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Free radicals, including reactive oxygen species (ROS) 
as well as reactive nitrogen species (RNS), and  
inflammation increase with advancing age. Evidence 
suggests that oxidative stress and inflammation both 
lead to impaired vascular function. There is also evi-
dence to suggest that inflammation may cause an in-
crease in radical production leading to enhanced 
oxidative/nitrosative stress. In addition, higher con-
centration of free radicals also modulates inflamma-
tion by increasing the expression of inflammatory 
proteins, including cytokines. Although ROS/RNS are 
predominantly implicated in causing cell damage, they 
also play a major physiological role in several aspects 
of intracellular signalling and regulation. ROS/RNS 
are known to play a dual role in biological systems 
since they can be either harmful or beneficial to living 
systems. 
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Free radicals 

A free radical is an unpaired electron species, paramag-
netic in nature, capable of independent existence, unsta-
ble and highly reactive in nature. In biological fields, the 
major free radical species are categorized as reactive 
oxygen species (ROS) and reactive nitrogen species 
(RNS). ROS have emerged as critical signalling molecule 
that affects diverse physiological pathways of cells. Oxy-
gen containing unpaired electrons react to form highly  
reactive species that are classified as ROS, including su-
peroxide (O

2
–), hydrogen peroxide (H2O2) and hydroxyl 

radical1. Endogenously produced ROS affect diverse sig-
nalling pathways, including non-receptor tyrosine kinase, 
protein tyrosine phosphatases, serine/threonine kinases 
and nuclear transcription factors (AP-1, NF-kB, p53, 
NFAT, HIF-1)2. 
 Nitric oxide (NO) is a small molecule that contains 
one unpaired electron in an anti-bonding orbital and is 
therefore a radical. NO is generated in biological tissues 
by specific nitric oxide synthases (NOS), which metabo-
lize arginine to citrulline resulting in the generation of 

NO; this involves five-electron oxidative reaction. NO 
is an abundant reactive radical that acts as an important 
oxidative biological signalling molecule and regulates 
different physiological processes, including smooth  
muscle relaxation, neurotransmission and immune regula-
tion3. Biologically generated RNS include the peroxyni-
trite (ONOO–) formed by the near diffusion-controlled 
reaction between NO and O

2
– radicals. At present, the 

area of NO-derived oxidants in biology represents a 
merging zone for NO and redox metabolism, as well as 
strong implications in both cell signalling and oxidative 
damage3. The overproduction of RNS, i.e. nitrosative 
stress contributes to post-translational modifications, in-
cluding nitration and nitrosylation reactions that can alter 
the structure of proteins and thus inhibit their normal 
function4. Table 1 lists the diverse types of free radicals, 
including ROS and RNS produced in biological systems. 

Sources of reactive oxygen/nitrogen species 

NADPH oxidase 

NADPH oxidase is composed of membrane [gp91phox 
(where phox stands for phagocyte oxidase), p22phox and  
 
 
Table 1. Reactive oxygen species (ROS) and reactive nitrogen  
  species (RNS) produced in biological systems 

ROS    RNS 
 

Radicals 
 Superoxide, O

2
– Nitric oxide, NO 

 Hydroxyl, OH Nitrogen dioxide, NO
2 

 Peroxyl, RO
2 (e.g. lipid peroxyl) 

 Alkoxyl, RO 
 Hydroperoxyl, HO

2 
 Carbon-centred radicals (O2CCl3) 
Non-radicals 
 Hydrogen peroxide, H2O2 Nitrous acid, HNO2 
 Hypochlorous acid, HOCl Nitrosyl cation (NO+) 
 Hypobromous acid, HOBr Nitrosyl anion (NO–) 
 Ozone, O3 Dinitrogen tetroxide (N2O4) 
 Singlet oxygen Dinitrogen trioxide (N2O3) 
 Peroxynitrite, ONOO– 
 Peroxynitrous acid, ONOOH 
 Nitronium cation, NO+

2 
 Alkyl peroxynitrites, ROONO 
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the small G-protein Rap1A] and cytosolic (p47phox, 
p67phox, p40phox, the small G-proteins Rac2 and Cdc42, 
and p29 peroxiredoxin) components that have been well 
studied and characterized in the polymorphonuclear  
neutrophils (PMNs)5. The membrane-bound subunits 
gp91phox and p22phox together form the heterodimeric 
cytochrome b558.  

