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The study presents fine resolution multisite daily pre-
cipitation projection for the Tapi basin using the  
kernel-regression (KR) based statistical downscaling 
methodology developed by Kannan and Ghosh with 
and without conditioned on the estimated rainfall 
state. The models are applied in downscaling of daily 
monsoon precipitation at a fine resolution of 0.25 
comprising 351 grid points in and around the basin. 
The air temperature, specific humidity, zonal and  
meridional wind (at surface, 250, 500 and 850 hPa); 
mean sea level pressure and geopotential height at 
surface are utilized as predictors from five GCMs un-
der CMIP-5 for two future scenarios, viz. RCP4.5 and 
RCP8.5. The performance of the downscaling model 
examined with respect to reproduction of various sta-
tistics for training period and indicated the better per-
formance of KR model conditioned on the rainfall 
state than KR model without conditioned on the rain-
fall state of the basin. The KR model conditioned on 
the rainfall state is employed for future projections 
from GCMs outputs. The statistically downscaled dai-
ly precipitation from GCM (MPI-M) and CORDEX 
(COSMO-CLM) data is compared to quantify uncer-
tainty. The statistically downscaled daily precipitation 
performs better than corresponding CORDEX data 
for the present study area. The study also revealed a 
possibility of decrease in the occurrences of extreme 
events with an increase in the medium rainfall events 
in the basin for future. 
 
Keywords: Climate change, daily precipitation, general 
circulation models, statistical downscaling. 
 
THE use of general circulation model (GCM) outputs (air 
temperature, pressure, specific humidity, wind speed) to 
quantify consequences of climate change on water  
resources of river basins has grown in the past decade. 
Recent studies1–12 reported the projection of rainfall at 
basin/local/regional scale using statistical downscaling 
from GCM outputs. The output obtained using GCMs is 
accurate in simulating the large-scale atmospheric  
variables, but fails to model local-scale hydrologic  

variables such as precipitation2,13, which necessitates the 
use of downscaling techniques. The downscaling methods 
are broadly classified into two types – statistical and  
dynamical. Details of these downscaling techniques and 
their comparisons have been widely reported14–16. As sta-
tistical downscaling is simple to compute and the area of 
domain can be easily transferred from one place to an-
other is preferred over the dynamical downscaling. The 
success of any statistical downscaling method depends on 
how powerful the predictor is and the predictand relation-
ship. However, the time invariant relationship between 
the predictor and the predictand is a major limitation of 
the statistical downscaling methods. 
 Further, the credibility of statistical downscaling under 
nonstationary climate is discussed by Salvi et al.17. Pre-
cipitation is a highly uncertain and heterogeneous spatial 
phenomenon, occurring as a result of compound interac-
tion between different climate variables. Therefore, spa-
tial modelling of precipitation is a challenging task, when 
modelling the multisite rainfall which suffers from the 
problem of inter-site cross-correlations. Kannan and 
Ghosh18 successfully tackled the problem of multisite 
precipitation downscaling by means of the common rain-
fall state (pattern of the multisite rainfall) of a river basin. 
They have developed a model based on k-means cluster-
ing combined with supervized data classification tech-
nique, i.e. classification and regression tree (CART), for 
the rainfall state of a river basin using the large-scale  
atmospheric variables. Further, the non-parametric kernel 
regression (KR) model has been developed for the rain-
fall projections using the derived common rainfall state 
within a river basin to overcome the problem of inter-site 
cross-correlations. The aforesaid study concluded that 
KR-based downscaling model overcomes the limitations 
of other downscaling models developed in the past,  
including the problem of negative rainfall amount19. The 
aforementioned methodology was applied by Salvi et al.9 
to project Indian monsoon rainfall at 0.5 resolution using 
the CMIP (Coupled Model Inter-comparison Project)-3 
data for the GCM developed by Canadian Centre for 
Climate Modelling and Analysis (CCCma). Most of  
the studies carried out for statistical downscaling use the 
CMIP-3 model data1,9,17,19,20. Recently, Knutti and 
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Sedláček21 reported that the mean temperature from 
CMIP-5 results is less uncertain than CMIP-3, while by 
Shashikanth et al.20 concluded that the Indian summer 
monsoon rainfall results from CMIP-5 are less uncertain 
than the CMIP-3 results. 
 The present study is an attempt to downscale the mul-
tisite daily precipitation over the Tapi Basin at a fine 
resolution of 0.25 from CMIP-5 GCM data using the 
KR-based statistical downscaling methodology developed 
by Kannan and Ghosh1. The four scenarios of CMIP-5 
experiments are based on representative concentration 
pathways (RCPs), i.e. RCP2.6, RCP4.5, RCP6 and 
RCP8.5 (ref. 22) and represent radiative forcing levels of 
2.6, 4.5, 6 and 8.5 Wm–2 respectively, by the end of the 
century23. The study is an attempt to downscale precipita-
tion at a very fine resolution of 0.25 using CMIP-5 GCM 
data of scenario RCP4.5 (considering this as the most 
probable scenario)22,23 and RCP8.5 (considering this as 
the worst case scenario)23,24 to quantify impact of climate 
change on water resources of the Tapi Basin up to the end 
of the 21st century. Furthermore, the downscaled daily 
precipitation from CMIP-5 GCM (MPI-M) and daily pre-
cipitation from Co-ordinated Regional Climate Down-
scaling Experiment (CORDEX) South Asia Regional 
Climate Model (RCM) were compared to evaluate the 
uncertainty in the KR-based statistical downscaling 
model for the study area under consideration. The study 
supports strength of the KR-model in capturing the highly 
heterogeneous rainfall as well as the inter-station cross-
correlations in the basin. 

