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Classical mechanics, complexity and the methodology 
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Research on complexity has exploded in recent years, despite the lack of mature theoretical and computa-
tional tools. By refining the concepts from complex systems and classical mechanics, here we propose that 
the methodology developed in classical mechanics over the last four centuries, together with those from 
other disciplines, might once again nurture the new science of complexity in the coming years. 
 
It is safe to say that the science of me-
chanics might be the oldest branch of 
modern science, and it has been playing 
an irreplaceable role in the development 
of humankind1. However, with the trend 
of research in complexity arising in re-
cent years2, which involves almost all 
branches of natural science3,4, classical 
mechanics, as the embodiment of simpli-
city or reductionism, is gradually fading 
out of interest of the scientific commu-
nity, despite its great success in engi-
neering such as NASA’s New Frontiers 
program5. Here we propose that, just as 
the development of relativity theory and 
quantum mechanics in the 20th century6, 
the methodology developed in classical 
mechanics over the last four centuries, 
together with those from other disciplines, 
might once again nurture the new science 
of complexity in the coming years. 

Definition of complex systems 

Complexity, the study of complex sys-
tems, is a new perspective totally differ-
ent from traditional reductionism that has 
long dominated the scientific commu-
nity. Synthesizing diverse definitions in 
the literature4, we define the complex 
system as one in which two or more dis-
tinct agents interact in such a way that its 
global patterns of behaviour would be 
reconstructed if any important agents or 
interactions were removed or signifi-
cantly changed. In this definition, the 
following considerations are essential. 
 (i) Two or more agents. Despite the 
fact that the literature defines a complex 
system as consisting of a large number of 
agents, in our opinion two is enough for 
complexity. Just as the school of a multi-
tude of fish can amazingly swim in a 
donut-like shape3, the double pendulum 
consisting of two simple pendulums is 
also not simple; it can exhibit complex 
chaotic behaviour7.  
 (ii) Identical or distinct agents. In stark 
contrast to emphasizing the complex sys-

tem consisting of identical or similar 
multiple agents8, in our opinion each 
agent has a different role to play in de-
fining the system2. Even originally iden-
tical agents finally evolve to be different. 
For example, the blue-streak cleaner 
wrasse (Labroides dimidiatus) lives in 
groups consisting of one male and multi-
ple females with a rigid hierarchy. When 
the male dies or leaves, the top-ranking 
female changes sex to a male and takes 
over the harem9. 
 (iii) Stability and susceptibility of pat-
terns. The characteristic feature of the 
complex system is that some patterns 
emerge due to the collective behaviour of 
all individual agents that interact with 
each other3,8. However, what patterns are 
is, to a large extent, based on people’s 
subjective observations. Here we empha-
size that patterns should be time-
independent and stable under different 
environments despite the versatility of 
responses of the system. On the other 
hand, the removal of any important agent 
or interaction would cause the recon-
struction of patterns of the system, unless 
they are replaced with other agents or in-
teractions. 
 The interactions between these consid-
erations result in a complex system, and, 
roughly put, the definition of a complex 
system itself could be loosely considered 
as a complex system. But what is a pat-
tern and how do we describe it are not 
mentioned in this definition; and they are 
still challenging. 
 The recognition of patterns is closely 
related to modelling levels that are ex-
tensively encountered in dealing with 
complex systems. A scale-free hierarchi-
cal architecture exists in living cells10. 
Finite groups have intrinsic structures of 
levels consisting of simple groups4. A 
pattern pertaining to a certain level usu-
ally vanishes in a lower level, despite the 
converse being true in some special cases 
such as fractals. 
 The process of formation of patterns 
from lower levels by interactions bet-

ween agents is called emergence. Unpre-
dictability of the emergent patterns is the 
essential feature of complex systems 
evolving, and the aim of complexity re-
search is to understand the underlying 
basic rules, that is, determinism in the 
midst of chaos4. But where the boundary 
between levels lies, and how to quantita-
tively measure complexity, are still  
ambiguous3,4. 
 The controversy between emergentists 
and reductionists has already lasted for 
decades, especially in the community of 
physics. Traditional reductionists devote 
themselves to constructing the theory of 
everything, whereas emergentists advo-
cate the end of reductionism11. The pre-
diction and exploration of the cosmic 
microwave radiation in the second half 
of the last century are the triumph both 
of cosmology and reductionism12. Here 
we prefer to believe that complexity and 
simplicity are two perspectives of the 
complex system. They are mutually  
reinforcing and need to be explored by 
emergentists and reductionists working 
together. 