Mitochondrial electron transport 

During the electron transport chain occurring in the mito-
chondria, O

2
– and hydrogen peroxide are commonly gen-

erated as side products6. The mechanism of generation of 
ROS involves ‘leakage’ of electrons from electron carriers 
which are passed directly to oxygen, reducing it to O

2
–. 

Mitochondria contain superoxide dismutase, which elimi-
nates reactive species rapidly. As PMNs contain relatively 
few mitochondria, hence the importance of these organelles 
as a source of ROS is uncertain but requires further study. 

Arachidonic acid metabolism 

Free radicals are generated by the metabolism of arachi-
donic acid mediated by both cyclooxygenases and  
lipoxygenases. The cyclooxygenase enzyme incorporates 
oxygen into arachidonic acid, converting it to hydroper-
oxy endoperoxide (PGG2). The hydroperoxidase compo-
nent reduces hydroperoxides such as PGG2 to the 
corresponding alcohol, PGH2 which is the precursor of all 
prostaglandins. Oxidizing equivalents, primarily in the 
form of O

2
–, are released by the hydroperoxidase activity 

of this enzyme through side-chain reactions which are 
dependent upon the presence of a suitable reducing sub-
strate, mainly NADH and NADPH. Metabolism of ara-
chidonic acid by 5-lipoxygenase leads to the formation of 
leukotrienes: this enzyme converts arachidonic acid to  
5-hydroperoxy eicosatetraenoic acid and thence to leuko-
triene A4, the precursor of leukotrienes B4, C4 and D4. 
Like cyclooxygenase, 5-lipoxygenase can also produce 
O

2
– in the presence of either NADH or NADPH7. 

Nitric oxide synthases 

NO is derived from the conversion of the amino acid  
L-arginine to L-citrulline by NOS. NO is an important 
reactive species containing both nitrogen and oxygen. 
Three isoforms of NOS are characterized: (i) neuronal 
NOS (nNOS/NOS1); (ii) inducible NOS (iNOS/NOS2) 
and (iii) endothelial NOS (eNOS/NOS3). Among these, 
nNOS and eNOS are constitutively expressed and are 
Ca2+/calmodulin-dependent, whereas the expression of 
iNOS is increased by cytokines and other inflammatory 
stimuli and is Ca2+/calmodulin-independent.  

Ageing  

This is a complex process and is defined as the gradual 
biological impairment of normal function. It involves a 
series of morphological and functional changes taking 
place over time8. There is a gradual decline in living  
organisms with accumulation of cellular and molecular 
damages of tissues and organs leading to mortality and 
morbidity 9. 
 This may be due to changes made to cells (dividing 
cells such as fibroblasts and differentiated cells such as 
neurons). These changes affect functional ability of or-
gans (such as heart, kidney and lungs), biological systems 
(such as the reproductive, digestive and nervous system) 
and ultimately the organism as a whole. 
 Various socio-economic changes have a great impact 
on the nutritional status and needs of the elderly indi-
viduals. The incidence of disability increases with ageing. 
Four main characteristics of ageing are its progressive-
ness, endogenous, irreversible nature and being deleteri-
ous for the individual10. 