Study area and data sources 

The Tapi Basin lies in the northern part of the Deccan 
Plateau extending over an area of 65,145 sq. km, which is 
nearly about 2% of the total geographical area of India25. 
The Tapi River, the second largest west-flowing river of 
the Indian Peninsula, having catchment area up to Ukai 
dam is 62,225 sq. km. Figure 1 shows the index map  
of the Tapi basin, including the India Meteorological  
Department (IMD)-operated rain-gauge stations. The ba-
sin lies between 7238–7817E long. and 205–223N 
lat. (ref. 25). The Tapi River has 14 major tributaries of 
length more than 50 km; the Purna and Girna River  
basins together account for nearly 45% of the Tapi  
Basin25. The basin has an elongated shape with a maxi-
mum length of 587 km from east to west, and the maxi-
mum width of 210 km from north to south with perimeter 
of about 1840 km (ref. 24). Over 90% of the total rainfall 
occurs during summer monsoon (June–September) in the 
basin and falls within the zone of severe rainstorm lasting 
1–2 days with maximum 24 h heavy rainfall ranging from 
86 to 459 mm (ref. 26). 
 The GCMs are credible tools for projecting the future 
time series of the large-scale atmospheric variables. They 

are three-dimensional mathematical models based on the 
physical principles of fluid dynamics, thermodynamics 
and radiative heat transfer16. They represent the climate 
system in a simplified form using combinations of models 
for different components of the climate system27. There is 
no single rule available for the selection of GCMs for 
downscaling of precipitation. They are generally selected 
on the basis of the availability of large-scale predictor  
variables and the time period. The GCMs given in the 
Table 1 have been selected from CMIP-5 experiments 
(scenario RCP4.5 and RCP8.5) for the present study due 
to their reliability to simulate precipitation extremes for 
India28, and availability of relevant data required for  
multisite precipitation for the area under consideration. 
 The predictors are the climate variables that are well 
simulated by the GCMs and are available from their  
archives. There is no single approach or method available 
for selection of predictors for precipitation downscaling. 
One should use the predictors which are strongly corre-
lated with the surface variable of interest (daily precipita-
tion in the present study). The air temperature, mean sea-
level pressure, specific humidity, zonal and meridional 
winds and geopotential height (taken by Kannan and 
Ghosh)18 at the surface, 250, 500 and 850 hPa, along with 
MSLP and geopotential height at the surface are consid-
ered as predictor variables in the present study. 
 The all-India gridded daily precipitation data at a reso-
lution of 0.25 from APHRODITE (Asian Precipitation 
Highly-Resolved Observational Data Integration Towards 
Evaluation of the Water Resources) has been downloaded 
from http://www.chikyu.ac.jp and used as predictand for 
the present study. The APHRO_MA_V1003R1 dataset is 
also used, which is a newly available gauge-based high-
quality dataset for Asia29. Due to better grid resolution, 
APHRODITE data are presently being used in many cli-
mate studies. Rajeevan and Bhate30 recently compared 
APHRODITE v0804 (based on about 2000 station obser-
vations over the Indian subcontinent) with the rain gauges 
from IMD (comprising more than 6000 stations). The 
study revealed that APHRODITE data have high correla-
tion with the IMD rainfall data over India. The use of 
APHRODITE data is also recommended by Krishnamurti 
et al.31 as an enhancement to the Tropical Rainfall Meas-
uring Mission (TRMM) over India. 
 Due to the unavailability of adequate observed clima-
tological data at fine resolution, the reanalysis data are  
utilized in climate change studies. The climatological varia-
bles of NCEP/NCAR (National Centre for Atmospheric 
Research) reanalysis-I data32 were downloaded from 
http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis. 
shtml and used. These data are outputs from a high-
resolution climate model, run using assimilated data from 
sources such as surface observation stations and satel-
lites, and hence can be considered as outputs from an 
ideal GCM1. The NCEP/NCAR reanalysis-I data provide 
global atmospheric information from 1948 to the present,



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 110, NO. 8, 25 APRIL 2016 1470 

 
 

Figure 1. Index map of Tapi Basin. 
 
 

Table 1. General circulation models (GCMs) used in the present study 

   Resolution 
Modelling Centre  Model Institution (lat.  long.), level 
 

CCCma CanESM2 Canadian Centre for Climate Modelling and Analysis 2.8  2.8, L35 
CMCC CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 1.87  1.87, L95 
BCC bcc-csm 1-1  Beijing Climate Center, China Meteorological Administration 2.8  2.8, L26 
CNRM-CERFACS CNRM-CM5 Centre National de Recherches Meteorologiques/Centre 1.4°  1.4, L31 
    Europeen de Recherche et Formation Avancees en  
    Calcul Scientifique 
MPI-M MPI-ESM-LR Max Planck Institute for Meteorology  1.9  1.9, L47 

 
 
which is a mixture of physical observations and model 
simulations. The data assimilation system used in the 
NCEP/NCAR reanalysis includes the global model and a 
three-dimensional analysis scheme that incorporates land, 
surface, ship, rawinsonde, satellite and other data with a 
T62 horizontal resolution and 28 vertical sigma levels1. 
Kalnay et al.32 classified the global output variables into 
three types depending upon their dependencies on the  
observations and model. Type ‘A’ variables, for example, 
zonal and meridional winds are strongly influenced by 
the observations. Type ‘B’ variables, including specific 
humidity and temperature are influenced by both the  
observations and the model, while type ‘C’ variables are 
influenced by the model and no observation directly  
affects the variable, which includes precipitation. For the 
present study, the NCEP/NCAR reanalysis-I data provide 
the variables, i.e. air temperature, specific humidity, 
MSLP, zonal and meridional winds and geopotential 
height at the surface, 250, 500 and 850 hPa, for an area 
extending between 5–40N lat. and 60–120E long., 
covering the complete study area for a period of 25 years 
(1981–2005). Out of total 25 years’ data, the first 15 
years’ data from 1981 to 1995 are used for training and 

the remaining 10 years’ data from 1996 to 2005 are util-
ized for validation of the proposed downscaling model. If 
the grid spacing of GCMs and NCEP/NCAR does not 
match, the data of different GCMs are interpolated to 
NCEP/NCAR grid points. 
 To evaluate the uncertainty of the KR-based statistical 
downscaling model for the study area, CORDEX RCM-
based COSMO-CLM daily precipitation data have been 
downloaded from ftp://cccr.tropmet.res.in. These data 
have been chosen, as their host-GCM is CMIP-5 MPI-M 
(MPI-ESM-LR). The CORDEX data are available at a 
resolution of 0.5; they are interpolated to 0.25 resolu-
tion using bi-linear interpolation. 

