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A statistical emulator technique, namely polynomial 
chaos, has been used to estimate two time-dependent 
biological parameters of a coupled physical–biological 
model of the Indian Ocean. This has been achieved by 
minimizing a distance function representing misfit  
between model simulated and satellite-derived surface 
chlorophyll. First, the parameters have been assumed 
to be constant in time and optimized values have been 
found by minimizing a time-averaged distance func-
tion. Since no significant improvement in model simu-
lation has been found using a fixed set of optimum 
parameters, minimization has been carried out daily, 
assuming the parameters to be time-dependent. Emu-
lation with this set of parameters has led to a signi-
ficant improvement in the simulated surface 
chlorophyll. Smoothing of the parameters with singu-
lar spectrum analysis has caused less noisy simula-
tions, at the cost of increasing the model data misfit. 
Time-varying parameters have been found to be more 
suitable for the hindcast of daily averaged chlorophyll 
both in the Arabian Sea and the Bay of Bengal.  
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NUMEROUS studies are devoted to data assimilation in  
biological or coupled physical–biological ocean models. 
In data assimilation, the model simulations are combined 
with observations in an optimum manner so that the mod-
el hindcasts are improved. There are two broad classes of 
data assimilation techniques, namely variational tech-
niques1,2, and Monte-Carlo-based techniques like ensem-
ble Kalman filter3,4 and particle filter5. In these types of 
data assimilation, the model states are altered, leaving the 
model parameters untouched. One can also use observa-
tions to optimize poorly known model parameters6–9, so 
that the model simulations are improved. Hence this can 
be also considered as another type of data assimilation 
technique. The techniques employed for state estimation 
can also be used for parameter estimation. Thus, varia-
tional technique was used for parameter estimation in an 
equatorial Pacific Ocean model6, and Monte-Carlo tech-