Inflammation 

The word ‘inflammation’ comes from the Latin ‘in-
flammo’, meaning ‘I set alight, I ignite’. Inflammation 
can be defined as the body’s first response against exter-
nal factors, mainly bacteria, virus or fungi. The primary 
objective of an inflammation is to localize and eradicate 
the irritant and repair the surrounding tissue. For survival 
of the host, inflammation is a necessary and beneficial 
process. Redness, heat, swelling and pain are the impor-
tant features of inflammation.  
 Cell-derived polypeptides known as cytokines to a 
large extent orchestrate the inflammatory response, i.e. 
they are major determinants of the make-up of the cellular 
infiltrate, the state of cellular activation and the systemic 
responses to inflammation. Most cytokines are multifunc-
tional. They are pleiotropic molecules that elicit their ef-
fects locally or systemically in an autocrine or paracrine 
manner. Several cytokines like IL-1, TNF-a, IL-6, IL-11, 
IL-8 and other chemokines, GCSF and GM-CSF play a 
key role in mediating acute inflammatory reactions11.  
 However, in case of chronic inflammation, which may 
last for weeks or months, and in some instances for years, 
cytokine interactions result in monocyte chemotaxis to 
the site of inflammation where macrophage activating 
factors (MAF), such as IFN-, MCP-1 and other mole-
cules activate the macrophages, while migration inhibi-
tion factors (MIFs), such as GM-CSF12 and IFN- retain 
them at the inflammatory site. The macrophages contrib-
ute to the inflammatory process by chronically elaborat-
ing low levels of IL-1 and TNF which are responsible for 
some of the resulting clinical symptoms such as anorexia, 
cachexia, fever, sleepiness and leukocytosis. The cyto-
kines known to mediate chronic inflammatory processes 
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can be divided into those participating in humoral  
inflammation, such as IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, 
IL-10, IL-13, and transforming growth factor- (TGF-), 
and those contributing to cellular inflammation such as 
IL-1, IL-2, IL-3, IL-4, IL-7, IL-9, IL-10, IL-12, inter-
ferons (IFNs), IFN- inducing factor (IGIF), TGF-, and 
TNF- and . 
 PMN recruitment, lymphocyte recirculation and mono-
cyte trafficking all require adhesion and transmigration 
through blood-vessel walls. The inflammatory response is 
initiated by a rapid infiltration of leukocytes to the site of 
infection, which then engulf the invading pathogen.  
During this process, PMNs roll slowly along the blood-
vessel walls mediated by L, P and E selectins13–15. Sev-
eral cytokines and adhesion molecules like TNF-, IL-1 
and VCAM-1 mediate this process13,16. PMN–endothelial 
and PMN–matrix interactions play an important role in 
firm adhesion. During this process strong interaction  
between leukocyte 2-integrins and ICAM-1, 2 exists13. 
Furthermore, paracellular and transcellular migration  
involves upregulation of IL-8 cytokines, shedding of  
L-selectins, upregulation of 2-integrins and attachment 
and transmigration of PMNs17. 

Free radicals and ageing 

In everyday life we are exposed to a significant number 
of ROS, much of which are generated as an integral part 
of the ‘living process’. It is assumed that the antioxidant 
defence capacity of the cells is insufficient to provide 
complete protection. As a result, free radical concentra-
tion increases and is the main cause of toxicity in intra-
cellular system18. In 1956, Harman19 proposed his theory 
based on the observation that irradiation of living things 
known to induce formation of free radicals shortens their 
life span and also produces changes that resemble ageing/ 
which is related to ageing. In 1984, Cutler20 proposed the 
theory that the life span of an organism depends on its 
ability to counteract oxidative threat. 
 Several lines of evidence have indicated that increased 
oxidative stress is the primary cause responsible for  
ageing-related decline in physiological functions. Earlier 
studies have been supportive of the oxidative stress hy-
pothesis of ageing, but they have deficit data clearly  
indicating a cause-and-effect relationship between the 
addition of oxidation-mediated cellular damage and age-
ing. Table 2 shows other mechanisms of ageing21–25. 