Development of model and results 

For the present statistical downscaling of daily precipita-
tion over the Tapi Basin, the methodology developed by 
Kannan and Ghosh1 has been adopted. The predictors and 
predictand data need to be processed before being utilized 
for downscaling. The first task to be performed on the 
predictors is the bias correction, which involves the  
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removal of the systematic biases from their mean and 
standard deviation. The standardization method of bias 
correction is used for a predefined baseline period. Prin-
cipal component analysis (PCA) is carried out on the  
bias-corrected predictor variables to diminish dimension-
ality and multicollinearity in a highly uncorrelated data-
set. It is the application of orthogonal transformation on a 
set of correlated predictor variables, producing principal 
components (PCs) which retain almost the same variabil-
ity as that of original dataset1. For modelling the rainfall 
occurrence and for deriving the daily rainfall state from 
the predictand dataset, an unsupervised clustering tech-
nique, viz. k-means clustering is employed. A supervised 
data classification algorithm, CART (Classification And 
Regression Tree) is applied for establishment of statisti-
cal relationship between PCs (arrived from bias-corrected 
predictors) and rainfall states (arrived using the k-means 
clustering). The daily rainfall states and PCs of the pre-
dictor variables are used as input in the KR model for the 
generation of daily rainfall amount. The rainfall projec-
tions are obtained for the following three rationales: 
 1. For validation period, the rainfall projections are 
obtained using the NCEP/NCAR reanalysis-I data. The 
data of time slice from 1981 to 1995 (baseline period) are 
used for training period for which the statistical relation-
ship is established. The time slice from 1996 to 2005 is 
used for testing/validation period for which the projec-
tions are obtained and are being validated with that of the 
predictand. 
 2. The historical projections validation period, i.e. for 
the time period 1996–2005 are obtained from five GCMs, 
viz. CCCma (CanESM2), CMCC (CMCC-CMS), BCC 
(bcc-csm 1-1), CNRM-CERFACS (CNRM-CM5) and 
MPI-M (MPI-ESM-LR). 
 3. The future projections are also obtained from the 
same five GCMs for the time period 2006–2100 for the 
two scenarios, RCP4.5 and RCP8.5. The CORDEX 
(COSMO-CLM) rainfall projections are obtained for the 
validation period (1996–2005) and future period (2006–
2099). For the validation period, the daily precipitation 
from CORDEX data and statistical downscaled data is 
compared with the APHRODITE rainfall data in order to 
check uncertainty in the downscaling model. Also, the 
statistically downscaled data and CORDEX data are 
compared for future time period. 

Selection of spatial extent 

The choice of spatial extent for predictors required for 
multisite statistical downscaling is based on the linear  
association between the predictor and predictand. The 
Pearson correlation coefficient (PCC) is determined and 
plotted between the key predictor variables and the aver-
age rainfall data of the Tapi Basin between 5–40N lat. 
and 60–120E long. Figures 2 and 3 show the contour 

plots of PCC of predictor variables at the surface and 
500 hPa respectively. The spatial domain is selected in 
such a way that the Indian summer monsoon activity is 
captured well in the downscaling framework. After ana-
lysing the contour plots of all the predictor variables with 
the observed mean rainfall for the basin, the spatial extent 
of 10–35N lat. and 65–95E long. has been selected 
for the present study. 

Bias correction 

The GCMs involve parameterization of many processes 
due to incomplete knowledge of the underlying physics16. 
The parameterization leads to the systematic difference 
between the observed and GCM-simulated variables, 
which is defined as bias. It is required to be removed for 
correct future projections from the GCM-simulated  
variables. The standardization method of bias correction 
is used in this study, before statistical downscaling, tak-
ing the NCEP/NCAR reanalysis-I data as the reference 
data. The standardization of NCEP/NCAR reanalysis-I 
data is performed by subtraction of the mean and division 
by the standard deviation of the predictor variable of 
NCEP/NCAR for a predefined baseline period. Similarly, 
the standardization of GCM data is carried out using  
historical experimental data for the same baseline period. 
Thus, for a single day, the total dimension of the stan-
dardized data available for modelling is 715 (five vari-
ables at 143 grid points). 

Principal component analysis 

The data of predictor variables obtained after bias correc-
tion suffer from the problem of multidimensionality and 
multicollinearity. The use of high-dimensional correlated 
predictor data in the present downscaling framework is 
costly with regard to computation. Hence, there is a need 
to convert the highly correlated multidimensional predic-
tor into a set of uncorrelated variables with reduced di-
mensionality, and PCA is used for this purpose. In the 
present study, the standardized predictor containing 715 
dimensions (five variables at 143 grid points) is reduced 
to a predictor set containing 100 dimensions, without  
ignoring the significant information contained in the  
original data. 

Identification of daily rainfall states 

Capturing the cross-correlation between the rain gauge 
stations in close proximity is one of the problems in the 
multisite statistical downscaling. This can be solved  
using common rainfall states in the river basin9. Kannan 
and Ghosh18 employed k-means clustering for the identi-
fication of daily rainfall state, which is an unsupervized
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Figure 2. Contour plot of Pearson correlation coefficient (PCC) between surface predictor variables and basin average rainfall. a, Spe-
cific humidity at the surface (kg/kg); b, Mean sea-level pressure (Pa); c, Air temperature at the surface (K); d, U wind at the surface (m/s);  
e, V wind at the surface (m/s). 

 

 

 
 

Figure 3. Contour plot of PCC between 500 hPa predictor variables and basin average rainfall. a, Specific humidity at 500 hPa (kg/kg); 
b, Air temperature at 500 hPa (K); c, U wind at 500 hPa (m/s); d, V wind at 500 hPa (m/s); e, Geopotential height at 500 hPa (m). 
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Figure 4. Cluster centroids derived from k-means clustering technique for three clusters. a, Rainfall state 1: almost dry; b, Rainfall state 
2: high; c, Rainfall state 3: medium. 