niques were applied to ecosystem models7,8 as well as a 
circulation model9. 
 The aim of the present study is optimal estimation of 
two biological parameters of a coupled physical–
biological model of the Indian Ocean, so that the model 
hindcast of the chlorophyll concentration is improved 
significantly. We have adopted the emulator approach to 
carry out this optimal estimation. Emulators require a set 
of model runs with different specific values assigned to 
the parameters, the optimal values of which are to be esti-
mated10. Later, these simulations are approximated in  
different ways. Once this is done, one can easily appro-
ximate the true model output for any arbitrary values  
assigned to the concerned parameters. This makes the 
emulator approach faster and more cost-effective than 
other approaches. 
 As far as emulator technique is concerned, again there 
are a variety of approaches. We mention some of them in 
the oceanographic context, e.g. emulators based on artifi-
cial neural networks11, Gaussian process model12 and  
polynomial chaos10. We adopt the last approach in the 
present study. The polynomial chaos expansion was  
introduced by Weiner13 and extended later14,15. In poly-
nomial chaos, a set of orthogonal polynomials are used as 
basis functions for approximating the model results. It 
has been widely used in physical sciences16, with only a 
few applications in oceanography10,17,18. Before proceed-
ing to the detailed description of the technique involved, 
we describe briefly the model and the data used in the 
study. 
 The model is a coupled physical–biological model of 
the Indian Ocean19 and has been validated in the Arabian 
Sea basin20. It has been also used to study the phyto-
plankton bloom in the Bay of Bengal21. Its physical com-
ponent is a variable-density, 4.5 layer model, while its 
biological component consists of a set of advective–
diffusive equations in each layer that determine nitrogen 
concentration in four compartments, namely nutrients, 
phytoplankton, zooplankton and detritus. The physical 
variables are the layer thickness, horizontal velocity, 
temperature and salinity. The deep ocean below the active 
layers is quiescent, where pressure gradients vanish (the 
0.5 layer). 
 Since in this study we use satellite chlorophyll obser-
vations for the estimation of two biological parameters of 
the model, we mention just the time-evolution equation 
for the phytoplankton concentration P (mol N kg–1) in 
the topmost layer, since satellite-chlorophyll is related to 
this variable 
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The terms on the left-hand side, starting from the leftmost 
term, denote local rate of change, advection (V being the 
horizontal velocity vector, in cm s–1), Laplacian and bihar-
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monic mixing,  = 107 cm2 s–1 and 4 = 2  1021 cm4 s–1, 
being the corresponding mixing coefficients. On the 
right-hand side of the equation, SP contains the source 
and sink terms for the phytoplankton, and WP represents 
almost all the vertical fluxes of phytoplankton. We omit 
details for the sake of brevity. Suffice it to mention that 
SP contains the two biological parameters, which are to be 
estimated. These are maximum phytoplankton growth 
rate (g) and maximum zooplankton grazing rate (gr; in 
sec–1). 
 For carrying out the intended experiments, the physical 
model is spun up from a state of rest for a period of 5 
years using climatological forcing fields. Then, the cou-
pled model is spun up for another 5 years using the same 
forcing. From this initial condition, the coupled model is 
integrated from 1 January 2003 to 1 January 2006 using 
NCEP reanalysis fields for starting the emulation experi-
ments with daily images of surface chlorophyll concen-
trations derived by SeaWIFS satellite for the year 2006 
(ftp://podaac-ftp.jpl.nasa.gov/allData/seawifs/L3/chlA/9km/ 
daily). For this work, we have to find the difference  
between a model-simulated chlorophyll field and an ob-
served image. We call this difference a distance denoted 
by d(t, 1, 2), for t = 1, 2,…, nobs, which is the usual root 
mean square difference between chlorophyll image and 
model chlorophyll field interpolated to the observation 
grid. In the present case nobs is 362, since three days of 
observations (Julian days 289, 293 and 336) are missing. 
1, 2 are the two imprecisely known biological para-
meters, which are to be estimated using polynomial chaos 
approach. Since for distance computation, we need simu-
lated chlorophyll (in mg Chl a m–3) and not phytoplank-
ton, we have to convert the latter to the former. The 
chosen conversion factor is 1 and has been adopted from 
Vinayachandran et al.21. Note that the relevant parameters 
have been denoted as 1, 2 and not as g and gr mentioned 
earlier. This is because the polynomial chaos expansion 
used by us (as will be shown presently), requires Legen-
dre polynomials, which are functions of a dimensionless 
variable in the range [–1, +1].  
 For the estimation, we treat the biological parameters 
to be stochastic and make the strong assumption that all 
the uncertainties in the model hindcast are due to uncer-
tainties in these two parameter values. We also adopt the 
hypothesis that the parameter probability distribution is a 
uniform one. Once the minimum and maximum values of 
each parameter are known, a simple linear mapping is 
sufficient to transform from physical variables g and gr to 
the dimensionless arguments 1, 2 of the distance func-
tion. Once these are estimated using polynomial chaos, it 
is trivial to revert to the actual dimensioned variables  
using inverse mapping.  
 We adopt a general notation, and denote by function f 
the property of interest. In general, the function depends 
on a space coordinate x, a time coordinate t and the   para-
meters. Although there are two independent parameters, 

we describe the methodology only for one parameter for 
notational simplicity. Assuming independence of the 
growth and decay parameters, the theory translates in a 
seamless manner to the two (or greater) parameter case. 
In the polynomial chaos, the function is expanded as  
 

 f (x, t, ) 
0

K

k
k

a

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where ak(x, t) are -independent expansion coefficients, 
and the kth basis function k() is a polynomial of order k 
in the parameter space defined by . The upper limit of 
summation, i.e. K determines the quality of the approxi-
mation. If K = , the expansion is exact. In practice, K 
has to be a small number, because of computational con-
straints. Fortunately, the series converges rapidly and K 
can be chosen to be small. Also, the polynomials are to 
be orthogonal (with respect to a weight function) in their 
domain of definition, symbolically written as  
 
 k, lp = klNk. (3)  
 
Here the scalar product indicates integration in the para-
meter space, and the subscript p denotes that there is a 
weight function, the probability distribution p(). kl is 
the usual Kronecker delta function and Nk is a normaliza-
tion factor, specific to the kth polynomial. In our notation 
 
 Nk = k, kp. (4) 
 
For the case considered by us (uniform distribution), the 
polynomials are the well-known Legendre polynomials. 
The expansion coefficients ak are calculated as 
 
 ak = (1/Nk)  f, kp. (5) 
 
Since the property concerned (e.g. the distance of model 
chlorophyll from the observed chlorophyll) is not given 
as an analytical function, the integral appearing in eq. (5) 
has to be computed numerically. Usually, a Gaussian qua-
drature is employed to calculate the integral, and hence 
 

 ak (x, t) (1/Nk)
0

K

i

f

 (x, t, (i)) k((i))i. (6)  