Evidence supporting free radical theory of  
ageing  

Free radicals are known to be a natural by-product of 
aerobic metabolism of the organism and are the underly-
ing deleterious factors responsible for the ageing proc-
ess26. Several theories have been proposed to explain the 

process of ageing to understand its mechanism27–31. These 
can be classified into physiological and evolutionary. 
Physiological processes that may explain ageing include 
oxidative stress. According to the theory of evolution, 
natural selection declines with age32. This theory suggests 
that ageing will result from accumulation of multiple  
unrepaired faults. 
 The free radical theory of ageing is the most updated 
theory and the concept of free radicals playing a role was 
described by Harman in 1956 (refs 19, 33). This theory 
has gained universal acceptance and is also supported by 
the study of Sohal and Weindruch34 that with increase in 
age the free radical damage occurs due to greater produc-
tion of free radicals. 
 The free radical theory offers both molecular and 
mechanistic explanation to elucidate the complex ageing 
phenomenon. This point is worth emphasizing because 
most of the existing hypotheses are limited to descriptive 
phenomenology of ageing organisms without offering  
molecular insights.  
 Early attempts to obtain evidence supporting the free 
radical theory of ageing at the whole-animal level utilized 
antioxidant-feeding paradigms to suppress free radical 
damage, thereby retarding the ageing process. Significant 
extensions of median life span were found in most cases, 
but little effect on maximum life span was observed35. 
Extension of the maximum life span is considered a  
better index of influence on the ageing process; these  
results suggest that antioxidants do not alter the ageing 
process. 
 It is unfortunate that these studies were confined solely 
to measurement of life span; they could have been 
strengthened by examination of physiological parameters 
as a function of age, and by assessment of the oxidative 
status of the antioxidant levels. Therefore, it is difficult to 
assess the overall efficacy of dietary antioxidants in alter-
ing the ageing process. 
 Cutler22 found a clear linear correlation between spe-
cific antioxidants (superoxide dismutase, carotenoids,  
alpha-tocopherol and uric acid) and the maximal life span 
potential of various species ranging from mice to mon-
keys, chimpanzees and humans. 
 
 

Table 2. Molecular mechanisms of ageing 

Factors    Mechanisms Reference 
 

ROS/RNS Oxidative and nitrosative  21 
   damage to mitochondria 
Telomere shortening Induction of cellular senescence 22 
DNA damage Senescence and apoptosis 23 
Epigenetic alteration Histone modification by 24 
   deacetylase SIRT1 
Mitochondrial Metabolic dysregulation and  25 
 dysfunction   organ dysfunction 
Inflammation Increased level of pro-inflammatory 78 
   cytokines 
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Mitochondrial free radical theory of ageing 

The mitochondrial free radical theory suggests that ROS 
toxicity causes ageing. ROS cause damage to mitochon-
drial DNA (mtDNA) and other constituents of the mito-
chondria, leading to respiratory chain dysfunction. The 
reactions of electron transport chain of the inner mito-
chondrial membrane with molecular oxygen directly  
generate O

2
–, that gets converted to H2O2 by manganese 

superoxide dismutase (MnSOD). It can subsequently  
react to form the hydroxyl radical (HO)36–38. 
 In addition, the enzyme monoamine oxidase present in 
outer membrane of the mitochondria, generates a large 
amount of H2O2 by catalysing the oxidative deamination 
of biogenic amines. NO generated by NOS can diffuse 
into the mitochondria and modulate mitochondrial func-
tion by competing with O2 at respiratory complex IV – 
thereby slowing down respiration39. ROS generated 
through such reactions causes damage to mtDNA and 
other components by initiating degradative processes and 
contributing to the ageing process40,41. 