 
 
data classification technique classifying n observations 
into k-clusters. In this study, the gridded daily rainfall  
data from APHRODITE extracted at 351 grid points, rep-
resenting the Tapi basin, are clustered to obtain daily 
rainfall state of the river basin. The clustering is used 
since it requires no assumptions to be made on the num-
ber of groups (clusters) or the group structure. The group-
ings are carried out on the basis of similarities or 
distances (dissimilarities). The total number of clusters 
(in which data are grouped) is an input parameter for the 
clustering algorithm, but it is not known. Hence careful 
evaluation of the results of the clustering algorithm is  
necessary. The acceptability of clustering results is also 
not defined; thus several cluster validity techniques are 
used to identify the optimum number of clusters. Three 
cluster validation measures (i.e. Dunn’s index33, Davies–
Bouldin index34 and Silhouette index35) are computed for 
each cluster obtained under k-means clustering technique. 
The results of the validity measures computed for differ-
ent sets of clusters are presented in the Supplementary 
Material (see online). The highest value for Dunn’s index 
and Silhouette index and the minimum value for Davies–
Bouldin index present the optimum number of clusters. 
For obtaining the optimum number of clusters, the total 
number of clusters is varied from 2 to 10. It can be con-
cluded that the optimum number of clusters for the pre-
sent study is three. Figure 4 shows cluster centroids 
arrived using k-means clustering technique for the three 
clusters. The three rainfall states derived are ‘almost dry’, 
‘medium’ and ‘high’, on the basis of rainfall amounts 
represented by the cluster centroids18. Amongst the three 
cluster centroids, the one for the ‘almost dry’ condition  
is found to be well separated. Therefore, the results  
obtained by k-means clustering algorithm for k = 3 are 
adjudged the best partition. 

Modelling rainfall occurrence using CART 

Modelling of the nonlinear relationship between large-
scale atmospheric predictors and the river basin-wise 
rainfall state is carried out using CART. The inherent 

ability of CART to select variables automatically and to 
select the appropriate tree structure in the absence of 
prior information regarding variable selection enable us 
to come up with different models1. Therefore, in the pre-
sent study three models are proposed for training and 
validation purpose. These are: 
 
 ( ) { ( ), ( 1), ( 1)},R t m t m t R t    (1) 
 
 ( ) { ( ), ( 1), ( 1), ( 2)},R t m t m t R t R t     (2) 
 
 ( ) { ( ), ( 1), ( 1), ( 2), ( 3)},R t m t m t R t R t R t      (3) 
 
where R(t), R(t – 1), R(t – 2) and R(t – 3) are the rainfall 
occurrence on the tth, (t – 1)th, (t – 2)th and (t – 3)th day 
respectively. m(t) and m(t – 1) are the set of large-scale 
atmospheric variables on the tth and (t – 1)th day respec-
tively. 
 In the present study, CART model is developed using 
standardized and dimensionally reduced NCEP/NCAR 
predictor data and concurrent rainfall states. The data 
from 1981 to 1995 (a period of 15 years) are used as the 
training set for construction of the classification tree, 
while the remaining data for a period of 10 years (from 
1995 to 2005) are utilized for validation of the CART 
model. A total of three skill score measures, i.e. SRMP 
(success rate of model prediction), HSS (Heidke skill 
score) and  2 goodness-of-fit statistic are computed from 
the validation data to assess reliability of the model for 
future uses18. Details of the calculation of SRMP, HSS 
and  2 statistic can be found in Kannan and Ghosh18. The 
value of SRMP ranges from 0 to 100, with 0 for poor and 
100 for perfect forecast. The perfect forecasts have HSS 
equal to one, forecast equivalent to reference forecasts 
receive zero scores, and forecasts worse than reference 
forecasts are have negative scores. According to Maity 
and Nagesh Kumar36, a reasonably good forecast has HSS 
value greater than 0.15. The  2 distribution is used to  
decide whether there is any association between the  
observed and forecasted rainfall occurrences. The null 
hypothesis H0 for the present case can be defined as
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Figure 5. Percentage-wise break-up of occurrence of rainfall states for the training and validation periods. a, k-Means cluster; b, CCCma 
projections; c, CMCC projections; d, BCC projections; e, CNRM-CERFACS projections; f, MPI-M projections. 

 
 
follows: ‘There is no association between the observed 
and forecasted rainfall occurrences’18. 
 The results of computed SRMP (percentage), HSS and 
 2 goodness-of-fit statistic for the three CART models 
under consideration are tabulated in the Supplementary 
Material (see online). It is observed that the SRMP, HSS 
and  2 goodness-of-fit computed for the results of model-
III (see eq. (3)) validation runs are fairly good compared 
to model-I (see eq. (1)) and model-II (see eq. (2)). Thus, 
model-III gives a reasonably good simulation for present 
case and it is selected for projecting daily rainfall states 
using the GCM outputs. After the simulation of future 
states, KR is used conditionally on the derived states in 
order to project future rainfall amount. 

Projection of future daily rainfall state  

The PCs of all the five GCMs under consideration 
(CCCma, BCC, CNRM-CERFACS, CMCC and MPI-M 
outputs for experiments such as historical, RCP4.5 and 
RCP8.5) are taken as input for projecting rainfall states of 
future climate change scenarios using trained CART 
model. Figure 5 shows the occurrences of rainfall states 
(percentage-wise) for all five GCMs for training and  

validation, while Figure 6 presents the same for future 
projection of RCP4.5. From Figure 5, it is observed that 
the rainfall states projected for four GCMs models (viz. 
BCC, CCCma, CNRM-CERFACS and MPI-M) almost 
match with the observed rainfall states obtained from  
k-means clustering with no considerable increase or  
decrease in ‘almost dry’, ‘high’ and ‘medium’ rainfall 
states. While for CMCC, a considerable decrease is  
observed from training period (1981–1995) to validation 
period (1996–2005) for ‘almost dry’ rainfall state and an 
increasing trend is observed for ‘high’ and ‘medium’ 
rainfall states from training period to validation period. 
 The model results obtained for the RCP4.5 experiment 
show a moderate decrease in the ‘almost dry’ rainfall 
state for the period 2041–2070 and 2071–2100 and a 
moderate increase in the ‘high’ rainfall state for the same 
period, with no trend for ‘medium’ rainfall state for 
CCCma (Figure 6 a). The rainfall state for CMCC (Figure 
6 b) shows a decreasing and increasing trend for ‘almost 
dry’ and ‘high’ rainfall states respectively, with a slight 
increase and decrease in the ‘medium’ rainfall state for 
the period 2041–2070 and 2071–2100 respectively. There 
is a slight decrease in the ‘almost dry’ rainfall state for 
the period 2041–2070 with a small increase in ‘almost
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Figure 6. Percentage-wise break-up of occurrence of rainfall states for future scenario RCP4.5 of GCMs: a, CCCma; b, CMCC; c, BCC;  
d, CNRM–CERFACS; e, MPI-M for time different slices. 
 