 

Here  (i) are quadrature points in parameter space and i 
are the Gaussian quadrature weights. 
 Standard values (albeit, not optimized) of the parame-
ters are available from the literature20. We choose mini-
mum and maximum values of the distribution to be 0.5 
and 2 times the standard values. The maximum order K 
was chosen to be 6. Thus, 49 model runs have to be  
performed. Once these runs are performed, it is trivial to 
calculate any function dependent on these stochastic  
parameters using eq. (2).  
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Figure 1. Time-series plot of the difference between daily distances obtained in the standard run and emulation with a fixed set of  
optimum parameters (dotted line). The same for emulation with daily varying parameters is also plotted (solid line). 

 
 
 Daily emulated distances using the parameters of the 
standard run were compared with corresponding distances 
obtained from the standard simulation, and a near-perfect 
match was obtained. Thus costly model simulation can 
indeed be replaced by a simple emulation. For the opti-
mization, we calculated the distance function each day 
and for all the 49 runs. Then we eliminated the time  
dependence by time-averaging. Using them along with 
eq. (2), and a suitable minimization routine, we found the 
two optimized parameters. However, use of these time-
independent parameters led to the counterintuitive result 
that on individual days performance of the run with opti-
mized parameters was worse than that of standard run. 
There are twofold reasons for this result. The model is so 
well-tuned to observations in an average sense20, that it is 
difficult to improve upon its result each day using a fixed 
set of parameters.  
 Following Mattern et al.10, we assumed that the two 
biological parameters vary with time and resorted to daily 
minimization of time-dependent distance function. After 
obtaining the optimized time-varying parameters, we 
again computed daily emulated distances. The daily dif-
ferences from the standard run were computed and com-
pared with those from emulation with a fixed set of 
optimum parameters found from the previous exercise. 
The result (Figure 1) clearly shows that the difference is 
always positive, indicating the benefit of using daily  
varying parameters. This difference set is also always 
more than the other difference set. In fact, the second dis-
tance even turned negative on individual days, indicating 
deterioration of simulation. The reason has been men-
tioned above. Thus, there is indeed merit in using daily 
varying optimized parameters. 
 The time evolution of individual distances appears to 
be noisy (corresponding figure not shown). This is due to 
outliers in the observation caused by a large number of 
missing values, which introduce noise in the optimized 

parameter set. It is thus quite logical to infer that reduc-
tion of noise in the parameters by some kind of smooth-
ing may cause reduction of noise in the daily distances. 
The ultimate aim of any parameter optimization is, of 
course, the use of these parameters for carrying out model 
simulation or emulation. Smoothing causes the model 
evolutions to look less noisy and more realistic. Accord-
ingly, we employed the singular spectrum analysis (SSA) 
technique of noise reduction22. Without going into the  
details of the technique, we just note that the method  
depends on an eigensystem analysis, and the degree of 
smoothing depends on the number of eigenvectors  
retained. The relation is, however, an inverse one. More 
eigenvectors retained means less smoothing and vice ver-
sa. Unlike the case of daily minimization, smoothing of a 
parameter time series requires a continuous set of data. In 
our dataset, there were no data for the 289th Julian day in 
2006. Hence we used only the first 288 days of data for 
carrying out SSA smoothing. Figure 2 shows the daily 
varying maximum phytoplankton growth rate as well as 
two smoothed versions with different degrees of smooth-
ing. The corresponding figure for the other parameter 
(maximum zooplankton grazing rate) is similar in nature 
and is not shown here. Although smoothing may make 
model simulations look less noisy, more smoothing 
means the resulting distances would deviate more from 
the optimized distances. We use the word ‘nearness’ 
(number of eigenvectors retained) to denote the fact that 
at more nearness, the parameters are closer to the opti-
mized parameters (less smoothing) than at less nearness. 
The highest chosen nearness is 20 and the lowest is 2. For 
each nearness, one can find the corresponding daily vary-
ing parameters and then carry out model emulation. Then, 
one can find daily emulated distances and average them 
(Table 1). We can see from this Table 1 that with increase 
in the degree of nearness, the average distance value  
approaches the distance value for the unsmoothed 
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Figure 2. Time evolution of daily varying maximum phytoplankton growth rate for different degrees of nearness (explained in the text). 
 
