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Orientation of cell and its actin fibres dictate various 
properties of the cell and its associated tissue includ-
ing morphology, cell migration and response of cell to 
external stimuli. While the vital role of cell and actin 
fibre orientation has been demonstrated in various 
studies and across many cell-types, extracting this  
information from microscopy images is a challenging 
task. Although several methods have been developed 
to quantify alignment of a cell and its actin fibres 
from experimental images, all of them differ at one 
step or the other. We highlight the importance of ori-
entation of cell and associated fibres and present a ge-
neric scheme of various approaches to assimilate the 
widely used methods. We have presented a systematic 
approach to determine cell and fibre orientation. The 
study will improve our understanding of the core 
processes and will also help in development of high 
throughput imaging methods to extract information 
from experimental images. 
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IN the study of biological phenomena, cell is at a very 
fundamental level, as it is the smallest building block of 
all organisms. In fact, it is the smallest form of life that 
exhibits all the basic traits that form life such as birth,  
ingestion, digestion, protection and finally death. Cell 
during its life cycle experiences a number of mechanical 
interactions with surrounding environment necessary for 
its communication, proliferation, differentiation and mi-
gration1–8. A cell responds to these mechanical forces by 
exhibiting changes at various levels such as in morpho-
logy, protein synthesis9,10, gene expression11,12, etc. Then, 
cell tries to adapt to its environment through these 
changes. Several of its mechanical properties facilitate 
the adaptation of cell to the associated environment. 
Therefore, to understand the mechanism of working of a 
cell, knowledge of its mechanical properties and how do 
these get affected by a cell’s surrounding environment is 
very vital. Microscopy-based imaging and its subsequent 

analysis is one of the traditional and widely used  
approaches to gain insights into the cell’s mechanical and 
morphological properties. While microscopy imaging is a 
widely used approach to extract quantitative information 
about cell morphology, image analysis and morphology 
quantification are still challenging. One of the morphologi-
cal features of a cell, which has been shown to exhibit sev-
eral genotypic and phenotypic properties of a cell is the 
orientation of the cell. Similarly, orientation of fibres has 
been shown to exhibit various properties of associated cell 
population, including their density, topography, etc. 
 The orientation of cell and the associated fibres are the 
indicative of many physiological and disease conditions. 
While microscopy-based image acquisition is the tradi-
tional method to gain insights into the orientation and 
morphology of cell and associated fibres, extracting 
thequantitative information about the cell or fibre orienta-
tion from these images is a challenging task. Although 
with the advancement in image processing, new methods 
to extract information have been developed, most of these 
methods have limitations in their scope of application. 
Also, in addition to different approaches for analysing 
images, different metrics have been proposed to represent 
the orientation of cell and fibre in a quantitative manner. 
Different approaches to extract information about the ori-
entation of cell and fibres have been discussed. Limita-
tions and shortcomings of these approaches are also 
discussed here. Further, in addition to core algorithm to 
quantify the orientation, the importance of pre-processing 
and post-processing is also highlighted. 
 Various methods for quantification of cell orientation 
and extracellular matrix (ECM) fibre orientation have 
been discussed here. The organization of the paper is as 
follows: the first section highlights the importance of ori-
entation of cell and fibre in current biological studies. It 
discusses the importance of cell-alignment and fibre align-
ment in in vivo systems. The following section elaborates 
the unified approach to quantify the cell orientation.  
Particular methods along with their merits/demerits are also 
discussed. The later section is focused on understanding 
and evaluating different fibre alignment quantification 
methods. Finally, the article concludes with highlighting 
some of the open problems in the field. 