 
Dry’ rainfall states for the period 2071–2100 with no  
significant trend for ‘medium’ rainfall states for  
BCC (Figure 6 c). There is also a slight increase and  
decrease in the ‘high’ rainfall state for the period 2041–
2070 and 2071–2099 respectively. From Figure 6 d and e, 
it can be inferred that the rainfall state projections for 
CNRM-CERFACS and MPI-M are almost similar  
with decreasing, increasing and no significant trend for 
‘almost dry’, ‘high’ and ‘medium’ rainfall states respec-
tively. 
 The occurrence of rainfall states constitutes a dynamic 
system that changes randomly between one state and an-
other. These changes are called transitions, and the prob-
abilities associated with the changing state are called 
transition probabilities. The plots of changes in ‘almost 
dry–almost dry’, ‘high–high’ and ‘medium–medium’ 
rainfall state transition probabilities obtained for all GCM 
models for scenarios RCP4.5 and RCP8.5 are given in the 
Supplementary Material (see online). 

Modelling the multisite rainfall amount and its  
spatial dependence 
A non-parametric KR-based downscaling model (Figure 
7) developed by Kannan and Ghosh1, is used in the pre-
sent study for modelling the multisite rainfall amount, 
which considers the rainfall state of the region as one of 
the predictors. Moreover, the methodology is successful 
in overcoming the different models developed so far for 
downscaling the multisite daily precipitation. 
 The generation of multisite rainfall is achieved  
by modelling the relationship between the large-scale  
atmospheric circulation climate variables (predictors) and 
the local-scale precipitation. The functional form of the 
relationship is given as 
 

 ( / ),t R t tR f X S  (4) 
 

where Rt is the rainfall at an individual grid point at time 
t, Xt the climate predictor at time t, and St is the rainfall
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Figure 7. Methodology for downscaling multisite rainfall amount. 
 
 
State of the river basin at time t. The conditional probabi-
lity of a random variable can be estimated using KR. The 
multivariate KR uses a weighted sum of the observed re-
sponses with kernel density functions for weights1. The 
weight of each training input is computed using a kernel 
function which typically decays rapidly with the distance 
between itself and the test input. The estimates are  
obtained such that the estimated test point value has the 
strongest dependence on nearby training points. A com-
mon approach in KR combines a Euclidean distance met-
ric with Gaussian kernel, which decays exponentially 
with the squared distance rescaled by a kernel bandwidth. 
The general form of conditional expectation function 
E(Y/X) for a multivariate distribution of the variables Y 
and X is given below 
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Nadaraya37 has replaced the multivariate pdf (probability 
density function) by the kernel density estimate1 
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where ˆ ( )Hm x  is the expected value of Y for a condition 
of Xi = x and H is the kernel with bandwidth H. 
 For the present study, selection of kernel bandwidth 
and stochastic simulation of rainfall amounts has been 
carried out according to the procedure described by Kan-
nan and Ghosh1. The rainfall state is given by the rainfall 
occurrence model for the basin under consideration. It 

considers the previous day rainfall state as one of the 
predictors which explain long-term persistence pass by 
daily short-term persistence. The spatial dependence of 
the rainfall is maintained by the combined use of com-
mon rainfall state of the river basin and a data-driven KR 
approach as defined by Kannan and Ghosh1 for the down-
scaling technique. The approach as defined by them  
explicitly considers the effect of large-scale circulation 
conditioned on the rainfall state, and therefore provides 
refined and logical approach of incorporating spatial and 
temporal dependency. 

Application of the model 

The KR-based model uses the feature vector space as 
training sample for generation of daily rainfall amount. 
The standardized and dimensionally reduced NCEP/ 
NCAR reanalysis-I daily rainfall data along with concur-
rent daily precipitation are used for the construction of 
feature vector space for a period of 15 years from 1981 to 
1995. Validation of the KR model is carried out with the 
remaining 10 years from 1996 to 2005 using standardized 
and dimensionally reduced NCEP/NCAR climate  
variables. The performance of the KR model (with condi-
tioning on weather states) is tested by comparing the  
simulation of KRWS model (kernel regression model 
without conditioning on weather states). The KR-based 
downscaling approach is used to simulate rainfall for near 
future (2041–2070) and far future (2071–2100) using the 
standardized and dimensionally reduced predictor  
variables for RCP4.5 and RCP8.5 scenarios of all the five 
GCMs (i.e. CCCma, CMCC, CNRM-CERFACS, BCC 
and MPI-M). 
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Table 2. Observed and downscaled (5th, median (50th), and 95th percentile estimates) monthly wet days and rainfall for the testing period: 1996–2005 

  Wet days Rainfall (mm) 
 
Percentile 5 50 95 Mean Percentile 5 50 95 Mean 
 

Observed     Observed 
 June 3 7 15  8  June 75.1 161.0 257.9 159.9 
 July 1 14 18 12  July 60.2 247.9 333.6 243.5 
 August 8 13 15 12  August 156.9 227.8 295.7 227.2 
 September 0 6 16  7  September 31.3 139.7 312.5 153.5 
 
Modelled with rainfall state     Modelled with rainfall state 
 June 4 8 13  8  June 108.4 193.9 236.6 181.8 
 July 1 13 17 12  July 86.2 239.5 299.4 228.3 
 August 8 13 17 12  August 144.9 227.0 364.7 235.1 
 September 0 6 14  6  September 57.7 148.2 311.4 161.2 
 
Modelled without rainfall state     Modelled without rainfall state 
 June 2 9 15  9  June 115.4 173.2 229.3 180.0 
 July 5 11 16 11  July 139.3 189.1 293.5 197.8 
 August 4 9 17  9  August 108.7 169.1 255.9 181.3 
 September 1 6 12  5  September 66.0 130.4 233.5 136.1 

 
 