Background from structural  
dynamics 

In the last four centuries, the science of 
classical mechanics has developed rich 
tools to deal with complex mechanical 
systems. Not only is the turbulent flow in 
fluid dynamics a perfect example of 
complexity, but two main theoretical 
views widely adopted in complexity  
research, Eulerian and Lagrangian, also 
actually originated from fluid dynamics3. 
In particular, the subject matter of ana-
lytical mechanics and structural dynam-
ics is to study the dynamical behaviour 
of the complex mechanical system con-
sisting of many particles and components 
that are linked to each other6,13. 
 One of the foundations of analytical 
mechanics is Hamilton’s principle, which 
is equivalent to Newton’s laws in nature. 
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Instead of dealing with interacting forces 
between components, Hamilton’s princi-
ple adopts the concept of action function 
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to describe the state of a dynamical sys-
tem, where q is the vector of generalized 
coordinates, and ( , , )L q q t  is the Lagran-
gian defined as the kinetic energy of a 
system minus its potential energy. Ham-
ilton’s principle states that the real path, 
out of all virtual paths satisfying both the 
start and end constraints, makes the 
variation of the action function vanish11. 
That is, the real path of the system satis-
fies 
 
 I = 0. (2) 
 
 Classical mechanics adopts the con-
cept of degree of freedom (DOF) to de-
scribe the complexity of the mechanical 
system. Discrete systems such as a mass-
spring system have finite DOFs, whereas 
continuous systems such as a beam or a 
plate have infinite DOFs. For the discrete 
holonomic system, the number of DOFs 
is equal to that of generalized coordi-
nates. The ordinary and partial differen-
tial equations governing the dynamical 
behaviour of the former and the latter re-
spectively, can be derived from Hamil-
ton’s principle. 
 The response of a mechanical system 
can be extended in the modal space by 
the normal mode analysis technique. In 
other words, the response can be ex-
pressed as the linear sum of time-
independent natural modes. That is 
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where n is the number of DOFs, ci (t) are 
time-dependent weighted coefficients, 
and i are time-independent normal 
modes, which are the natural features of 
the system whenever it bears external 
forces or not. 
 The system has different responses 
corresponding to different external envi-
ronments, but its normal modes remain 
unvaried14. Hence the normal modes of a 
dynamical system are actually the emer-
gent patterns describing its collective  
behaviour, according to the definition of 
the complex system, which emerge from 

components interacting with each other. 
One crucial feature of normal modes is 
that they would not change with external 
forces, whereas they would be recon-
structed if any important components or 
interactions are removed or significantly 
changed. 
 The Rayleigh–Ritz method can greatly 
reduce the complexity of dealing with 
the mechanical system by assuming the 
lowest several modes when computing 
its dynamical responses. That is, it is  
assumed that 
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where ˆ ,n n  and î  are assumed modes. 
The more similar the assumed modes î  
are to the actual ones i, the higher the 
accuracy of computation is. However, 
the difficulty of assuming proper modes 
increases with the increasing complexity 
of the system. Then the finite element 
method (FEM) greatly extends its capa-
bility as a substitute. 
 Instead of assuming the global modes 
of the system, FEM hypothetically 
breaks the system into many small pieces 
called finite elements, and then computes 
the responses of the system by assuming 
the shape functions of those finite ele-
ments, which are far simple compared to 
the global modes of the system. Usually 
linear shape functions are enough to  
satisfy the accuracy requirements in  
engineering applications. It is easily im-
plemented to enhance the accuracy of 

computations either by increasing the 
number of finite elements or by increas-
ing the order of shape functions. Com-
mercial software of FEM analysis such 
as Nastran and Ansys are widely used in 
engineering. 
 In face of the increasing complexity of 
modern mechanical systems such as huge 
airplanes and launch vehicles, several 
substructure synthesis techniques have 
been developed, such as component-
mode synthesis and branch-mode analy-
sis. The dynamic characteristics of the 
system are gained by integrating together 
the lowest several modes of its substruc-
tures, which are relatively simple and 
can be analysed by FEM. These tech-
niques dramatically reduce the number of 
DOFs of the system without losing its 
important physical characteristics. One 
especially valuable feature is that there is 
no need to recalculate the whole struc-
ture when any substructure is redesigned. 
 In terms of complexity theory, we can 
sum up as follows how classical mechan-
ics deals with the complexity of me-
chanical systems. The nonlinear modes 
of substructures emerge from a large 
number of finite elements with linear 
shape functions, while the global com-
plex modes of the system emerge from 
those of two or more substructures.  
Finite elements, substructures and the 
system form three intrinsic levels of 
dealing with the dynamic behaviour of 
complex mechanical systems (Figure 1). 
More importantly, the time-dependent 
responses of the system emerge as the 
linear sum of their time-independent 

 
 
Figure 1. Levels of analysis of an airplane in structural dynamics. Level 1: 
finite elements; level 2: substructures; and level 3: the system. (Note: the finite element 
model of the airplane is from http://aerospace.engin.umich.edu/research/structure.html). 
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normal modes, and the responses can be 
well approximated by the linear sum of 
several lowest assumed modes, the num-
ber of which is far less than that of DOFs 
of the system itself. 