REVIEW ARTICLES 
 

CURRENT SCIENCE, VOL. 111, NO. 12, 25 DECEMBER 2016 1937 

Importance of cell alignment and fibre  
alignment in biology 

Organization of cells within a tissue dictates the aniso-
tropy of its ECM in the spatial setup and together they 
characterize the tissue and the organs that they make up13. 
Alignment of tissue cells plays a key role in various im-
portant functions of the tissues such as neuron regenera-
tion, defining mechanical and physical properties of 
tissue, pattern formation in embryogenesis, tissue matura-
tion, etc.14–22. Further, given the increasing use of regen-
erative medicines and tissue implant, the understanding of 
tissue functioning has become very important. Only once 
understanding of the tissue functioning is clear, engi-
neered muscle tissue with effective functioning and capa-
bilities to bear the physiological load and stress can be 
developed. To realize most of the complex tissue func-
tioning, the engineered tissue must be designed in such a 
way that the cells of engineered tissue mimic the align-
ment of the native cells of that particular tissue23. Next, 
stress fibres represent the internal structure of the cells. 
Angular distribution and direction of these stress fibres 
influence cell properties such as shape, size, etc. as well 
as its response to various external cues, e.g. increase in 
stress or strain24,25. Thus, stress fibres regulate a large set 
of cell properties and therefore the overall behaviour of 
the tissue. To further highlight the importance of cell and 
stress fibre orientation, the following are some of the 
specific examples of in vivo systems. 

Muscle tissue 

All muscle cells are required to possess the ability to  
undergo contraction and stretching. Contraction and 
stretching require generation of forces, which in turn, re-
quires proper cell alignment. For e.g. rod-shaped muscle 
cells have highly organized myofilaments which are criti-
cal for proper functioning of muscle tissue. Pharmaco-
logically, the disorder in the musculoskeletal system 
causes disturbances in the alignment of muscle. This can 
be used to understand the nature of a musculoskeletal 
disorder. One of the most complex structures of human 
body, the heart, has its muscle cells aligned in a complex 
spatial distribution to enable strong ductility for beating 
of the heart26. Since current conducts fastest in the long 
axis of cardiac fibres27, the electrical conductivity of 
heart depends greatly on its fibre orientation. Conversely,  
pathological hearts have disoriented thick, short and 
fragmented fibres23. 

Vascular tissue 

Blood vessels have high tensile strength and flexibility to 
facilitate the pulsatile flow of blood. During vascular  
remodelling and angiogenesis, the strain exerted by this 

flow of blood leads to cellular alignment. This, in turn, 
alternates between two smooth muscle cell (SMC) pheno-
types: contractile and synthetic. While a contractile phe-
notype is required for proper functioning, in vascular 
disorders such as hypertension, SMC may switch the 
phenotype to a synthetic one. In addition, endothelial 
cells have been shown to be oriented in the direction of 
longitudinal axis of the vessel. These cells align intracel-
lular cytoskeletal components according to the stress due 
to blood flow. The stress due to blood flow has been 
shown to play a pivotal role and cells which are not able 
to adapt to it properly may cause many disorders in  
several central processes including vascular remodelling, 
physiological control of vessel diameter, alternation of 
vascular permeability, and the pathological consequence 
of cardiovascular disorders28. 

Nerve tissue 

Schwann cells (SCs) protect, hold, insulate and provide 
immunity to neurons from pathogens and dead neurons. 
For guided axonal re-growth, alignment of SCs and ECM 
is essential. Hence, it is important to determine the orien-
tation of SCs and ECM to determine the physiological 
and pathological conditions of the tissue. 
 Collectively, all these examples (and such other exam-
ples) highlight the importance of cell and stress fibre 
alignment in the biological systems. So, to understand the 
physiological or disease state of a cell/tissue systems, it is 
important to know the alignment of its cells and associ-
ated stress fibres. 