 Model validation: Validation of the KR model over 
the baseline period is performed through the statistical 
comparison of calculation of basin-averaged wet days and 
rainfall amount, basin-averaged wet/dry spell length and 
their conditional probabilities, as well as KR model’s 
ability to capture spatial and temporal dependence. 
 Statistical comparison: The performance of KR-based 
model mentioned in Table 2, in regenerating the different 
statistical characteristics with reference to the observed 
data is analysed in this section. The contour plots of the 
mean and standard deviation for the observed rainfall, 
rainfall projected by NCEP/NCAR and rainfall projec-
tions from the five GCMs using the KR method condi-
tioned on weather states used in the present study are 
given in the Supplementary Material (see online). It is 
observed that mean and standard deviation of generated 
rainfall series are captured well by the KR-based ap-
proach. The correlation plots for R2 values for the KR 
model with and without conditioning on weather states 
are also presented in the Supplementary Material (see on-
line), which show that the R2 value for the KR model is 
greater than the KRWS model, thus indicating that the 
rainfall values are well nalyzi by the former model. 
 Wet days averaged over the basin and rainfall amount: 
The wet spells (WS) and dry spells (DS) play an impor-
tant role in the planning and management of water  
resources of the basin. In spite of many definitions for the 
identification of WS (DS), the one by Singh and Ranade38 
has been adopted for the present study. According to 
them, WS (DS) is identified as a ‘continuous period with 
daily rainfall equal to or greater than (less than) daily 
mean rainfall (DMR) of the climatological monsoon  
period over the area of interest’. The present study area is 
located in the western part of India, for which Singh and 
Ranade38 have worked out a DMR of 12.1 mm/day. Table 

2 gives the monthly observed and downscaled monsoon 
wet days and rainfall amounts over the Tapi Basin. From 
the table, it can be observed that the KRWS model over-
estimates the number of wet days and the rainfall amount, 
while the KR model performs better than the KRWS 
model both in capturing the wet days and reproducing the 
total rainfall amount. 
 Wet/dry spell length averaged over the basin and con-
ditional probabilities: The KR and KRWS models were 
also evaluated for wet/dry spell length probabilities and 
conditional probabilities of rainfall, in addition to the  
total number of wet days. In the following discussion, a 
wet spell is defined as a continuous sequence of days 
when daily rainfall is greater than or equal to DMR.  
Similarly, a dry spell represents a sequence of days with 
daily rainfall being less than DMR5. It is intended to  
verify the distribution and shape of wet/dry spell lengths 
and the conditional probabilities of the predictand cap-
tured by the downscaling model for the validation period 
(1996–2005). The plots of basin-averaged wet and dry 
spell length probabilities for the rainfall observed and 
predicted by the model for the validation period are pre-
sented in the Supplementary Material (see online). It is 
observed that the KR model exhibits good performance in 
comparison to the KRWS model, as the spell length pro-
bability curves for both wet and dry spells closely match-
ing with the observed case, whereas a noticeable 
deviation can be seen in case of the KRWS model. The 
wet and dry spell length probabilities for all the five 
GCMs for the validation period are also presented in the 
Supplementary Material (see online). It is observed that 
all the five GCMs underestimate the wet spell length 
probabilities and overestimate the dry spell length prob-
abilities, except for BCC which is slightly underestimat-
ing the dry spell length when compared with the observed
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Figure 8. Cumulative distribution function of basin-averaged rainfall for the validation period. 
 
 
rainfall. Figure 8 compares the cumulative distribution 
obtained from basin-averaged observed rainfall series 
with those obtained with five models used in the present 
study for the validation period. It is observed that the KR 
model shows minimum deviation from observed rainfall 
and therefore the KR method is selected for rainfall pro-
jections. 
 Rainfall variability (temporal) and spatial dependence: 
A distributed hydrologic model requires rainfall variabi-
lity both in terms of space and time. Therefore, the pro-
jected rainfall from both the KR and KRWS models is 
evaluated in terms of their ability to capture both tempo-
ral and spatial dependence. The inter-station correlation 
coefficients are computed for the observed and the  
predicted rainfall series obtained from KR and KRWS 
models for the validation period. The scatter plots of 
cross-correlation coefficients obtained from the observed 
and model-simulated rainfall series for both the KR and 
KRWS models is given in the Supplementary Material 
(see online). It can be inferred that the spatial structure of 
rainfall field is captured well by the KR model, while the 
KRWS model overestimates the same. 
 Model selection: For the present study, after analys-
ing the KR and KRWS models in terms of their ability to 
capture basin-averaged wet days and rainfall amount,  
basin-averaged wet/dry spell length probabilities, and 
spatial and temporal variability, the former model is 
found better than the latter model and is therefore se-
lected for future rainfall projections. However, Kannan 
and Ghosh1 concluded that the performance of both models 
is good when compared with other downscaling models. 

Future projections with GCM simulations 

The KR model along with standardized and dimensionally 
reduced data corresponding to RCP4.5 and RCP8.5  
scenarios from CMIP-5 experiments of the five GCMs, 

including CCCma, CMCC, BCC, CNRM-CERFACS and 
MPI-M outputs conditioned on the rainfall states of their 
respective experiments, is used for the projection of the 
future JJAS (June, July, August and September month) 
daily rainfall. For investigating the changes of the global 
warming on the precipitation characteristics, three time 
slices (2011–2040, 2041–2070 and 2071–2100) have 
been selected in the future. The changes in the precipita-
tion characteristics are evaluated in terms of changes in 
shape of wet and dry spell lengths, and their conditional 
probabilities for the aforementioned three time slices. 
Further, the 50-year return period extreme daily rainfall 
for future time slices are presented for Tapi Basin for 
both the future scenarios (RCP4.5 and RCP8.5) of the  
selected GCMs. 
 Wet/dry spell length probabilities and conditional 
probability under the changed climate: For efficient re-
servoir operation and flood management applications, it 
is important that the model accurately reproduces the 
number of wet days and rainfall amounts in the down-
scaled simulations4. According to Kannan and Ghosh1, 
‘change in the number of wet days in any downscaling 
location results in the changes in WS length and its corre-
sponding occurrence probabilities’. Also, sustained in-
crease/decrease in the amount of predicted rainfall 
changes the shape of cumulative distribution function 
(CDF). Therefore, the downscaled results are evaluated 
for changes in wet/dry spell length probabilities and 
shape of CDF during the change in climate for three time 
slices (2011–2040, 2041–2070 and 2071–2100). The 
plots of wet and dry spell length probabilities obtained 
from the model results of all the five GCMs (CCCma, 
CMCC, BCC, CNRM-CERFACS and MPI-M) for both 
the scenarios (RCP 4.5 and RCP 8.5) are included in the 
Supplementary Material (see online). For CCCma, a  
plot for wet and dry spell length probabilities shows no 
significant change in shape during two time periods
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Figure 9. Fifty-year return period of extreme daily rainfall for near future (2011–2040) and far future (2071–2100) for: 
a, CCCma; b, CMCC; c, BCC; d, CNRM-CERFACS; e, MPI-M. 

