. R., Bagging, boosting, and c4. 5. In Innovative Appli-
cations of Artificial Intelligence Conference (IAAI), vol. 1, pp. 
725–730. 

38. Bauer, E. and Kohavi, R., An empirical comparison of voting clas-
sification algorithms: bagging, boosting, and variants. Mach. 
Learn., 1999, 36, 105–139. 

39. Metz, C. E., Basic principles of ROC analysis. In Seminars in  
Nuclear Medicine, Elsevier, 1978, pp. 283–298. 

 
 
ACKNOWLEDGEMENTS. We thank the Department of Biotechno-
logy (DBT), New Delhi for providing support for this work under Bio-
informatics Infrastructure Facility of DBT at Maulana Azad National 
Institute Technology, Bhopal. 
 
 
Received 9 November 2014; revised accepted 21 March 2016 
 
 
doi: 10.18520/cs/v111/i5/853-860 

 

 
 