Determination of cell orientation 

Owing to the importance of cell orientation in maintain-
ing proper functioning of biological systems, a number of 
ways have been devised to quantify the orientation and 
alignment of cells. Methods to quantify both the align-
ment of an individual cell and the orientation distribution 
in a group of cells/tissue have been developed. Determi-
nation of orientation of cells involves many stages. Dif-
ferent methods have been devised to address a specific 
problem. We have tried to assimilate the various methods 
and provide a generic step-wise method to quantify the 
cell orientation. 
 Figure 1 provides a step-wise generic procedure of  
determination of orientation distribution of cells. The ini-
tial stage involves acquiring the image of the cell using 
various microscopy techniques such as phase contrasts, 
fluorescent microscopy, etc. Thereafter, pre-processing of 
images is done for making them ready to be used for 
segmentation of cell, i.e. detection of the cell image. Next 
step involves calculation of its alignment and finally its 
relative alignment with other cells giving overall orienta-
tion distribution. 
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Figure 1. Determination of cell orientation. The image is acquired and pre-processed for de-noising and improving its 
quality. The cell is segmented out and its boundary is approximated as ellipse. The angle which ellipse’s major axis makes 
from x-axis provides orientation of cell. Thereafter, alignment index of the whole population can be quantified. 

 
Image acquisition and preprocessing 

Microscopy images are generated from various experi-
ments. The nature and type of experiments highly depend 
on the nature of the study. Live cell imaging where the 
image is taken after a constant time-slot is often used to 
study the cell migration/invasion dynamics. Lee et al.29 
have used live cell imaging to study the cell migration 
properties of transformed metastasis breast cancer cells 
MDA-MB-231. In contrast to live cell imaging, one-time-
point experiment where the image is taken after a particu-
lar time (e.g. after 1 day or 2 days, etc.) is performed to 
study the long range effects of drug or environment fac-
tors (e.g. role of substrate stiffness). Tilghman et al.30 stud-
ied the effect of increase in cell substrate (from 150 Pa to 
4.8 kPa) on cell surface area (for A459, MDA-MB-231, 
PC-3 and mPanc96 cell lines) by imaging the cells after 
20 h (ref. 30). Irrespective of the type of experiment,  
before analysing the orientation of cells from the obtained 
image(s), the quality of captured image needs to be  
improved by various image-preprocessing methods such 
as applying filters so as to suppress the noise, equalizing  
the intensity throughout the image and enhancing the 
contrast. 

Segmentation of cell 

Segmenting the cell from an image is the first major step 
to finding its orientation. While the efficacy of segmenta-
tion method highly depends on the properties of the cell 
under consideration, here we analyse the various promi-
nent methods being used for the purpose. The key prop-
erty being exploited for segmentation of the cell is the 
difference in the contrast of the cell from the background 
image. A number of methods have been used to quantify 
the gradient of intensity in the image and find an appro-
priate threshold to separate the cell from the background. 

This threshold is the major accuracy contributor in the 
process. Hence, much work is done to achieve a refined 
threshold value. Once this is achieved, a binary mask is 
applied to the image to segment out the cell. Thereafter, 
post-processing is done to fill holes inside the mask and 
obtain the outline of the cell which can then be smooth-
ened and isolated from other objects in the image (e.g. 
noise effects and incomplete cells). 

Global versus local thresholding 

Thresholding partitions the image in such a way that one 
part has pixels above the defined threshold and the other 
has below it. Thresholding can be ‘global’ or ‘local’. 
Global thresholding defines a single threshold for the  
entire image. The major complexity involved with  
segmentation of cells from the image is that the intensi-
ties of the cell and background overlap with each other 
and variation is not constant throughout the whole image, 
that is, at different areas in the image, the cell and back-
ground intensities vary. Hence, global thresholding  
cannot be effective for segmentation purpose, making it 
essential to extract local areas to reduce the complexity of 
thresholding. To do so, variance in intensity of cell in the 
image and variance in intensity of background pixels can 
be measured as cell-pixel variance Vc and background-
pixel variance Vb respectively, to quantify the complexity 
which arises from intensity variation31. 
 The high value of either Vc or Vb or both shows the 
overlapping in the cell and background intensities, there-
by increasing the difficulty or complexity in the segmen-
tation process. It has been found that extraction of an area 
from the original image for thresholding decreases the 
value of both Vc and Vb, representing ease in segmenta-
tion. Also, the contrast in the image, i.e. ratio of average 
cell and background intensities is of importance while 
performing segmentation process, but by extracting a 
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patch, contrast does not get affected significantly. So, 
windows or patches from the original image are extracted 
out according to the distribution of the cells in the image 
to ease processing. Then, according to the features of the 
image, threshold for different patches needs to be esti-
mated for further processing. 