 
 
(2011–2040 and 2071–2100). However, a slight increase 
in the shape of wet and dry spell length probabilities is  
observed for four or less days, and seven or less days re-
spectively. For CMCC plots of wet and dry spell length 
probabilities for all the three time periods (2011–2040, 
2041–2070 and 2071–2100), there is a moderate increase 
in the wet and dry spell length probabilities for five or 
less days, and six or less days respectively, for RCP 4.5 
projections. For BCC, plots of wet spell length probabili-
ties for the two time-periods, i.e. 2041–2070 and 2071–
2100 and dry spell length during 2041–2070 show no 
change in shape of CDF for both the scenarios. However, 
slight increase in wet spell length probability for RCP4.5 
is observed for four or less days during 2011–2040 and a 
slight increase in dry spell length probability plot for 
RCP4.5 for seven or less days. The plots for wet and dry 
spell length probabilities show no change in shape for 
CNRM-CERFACS during 2011–2040. The plots for wet 
and dry spell length probabilities for RCP8.5 show a 
slight increase for five or less days, and seven or less 
days respectively, during 2041–2070 and 2071–2100. 
However, during 2041–2070 and 2071–2100, the dry 
spell length probabilities show a marginal increase for 
RCP8.5 for four or less days, and three or less days  
respectively. It can be inferred that the plots for wet spell 
length for the two time-periods 2011–2040 and 2041–

2070, and dry spell length during 2011–2040 show no 
change in shape for both the scenarios, RCP4.5 and 
RCP8.5. However, dry spell length probabilities for 
RCP8.5 show a slight increase for five or less days during 
2041–2070 and 2071–2100, along with a slight increase 
in the wet spell length probability for five or less days for 
RCP 8.5 during 2071–2100. 
 The CDFs are derived from model-generated rainfall 
series for both scenarios, i.e. RCP4.5 and RCP8.5, in  
order to detect changes in the frequency of occurrence of 
high/low rainfall over the period of time under considera-
tion. The CDF plots obtained for RCP4.5 and RCP8.5 for 
CCCma, CMCC, BCC, CNRM-CERFACS and MPI-M 
respectively, are given in Supplementary Material (see 
online). It can be inferred that for CCCma, CDFs ob-
tained for RCP4.5 and RCP8.5 almost match with each 
other. For CMCC, the CDFs obtained for RCP4.5 and 
RCP8.5 almost match with each other during 2011–2040. 
However, an upward shift is observed for RCP 8.5 during 
2041–2070 and 2071–2100, indicating the occurrence of 
high rainfall events during these time slices. For BCC, it 
can be inferred that the CDFs obtained for both RCP4.5 
and RCP8.5 almost match with each other for two time 
slices (2011–2040 and 2071–2100). However, an upward 
shift is observed for RCP4.5 during the 2041–2070. For 
CNRM-CERFACS and MPI-M, the CDF plots for all the
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Figure 10. Contour plots of mean for validation period: a, statistically downscaled data; b, CORDEX data. 
 
 

 
 

Figure 11. Contour plots of standard deviation for validation: a, statistically downscaled; b, CORDEX data. 
 
 
 

 
 

Figure 12. CDF of daily rainfall for MPI-M projections during 2011–2040; a, statistically downscaled data;  
b, CORDEX data. 

 

 
Three time slices are almost the same. The CDF plots for 
RCP4.5 and RCP8.5 almost match with each other during 
2011–2040. However, a slight upward shift is observed 
for RCP4.5 during 2041–2070 and 2071–2100, indicating 
an increased frequency of high rainfall events during 
these time slices. 
 The extreme events may increase as a result of the 
warming environment39. For analyzing the extreme rain-
fall for the 50-year return period for the future, Gumbel’s 
extreme value distribution40 has been used on extracted 
annual daily rainfall maxima for two time-periods during 
2011–2040 and 2071–2100 for both future scenarios. 
Figure 9 compares results for trends in extreme daily 
rainfall for 50-year return period for both the future sce-
narios for two time-periods during 2011–2040 and 2071–

2100 for all the five GCMs used in the present study. 
From the figure, it can be observed that for CCCma, 
RCP4.5 exhibits a decreasing trend. Moreover, it can be 
seen that for far future, RCP4.5 and RCP8.5 have a slight 
difference in their projections. For CMCC, there is no 
significant trend in RCP4.5, while decreasing trend is ob-
served for RCP8.5 projections. For BCC, the RCP4.5 as 
well as RCP8.5 projections are the same for near and  
far future. CNRM-CERFACS shows an increasing trend 
for both the scenarios (RCP4.5 and RCP8.5) and for both 
the time slices (2011–2040 and 2071–2100). For MPI-M, 
RCP8.5 exhibits a decreasing trend in the amount of  
50-year return period extreme daily rainfall. It is also  
observed that RCP4.5 projections are the same for both 
time periods. 
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Figure 13. CDF of daily rainfall for MPI-M projections during 2041–2070. a, Statistically downscaled data;  
b, CORDEX data. 

 
 
 

 
 

Figure 14. CDF of daily rainfall for MPI-M projections during 2071–2100: a, Statistically downscaled data; b, CORDEX data. 
 