 
Table 1. The degree of nearness of the smoothed parameters and the 
daily-averaged distances found from emulation with these parameters. 
Perfect nearness means all eigenvectors have been used in SSA 
smoothing and the smoothed parameters are identical with the  
  unsmoothed ones  

Nearness Daily-averaged distance (mg Chl a m–3) 
 

Perfect 0.5282 
20 0.5375 
15 0.5408 
10 0.5423 
 5 0.5505 
 2 0.5542 

 
 
parameters. All the distances are, however, greater than 
the corresponding distances for the unsmoothed parame-
ters. Interestingly, however, the average distance values 
are less than that for the standard run, which is 0.6011 mg 
Chl a m–3 (for first 288 days of standard run). This shows 
that the emulated chlorophyll fields are better than the 
fields for the standard run with fixed parameters. The fact 
that the lowest distance is obtained when there is no 
smoothing indicates that at least part of the improvement 
is due to over-fitting the data. This is because for low 
smoothing the emulated values fit even the outlying  
values and noise well, completely disregarding the model 
dynamics.  
 It is known that the Arabian Sea basin of the Indian 
Ocean experiences seasonal extremes in forcing and bio-
logical response alternating from calm, stratified near-
oligotrophic conditions during the intermonsoon periods 
to strongly forced euphotic conditions during the south-
west and northeast monsoons23. During the southwest 
monsoon there are large gaps in satellite data due to 
cloudy weather. Hence we select bimonthly averaged data 
for February–March, in which the Noctiluca blooms  

occurring in the northeast Arabian Sea are clearly visible. 
It is interesting to study how this bloom is represented by 
the model emulation. Figure 3 shows a comparison of the 
averaged chlorophyll in observations, standard simulation 
and model emulation. The bloom is well captured in ob-
servations as well as in standard simulation and emula-
tion. However, abnormally low chlorophyll occurring in 
the southeast Arabian Sea in the standard run is replaced 
by more realistic values in the emulation, leading to a 
better match with observations.  
 For further analysis we computed daily averaged sur-
face chlorophyll in satellite observations, standard run 
and model emulation with daily varying optimized set, 
separately in the Arabian Sea and Bay of Bengal. The two 
basins were chosen because of their differences in the 
surface chlorophyll characteristics. Figures 4 and 5 show 
the results for each of the basins. These figures show that 
the emulated chlorophyll with daily varying parameters is 
closer to the observed chlorophyll than the chlorophyll 
simulated in the standard run.  
 In the present study we report the results of emulating 
chlorophyll fields obtained from a coupled physical–
biological model of the Indian Ocean. For this purpose 
two of the biological parameters of the model were 
treated as stochastic and the model simulations were  
approximated by a low-dimensional emulator, using  
polynomial chaos expansion. By minimizing a distance 
function representing model-data misfit, the optimum  
parameter values were obtained. The parameters showed 
a clear time-dependence.  
 Once we allowed the parameters to vary in time, better 
fit to observations could be achieved. Thus polynomial 
chaos proved to be an efficient tool for analysing the  
results of the biological part of the model. Restriction on 
the number of parameters, considered to be stochastic, is
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Figure 3. Bimonthy averaged chlorophyll concentrations in the Arabian Sea for February and March 2006. (a) SEAWIFS observations, 
(b) standard run and (c) model emulation with daily optimized parameters. 

 
 
 

 
 

Figure 4. Comparison of chlorophyll estimates in the standard run (bold line) and emulation (dotted line) with time-
varying parameters with observations (solid line) in the Arabian Sea.  

 
 
admittedly a constraint. This restriction was imposed 
purely for computational consideration. Nevertheless, the 
advantage of this emulation technique is immense, since 
any model result with a particular combination of the two 
stochastic parameters could be obtained immediately, 
without the necessity to actually carry out the run. 

 Comparison of bimonthly averaged chlorophyll (aver-
aged over February–March) has shown the advantage of 
the emulator approach (with daily optimized parameters) 
over the standard run. Comparison of emulated estimates 
with those in the standard run has been also done sepa-
rately in the Arabian Sea and the Bay of Bengal 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 110, NO. 8, 25 APRIL 2016 1549 

 
 

Figure 5. Same as in Figure 4, except for the Bay of Bengal. 
 
 
basins of the north Indian Ocean. It has been found that, 
generally speaking, emulation with optimized time-
varying parameters outperforms the standard run.  
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