Thresholding 

Many methods and algorithms have been devised for 
thresholding. Many imaging techniques have also been 
developed to mitigate the problems in the process, spe-
cific to the requirement. Learning-based algorithms have  
also been tried in this field but they require much training 
and manual work. Manual methods, though reliable, suf-
fer from low efficiency when there are hundreds of cells 
involved. Moreover, they are very time consuming and 
tedious. They also suffer from inter-operator variability. 
Many other approaches have been tested, mainly, 
Huang32 (measures fuzziness and Shanon entropy), Li33 
(minimizing cross-entropy), max entropy (ME)34 (uses 
entropy of histogram), Otsu35 (minimizes weighted sum 
of variance of two classes), Shanbhag (SH)36 (entropy-
based approach), Yen37 (discrepancy between thresholded 
image and original image as well as the size of the same 
are considered here) and binarization-based extraction of 
alignment score (BEAS)13 (uses mean and standard de-
viation for local thresholding). For defining the threshold, 
these approaches have exploited different features of the 
image as mentioned. Out of all these various approaches, 
it has been found that the approaches giving results close 
to the true value are Huang, Li and BEAS, with the 
BEAS being the most effective than other two31.  
Furthermore, BEAS method is reportedly having more 
advantages and reliability than many automated methods 
such as Fast Fourier Transform-Radial Sum38 (FFTRS) 
and gradient-based approaches39. The later ones are not 
able to give good results even for perfectly aligned cells. 
Alternatively, the thresholding accuracy varies as 
FFTRS < Gradient < BEAS. In BEAS method, algo-
rithmically, the image is first pre-processed by passing 
through a despeckle filter to reduce the effect of signal-
pixel noise, then it is passed through Gaussian band-pass 
filter as it removes high-frequency components and also 
removes noise due to components other than the cell as 
well as the effect of uneven illuminations. These features 
are implemented using ImageJ program developed by US 
National Institutes of Health (NIH). The threshold is  
calculated using 
 

 1 ,sT m km

    
 

 (1) 

 
where T is the threshold, m the mean intensity, k the tun-
ing parameters, s the standard deviation, and , the maxi-
mum standard deviation. 

 Here, the mean value, m can be considered as the refer-
ence value and km((s/) – 1) as the shifted value. Hence, 
the shifted part will define the accuracy of the threshold 
value and it is dependent on the mean and standard devia-
tion only. However, for certain images, the cell distribu-
tion may have same mean and standard deviation, but 
have different optimal threshold values31. 
 Afridi et al.31 proposed an improvement to this method 
by exploiting the rate of increase of pixel intensity from 
low values to peak values as another characterizing fac-
tor, because for same mean and standard deviation, this 
rate  can be different31. The threshold in this method is 
calculated for different patches of images through pixel 
intensities x and corresponding pixel count y, considering 
only the distribution towards the left of the most frequent 
intensity (mf). Most frequent intensity is calculated from 
the mode-intensity of each of the considered patches.  
Additionally, the following equation is used to measure 
the rate of rise by employing exponential distribution 
 
 * ,xy Ae  (2) 
 
Now to refine the threshold value, instead of using the 
mean value m, the most frequent intensity value mf could 
be used as this is the value beyond which the intensity 
never rises. Also, the shift part can be improved by utiliz-
ing the  and using suitable values for tuning parameter 
(k) (refer citation 31 for further details). Once an optimal 
threshold value is found, a binary mask is created to sepa-
rate out the cell from the background by considering the 
pixels with brightness less than the threshold, as cells. 
Subsequently, the holes are filled and we obtain the 
boundary of the cell. 