 
Comparison between statistically downscaled and  
CORDEX rainfall 

For the present study, the daily rainfall is projected for 
the future from all the five GCM models at 0.25 resolu-
tion. To evaluate the uncertainty in statistical downscaled 
daily precipitation obtained from CMIP-5 MPI-M GCM 
through the KR conditioned on weather states-based  
statistical downscaling model, it is compared with the 
daily precipitation from CORDEX COSMO-CLM (host- 
GCM is CMIP-5 MPI-ESM-LR) taking the predictand 
(APHRODITE rainfall data-observed rainfall) as refer-
ence data for the validation period. Table 3 presents the 
results for R2 using statistically downscaled data and 
CORDEX dataset for the validation period (1996–2005). 
It can be inferred from the table that the statistically 
downscaled projections are able to explain 89.12% of 
variation from the observed data, whereas projections  
using the CORDEX data explain only 55.5% of the varia-
tion. However, it may be noted that the results obtained 
from CORDEX are not directly comparable with observa-
tions, because they (CORDEX) describe a mean value 
over a volume rather than a point measurement, while sta-
tistically downscaled results may be directly comparable 
with the observed values used to calibrate the statistical 

models in statistical downscaling41. Furthermore, for  
future period, results from GCMs and CORDEX are 
compared using CDF plots for the three time slices, i.e. 
2011–2040, 2041–2070 and 2071–2100, and the 50-year 
return period extreme daily rainfall for both the future 
scenarios (RCP4.5 and RCP8.5) for near and far future 
(viz. 2011–2040 and 2071–2100) for the present study 
area. Figure 10 presents the contour plots of daily mean 
rainfall for statistically downscaled data and CORDEX 
data. It can be observed from the figure that the observed 
mean rainfall is captured well using the statistically 
downscaled data. The contour plots of standard deviation 
for daily mean rainfall are presented in Figure 11, which 
also reveals that the standard deviation of observed mean 
rainfall is captured well using the statistically downscaled 
data. The CORDEX data do not model accurately the 
mean and standard deviation for the observed rainfall for 
the study area under consideration. Figures 12–14 show 
the CDF plots for three time slices, i.e. 2011–2040, 2041–
2070, 2070–2100 respectively, using the statistically down-
scaled data and CORDEX data. It can be observed from 
the figures that the CDF plots for RCP4.5 and RCP8.5 
match each other for all the three time slices for projec-
tions obtained using CORDEX data, revealing the same 
frequency of rainfall events from both the scenarios. 
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Figure 15. Fifty-year return period of extreme daily rainfall for near future (2011–2040) and far future (2071–2100):  
a, Statistically downscaled data; b, CORDEX data. 

 
 
Table 3. Comparison of coefficient of determination for the  
 precipitation for the validation period 

Data Coefficient of determination (R2) 
 

Statistically downscaled projections 0.8912 
CORDEX projections 0.5554 

 
 
However, projections using statistically downscaled data 
show no change in CDF plots during 2011–2040, and an 
upward shift for RCP4.5 projections during 2041–2070 
and 2071–2100. The extreme rainfall for the 50-year  
return period of statistically downscaled data and 
CORDEX data for the future is calculated using Gum-
bel’s extreme value distribution to further check the  
uncertainty. Figure 15 compares results for trends of  
extreme daily rainfall for 50-year return period for both 
the future scenarios for two time periods during 2011–
2040 and 2071–2100 for statistically downscaled data and 
CORDEX data. The projections using statistically down-
scaled data show a decreasing trend for RCP8.5, with no 
trend for RCP4.5. While the projections using CORDEX 
data show an increasing trend for both the scenarios in 
the 50-year return period of extreme rainfall amount. 

Conclusion 

The statistical downscaling of multisite daily precipita-
tion for Tapi basin, has been carried out using KR and 
KRWS models. The KR model performs better than the 
KRWS model for the validation period due to the avail-
ability of more data in terms of rainfall state. The KR 
model has been further used for projecting the rainfall for 
both the climate scenarios, RCP4.5 and RCP8.5, for all 
the five GCM models, i.e. CCCma, CMCC, BCC, 
CNRM-CERFACS and MPI-M. The projected rainfall  
series are used to identify the impacts of climate change 
in the Tapi Basin in terms of change in the shape of CDF 
and the occurrence of extreme rainfall event. For future 
projections, there are differences between the projected 

results for different scenarios and GCM models. It is 
broadly observed that for CCCma and BCC, almost dry, 
medium and high rainfall states have no significant trend. 
For CMCC, CNRM-CERFACS and MPI-M, medium 
rainfall state shows no significant trend, while almost dry 
and high rainfall states depict decreasing and increasing 
trend respectively. In general, it can be concluded that for 
future projections there is a possibility of decrease in the 
occurrences of extreme events with an increase in the 
medium rainfall events in Tapi Basin. For the study area 
under consideration, the statistically downscaled rainfall 
is better than the corresponding CORDEX rainfall for the 
validation period. It can also be concluded that the  
projected multisite daily precipitation based on KR con-
ditioned on weather states is less uncertain than the 
CORDEX daily precipitation. 

Limitations of the present study 

In the present study, two RCPs (i.e. 4.5 and 8.5) which 
represent the most probable and worst-case scenario  
respectively, are considered for statistical downscaling of 
rainfall of Tapi basin. The downscaled rainfall for the 
remaining RCPs (i.e. 2.6 and 6.5) may be different from 
the results obtained in this study, and may be the  
future topic of study. A total of five GCMs (i.e. CCCma, 
CMCC, BCC, CNRM-CERFACS and MPI-M) were con-
sidered for the present study and the results show the  
variation in rainfall for future time periods. The remain-
ing GCM models may be used to downscale the future 
rainfall and quantify the uncertainty in the projections in 
future. There are four reanalysis data generally found in 
the literature13 and are freely downloadable. In the pre-
sent study, the NCEP/NCAR reanalysis-I data are used. 
However, while carrying out such a study, the  
reader should be aware about the resolution and reliabil-
ity of the data. The downscaling result may vary due to 
use of other reanalysis data. 
 The methodology used for downscaling daily rainfall 
data is based on the k-means clustering, which is an  
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unsupervized clustering technique; unsupervized cluster-
ing may sometimes misclassify the rainfall state, owing 
to the rainfall field falling on the fringes of two clusters. 
A better weather-typing scheme may be used in future to 
identify the exact weather state of the region. The KR-
based model used in the present study considers the pre-
sent-day rainfall state for prediction of multisite rainfall 
in the Tapi Basin. However, there is scope to include the 
previous-day rainfall state in the present downscaling 
scheme for better prediction. The bandwidth estimation in 
KR is important for realistic simulation of rainfall 
amount. The present KR-based downscaling technique 
uses the simple bandwidth formula. There is scope for 
improving the kernel bandwidth formula in this study. 
The KR-based downscaling technique assumes stationary 
relationship between the reanalysis predictor and predic-
tand (rainfall) for projection of future rainfall. There is 
scope to address the changing relationship between large-
scale predictors of GCM and original precipitation  
simulated by the predictand. Also, there is uncertainty  
resulting from the use of different models (sources) 
which needs further studies. 
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