The methodology 

At present, two important methods of 
conducting research on complexity are 
complex networks15 and game theory16. 
The former studies different topological 
structures of interactions between agents 
by tools from graph theory, such as 
small-world networks and scale-free 
networks17. The latter studies strategic 
interactions between self-interested 
agents, considered to be a promising 
framework of integrating many branches 
of social and natural sciences18. The evo-
lution of cooperation among self-
interested agents, one of the far-reaching 
areas related to complexity, has already 
attracted broad interests across disci-
plines lately19, much work of which is 
based on game theory and complex net-
works20. Research shows that topological 
structures have an indispensable effect 
on the evolution of cooperation in the 
society of humans or animals21. 
 The theory of complex networks stud-
ies how the topology of complex systems 
is formed. Scale-free networks form by 
two mechanisms of growth and preferen-
tial attachment. The small-world feature 
and the power law distribution of degrees 
of nodes can be considered as emergent 
patterns of the network17,22. Despite the 
fact that they do not sufficiently reveal 
how the topology of networks evolves in 
the real world, network theory paves the 
way for handling complexity in a sense2. 
 Game theory considers adaption of 
agents to each other. As its extension, 
evolutionary game dynamics incorpo-
rates the principles of natural selection23, 
while Darwinian dynamics constructs a 
fitness-generating function (G-function) 
approach to continuous-trait evolutionary 
games, which allows for simultaneous 
consideration of population dynamics 
and strategy dynamics24. Nevertheless, 
an important feature of complex systems, 
adaption to environments, has not  
attracted much attention, which might be 
a promising research topic25. 
 However, due to lack of proper mathe-
matical tools, current research in com-
plexity is, in large part, conducted by 
computer simulations. Based on the 

above discussion, we propose that struc-
tural dynamics might assist in research 
on the dynamical behaviour of complex 
systems with a total set of theoretical and 
computational tools, if at least the fol-
lowing considerations could be incorpo-
rated. 
 (i) Modelling levels and emergence. It 
is especially important to choose proper 
levels to model emergent patterns. Do 
not model bulldozers with quarks26. It is 
unnecessary to model a living organism 
starting from carbon, hydrogen, oxygen 
and nitrogen. In our opinion, it may be 
appropriate that the process of modelling 
starts from the level just lower by one 
than the level we concern. FEM shows 
that nonlinear dynamic responses at the 
higher level can emerge sufficiently from 
linear elements at the lower level. 
 (ii) Memory and stability. Different 
agents play different roles in the complex 
system. There must exist special agents 
responsible for the memory of patterns, 
which is important for the stability of a 
system. The memory of artificial neural 
networks is ruined once any link between 
neurons is destroyed27, whereas the hu-
man brain allocating special areas to 
store memory shows sufficient stability. 
One of the characteristic features of 
computers is the separation of software 
and hardware3, which makes software 
live forever in theory.  
 (iii) Agent intelligence and interac-
tions. Patterns emerging from interac-
tions should develop some kind of 
function or intelligence. The stronger the 
relations between agents, the smarter the 
complex system should be. Relations be-
tween agents are actually some kind of 
constraints to activities of self-interested 
agents3. The intelligence of individual 
agents should decrease with relations  
between them getting stronger. In the 
prisoner’s dilemma, each agent has two 
choices of cooperation or defection, but 
if they are closely related, such as in the 
setting of siblings or couples, then coop-
eration is the only rational strategy cor-
responding to the much stronger relations 
between them; as a result, two agents as 
a unit gain maximum payoff25,28.  

Outlook 

In fact, classical mechanics does not go 
out of date, noting that the special theory 
of relativity is an extension of it, and 
how much closely similar the fundamen-

tal equations of quantum mechanics are 
to those of analytical mechanics6. Since 
1980s, the normal mode analysis has 
been widely applied in the dynamic 
analysis of protein macro-molecules, a 
kind of typical complex system, to explain 
their slow, large-amplitude motions, 
which are essential for the functions of 
proteins29. The component-mode synthe-
sis methods have been applied in the 
study of molecular biology30. Both 
methods also originated from structural 
dynamics, and unexpectedly they are 
brought to deal with complexity in bio-
logy. 
 What we already know usually con-
tributes much to the understanding of 
novel and complex phenomena. In our 
opinion, the future development of com-
plexity theory would no doubt benefit 
much from the rich and effective theo-
retical tools developed in classical  
mechanics, especially in analytical me-
chanics and structural dynamics which 
deal with complex mechanical systems. 
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