Post-processing of cell image 

The intensity thresholding methods explained above are 
used as a first step towards further processing because the 
boundaries may not be very sharp and well-defined. 
Boundary may be slowly diffusing so that if the threshold 
is changed slightly, the output may significantly change. 
Therefore, other different methods are growing rapidly 
along with segmentation for achieving improved image 
for analysis. These methods include morphological filter-
ing, region accumulation and deformable model fitting40. 
Morphological filtering utilizes mathematical morpho-
logy and is distinguished as binary and grayscale41. Binary 
morphology can be used for polishing coarse segmenta-
tion while grayscale is employed for enhancing image 
features as a pre-processing step. Region accumulation 
involves iteratively adding connected pixels. Many varie-
ties of these processes have also developed, e.g. accumu-
lating region from a pre-defined small region called as 
seed. Many improved versions of these have been deve-
loped such as, e.g. seeded watershed segmentation and



REVIEW ARTICLES 
 

CURRENT SCIENCE, VOL. 111, NO. 12, 25 DECEMBER 2016 1940 

 
 

Figure 2. Orientation calculation: a, Two cells with orientation angle  and  from x-axis in x–y coordinate sys-
tem. b, Same pair of cells when x–y coordinate system is rotated 90 degree in space. 

 
 
edge detection segmentation42. Over-segmentation often 
occurs in these methods because of the high sensitivity of 
these algorithms. For instance, the watershed algorithm is 
very sensitive to gradient image sensitivity variations and 
hence noise in such cases can lead to a very large number 
of catchment basin resulting in over-segmentation43. For 
reducing this effect, region-merging technique could be 
used along with region accumulation44. There are several 
other known issues with seeded region accumulation 
techniques such as error due to noise and seed selection. 
These problems are addressed by using unseeded region 
growing and employing adaptive anisotropic filtering 
techniques for pre-processing of the image45. 

Orientation of individual cell 

After segmenting out the cells from the image, the align-
ment of these cells is determined. The first step here is to 
find the pixels at the boundary of the cell by checking the 
pixel value corresponding to the boundary value. These 
are then fitted to the equation of an ellipse. The major 
axis of the ellipse will give the length of the cell while 
the angle  from the x-axis will give the orientation of 
this cell. The area A of the cell is equal to the number of 
pixels in the cell. The centroid of the cell can be found by 
averaging the x and y coordinates of the pixels in the cell 
area. In this way, we can have area A and angle ‘’ of all 
the cells in the image (tissue). 

Overall orientation of cell population 

Once the values of area A and angle  are known for all 
cells, depending upon the requirements, two quantities 
can be determined: (i) Orientation distribution: provides a 
measure of cells oriented in each direction; this gives rel-
ative alignment of cells with each other. (ii) Alignment 
score: provides a measure of cells aligned in some exter-
nally given direction. 

 In both cases, the relative angular position from a par-
ticular angle  will be required. Figure 2 shows the orien-
tation of two cells (viz.  and ) from the x-axis and the 
relative angle  given by  =  – . 
 Now in case 1 (Figure 2 a), assume  = 10 and 
 = 170, then,  = 1 = 160. In case 2 (Figure 2 b), the 
coordinate axis is just shifted by 90 and thereby 
 =  + 90 = 100 and thus,  = 2 = 20. 
 Practically, both the cases are same and so just calcu-
lating  is not sufficient; instead, a quantity is needed 
that treats both the above cases in the same manner. This 
issue is resolved by the following formula13 
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O() will quantify the extent to which cells are oriented 
in direction . Now in this equation the term cos2( – ) 
resolves the above problem of relative angle, since in 
case 1 (left) the value of cos2( – ) = cos(2), while in 
case 2 (right), the value of cos2( – ) becomes 
 
 cos 2( 90 90) cos 2( 180)          
 
      cos(2 360) cos(2 ).      (4) 
 
Hence, the value remains the same in both cases, thereby, 
nullifying the effect of the rotation of coordinate axes. 
Also, since O( ) is an even continuous periodic function, 
this helps prevent artifacts as well. Another beauty of this 
formula is that it takes weighted average of all the cells, 
this is helpful since not all the artifacts can be removed 
from the cell image and there may be some small region 
that is not actually a cell but is taken as one. Now in this 
formula, its contribution will be averaged out and will 
have very small overall effect (due to low area). On the 
other hand, if two cells are clubbed together and taken as 
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a single cell, then its contribution will be double in  
the overall orientation. Hence, this method directly  
corresponds to the cell density instead of individual  
cells. Now, the overall direction of the alignment is given 
by  * for which O( *) is maximum. It will show  
that maximum numbers of cells are aligned in this direc-
tion. The value of O( *) can vary from 0 to 1, with 1 
showing perfect alignment, while 0 represents random 
orientation. 

Determination of fibre orientation 

The response of a cell to change in its environment heavily 
depends on the internal structure of the cell. One of the 
major components of the cellular structure is the network 
of actin fibres. A network of actin fibres controls various 
cell properties including its ability to contract, migrate 
and show mechano-sensitive responses. Therefore, under-
standing of structural properties of actin network is very 
important to understand the behaviour of a cell and to 
predict its response to external stimuli (e.g. drug-induced 
stimuli). 
 To establish a well-defined relationship between the 
response of the cell and its constituents to the environ-
ment, accurate measurement of the orientation of its actin 
fibres is also required. For obtaining orientation of actin 
fibres, many methods have been devised starting from 
measuring angles one by one. Given the fact that, unlike a 
cell, fibres are mainly one-dimensional (1D) and can be 
represented by a single frequency component discrete 
Fourier transform (DFT)-based methods have also been 
used to understand the orientation of these fibres. Actu-
ally, in the spatial domain, we have the luminance value 
and we can see images that our brain is familiar with; but 
in the frequency domain, the analysis is easier as we can 
obtain deeper information about the image. Moreover, the 
Fourier and time domain have almost inverse relation-
ship, so what may not be clearly analysable in the time 
domain, may easily be analysed in the Fourier domain. 
For example, the higher frequencies show the sharp cor-
ners, the lower ones show the smooth details. Sometimes 
for analysis purpose, we may require cutting off sharp 
changes in an image or vice versa, such processes are 
easily done in Fourier domain by removing high frequen-
cies or low frequencies correspondingly. 
 Fluorescent images and second harmonic generation 
(SHG) images obtained from confocal microscopy  
images are used to extract information about the fibre 
network structures such as cell actin stress fibres. Fast 
Fourier Transform (FFT)-based DFT is performed on 
these images. FFT is used as it requires much less com-
putational time by reducing the number of operations 
substantially (2n2 operations to 2*n*log(n) operations). 
Figure 3 shows the details of the process of obtaining the 
orientation using DFT processes. Detailed explanation is 
provided in the following sections. 

Image acquisition and preprocessing 

For better implementation of DFT and to obtain accurate 
results, the main dependency is on the quality of images. 
Hence, much effort is used to improve the pre-processing 
part. Some of the approaches used include the application 
of gradient pyramid to reduce noise and CPU time and 
using despeckle and band pass filters. Apart from these 
basic approaches, SHG imaging along with analytical me-
thods can be used to automate the process46. The use of 
this kind of imaging is encouraged by the fact that in the 
case of random orientation SHG will not be deducted  
because phase matching of electrical field required for 
SHG will not be present if molecules are disoriented. In 
general, electrical field produces polarization depending 
on permeability and susceptibility of the material and 
SHG uses this property and requires coherent scattering 
of the electrical field from all the molecules. However in 
the case of destructive interference, due to random orien-
tation, no SHG is deducted. In particular, the strongest 
SHG signal is obtained when propagation plane of excita-
tion beam of light is perpendicular to the fibres. SHG  
directionality and intensity is greatly influenced by fibre 
orientation. Once SHG images or the commonly used 
fluorescent images are obtained through microscopy, they 
are converted to 8-bit images. The image processing 
could be performed by using specific tools such as  
ImageJ or MATLAB according to the requirement.  
ImageJ is a very useful to extract biophysical information 
such as the surface area of cells, the circularity of the cell 
from the acquired images by manually masking (select-
ing) cells in the images. Due to the requirement of man-
ual tracking, ImageJ is not an efficient tool for analysing 
a large number of cells. In contrast, MATLAB can be 
used to process a large number of cells by writing auto-
mation script which automatically load the image, proc-
ess it and unload the image. This process can then be 
repeated for a bulk number of images without manual  
involvement. While this is a highly useful approach, it 
requires intelligent/complex algorithms for automatic  
image thresholding and masking thereby increasing the 
complexity of the ‘processing’ module. 

Thresholding for fibre orientation 

Many thresholding algorithms have been designed to  
reduce the signal-to-noise ratio similar to those previ-
ously used in cell orientation. However, since the object 
is different in this case, the algorithm needs to satisfy the 
requirement for fibres that can be considered as a 1D ob-
ject. One such algorithm calculates the intensity of pixel 
(x, y) as: Ixy = Ixy – Ik, where Ik is the mean of all intensi-
ties in the square area surrounding the pixel46. The size of 
the square is determined by kernel k. If Ixy results in a 
negative value, it is taken as zero. This may result in
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Figure 3. Orientation distribution of fibres. Input image is improved in terms of brightness and contrast. DFT is  
performed on the pre-processed image. DFT output is converted to give power spectrum which provides radial frequency, 
orientation and power magnitude. The resultant is improved by passing through band pass filter which provides only  
relevant frequencies. 

 

 
better contrast depending on the intensity of fibre. If the 
intensity of fibre is very low, the effect of Gaussian noise 
may increase, i.e. the signal-to-noise ratio will decrease. 
To eliminate this, all the pixels which are not intercon-
nected beyond a pre-defined number of pixels (taken as 
fibres), are set to zero. This will make sure that only 
well-defined fibres will be enhanced. In case the sum of 
mean and standard deviation are below the desired value, 
standard procedures of erosion and dilation from 
MATLAB functions (or equivalent function in other 
packages) could be implemented. Additionally, non-
conventional approaches such as clustering-based  
methods47 have been employed. In this method, an image 
is divided on the basis of correlation, i.e. clusters will be 
formed. Here, the seed of the clusters will be decided  
according to the intensity of light; for example, if 3 clus-
ters are taken, then the one with highest intensity seed 
will be included as fibres, the one with the lowest inten-
sity will be treated as the background and the remaining 
area will have its seed at the average intensity. Different 
algorithms exist for achieving the final segmented image 
of the fibres such as K-means clustering, fuzzy clustering, 
imperialist competitive algorithm. All these show com-
petitive results in terms of quality of the image. 

Applying DFT for fibre orientation 

Next step in fibre orientation quantification is to apply 
DFT on the image matrix. Apart from simplified analysis 
in Fourier domain, DFT has the property that it is separa-
ble in the sense that two-dimensional (2D) DFT can be 
performed by doing 1D DFT twice; either by doing 1D 
analysis in x-direction, and then in y-direction or vice 
versa. 1D DFT is given as 
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To convert this to 2D DFT, this can be done twice using 
the separability theorem as follows 
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  (6) 
 
This equation can be used conveniently in 2D representa-
tion, which also centers the low frequencies. 
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To implement this DFT on an image, the image is broken 
into spatial frequency components as the image has only 
space periodicity. Since the image is 2D, these compo-
nents will be distributed in 2D space. DFT has the advan-
tage of breaking up 2D DFT into 1D DFT for analysis. To 
understand how this helps to analyse fibre orientation, let 
us go to basics of DFT. In 1D signal, DFT simply gives 
frequency components with some low frequencies owing 
to the smoothness of the signal and some high frequen-
cies resulting in peaks and changes. However, images are 
2D, i.e. they have both horizontal and vertical compo-
nents. On performing 2D DFT, we get frequencies from 
both horizontal and vertical counterparts. An image with 
no horizontal change will give only vertical frequency 
components since no frequency component will be pre-
sent in the horizontal direction; similarly, an image with 
no vertical change will give only horizontal frequency 
component. Now from the above analysis, we can easily 
conclude that if the orientation of fibres is in a particular 
direction , then the frequencies will be distributed in  
direction 90 shifted from Ф. Hence 
 
  =  + 90. (8) 
 
In case of an image with both horizontal and vertical 
components, 2D DFT will have a resultant value of fre-
quencies owing to both horizontal and vertical compo-
nents. In the output image, we will observe values only 
on the pixels where frequency components are present 
and the value of the pixel will provide the magnitude of 
the frequency component. Further, since Fourier compo-
nent is a complex quantity, each component will have a 
magnitude and an angle. To analyse both, we can map 
this to polar coordinates. The radial frequency and the 
angle from x-axis are given as  
 

 2 2( ).rU u v   (9) 
 

 1tan .
u


     
 

 (10) 

 
This representation shows space frequency component as 
the distance from the origin and its angle from the hori-
zontal represents the angle of that component  (ref. 15). 
Orientation distribution of the components is determined 
via mapping the values of spatial frequencies with  val-
ue, thereby giving F( ). If the fibres are randomly ori-
ented, this distribution curve will also be random with no 
specific peak. On the other hand, if fibres are well-
oriented at a particular angle , then a peak will be  

observed in the distribution curve. We can also determine 
the percentage of fibres oriented in a particular direction 
m by the following formula46 
 

 

90
2

90
90

90

( )[cos ( )d )

%( ) 2* 1 *100.

( )d

m

m

F

O

F

   



 





  
  
      
  
      




  

 (11) 

Post-processing for fibre orientation 

To improve the output, band pass filter can be applied. As 
a result of this filtering, low pass effect will allow higher 
frequencies to be removed, thereby, removing the sharp-
ness and finer details of fibre while preserving shape and 
orientation. On the other hand, high pass effect will re-
move orientation due to higher aspects such as clusters 
and hence focus will be on relevant frequencies. It has 
been found that the DFT frequencies that provide fibre 
orientation with the best accuracy are the ones within 
 10% of the frequency corresponding to the wavelength 
of twice the fibre width. However, processing error may 
be introduced due to many reasons such as truncated  
fibres, resolution of image, etc. The result can be  
improved by error minimizing techniques such as Von 
Mises distribution and by optimization techniques such as 
Monte Carlo simulations48. 

Conclusion 

This article highlighted the importance of orientation of 
cell and its constituent fibres in functioning of tissue and 
organ in different ways with specific examples. We have 
assembled various methods utilizing image processing 
and engineering techniques to determine these quantities. 
While this article presented important biological attrib-
utes in a simplified manner to be utilized by engineers, 
we also presented important key aspects of engineering 
analytical tools and advancements in an explanatory man-
ner to be utilized by non-engineering counterparts. 
 We have presented that most of the approaches were 
initially developed for some other engineering use and 
were later absorbed for analysis in the subject concerned. 
Though there is a rapid growth of new methods, each 
method is concerned with an isolated and to the point  
approach applicable only for a specific needs. These can 
hardly be interchangeably applied, resulting in a new  
method better than the previous one but with a limited  
definite scope. Also, since the process of calculation of 
orientation itself incorporates different individual  
tricky problems of acquisition, segmentation and finally 
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orientation, many researchers have handled critical issues 
involved at a particular step of the process and have given 
approaches to resolve them in efficient ways. Therefore, 
there is a need to integrate all these methods in a more 
generic solution. We have tried to come up with a com-
prehensive approach to look at the whole problem in a 
unified way because there is a need to develop an auto-
mated, precise, accurate and robust method that could be 
exploited and trained for a generic as well as a specific 
case. Furthermore, this could be extended to develop tools 
for handy operation by researchers of non-engineering 
backgrounds. 
 While we have discussed quantification of actin fibre 
orientation, how the same method can be applied to  
determine orientation of ECM collagen fibres, which can 
be used to quantify the traction on the surface of a bio-
logical cell, is one of the future directions of this study. 
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