Free radicals in inflammation 

Free radicals are key signalling molecules that play a 
critical role in the initiation and progression of inflamma-
tion. Changes in the level of ROS chiefly produced by 
PMNs cause endothelial dysfunction and tissue damage. 
During inflammation ROS modulates the various stages 
and promotes the migration of inflammatory cells across 
endothelial barrier, which helps in clearance of foreign 
mediators.  
 Phosphorylation and migration of p47phox at the 
plasma membrane of leuocytes is critical to ROS produc-
tion. Several pro-inflammatory cytokines like TNF-, 
GM-CSF and G-CSF have been shown to induce p47phox 
phosphorylation and help in enhanced ROS generation42–45. 
Manoury et al.46 have reported the importance of 
p47phox in pulmonary fibrosis. They found that attenu-
ated bleomycin induced pulmonary fibrosis in p47phox 
null mice. Zhang et al.47 have concluded that phagocytic 
ROS signalling plays an important role in TNF- induced 
acute inflammatory response mediated by NK-kB.  
Several reports suggested that diminished NADPH oxi-
dase activity protects mice from cardiac inflammation 
and fibrosis48–51. Rac1, an important cytosolic subunit of 
NADPH oxidase, is shown to be induced by a variety of  
inflammatory stimuli like TNF-52, interleukin-1 (IL-
1), thrombin, VEGF53 and histamine54. Rac1-mediated 
enhanced ROS production has been demonstrated in the 
loss of endothelial barrier integrity55, resulting in traffick-
ing of inflammatory cells at the site of inflammation56. 
LPS-mediated production of various pro-inflammatory 
cytokines (IL-1, IL-6 and TNF-) is known to be  
involved in mitochondrial-derived ROS57. Role of mito-

chondrial ROS in progression of chronic inflammation, 
cancer progression58, diabetes mellitus59,60 and athero-
sclerosis61,62 is well known. Notably, mitochondrial ROS 
has been implicated in the regulation of inflammosome, 
which further activates inflammatory caspases (caspase-1 
and 2) and cytokines (IL-1 and IL-8) in macrophages63. 
 eNOS-derived ROS has been linked to a variety of  
inflammatory diseases like acute lung injury64, diabetes 
mellitus65 and Ang II-induced hypertension66. NO, a 
pleotropic signalling molecule has been shown to attenu-
ate neutrophil rolling and adhesion67. Dal Secco et al.68 
have performed experiments in LPS-treated iNOS–/– mice 
and found increased neutrophil migration compared with 
the wild-type mice. Mechanistically NO exerts its anti-
inflammatory activity by down-regulating the expression 
of ICAM-1 molecule, hence attenuating rolling and adhe-
sion of PMNs on the endothelium. In another study, the 
role of Rac2, a component of NADPH oxidase, in iNOS-
dependent ROS/RNS generation and microbial killing in 
PMNs has been reported69. The authors have demon-
strated interaction of iNOS and Rac2 in humans and mice 
PMNs, their functional role in iNOS translocation to 
phagosomal membrane, their functions in phagocytosis, 
ROS/RNS generation, nitration and elimination of phago-
cytosed pathogens. Keshari et al.70 have correlated the 
augmented level of TNF-, IL-1 and IL-8 with increased 
PMN ROS generation in SIRS patients, which results in 
neutrophil extracellular traps (NETs) formation. Role of 
NO in NETs release through free-radical generation  
involving NOX and MPO has been reported71. Another 
ROS-producing moiety, XO has been shown to be 
upregulated under various inflammatory conditions like 
airway inflammatory disorders, ischaemia reperfusion  
injury, atherosclerosis, diabetes and autoimmune disor-
ders such as rheumatoid arthritis72. Table 3 enlists the 
biochemical elements involved in inflammation11,21,73. 

Inflammation in ageing 

Several inflammatory mediators, including cytokines like 
Il-1, TNF-, IL-6 and cells like mononuclear cells have 
an important role in ageing. A study conducted by 
Roubenoff et al.74 concluded that inflammatory proteins 
(Il-1, TNF-, IL-6 and CRP) are continuously upregu-
lated during the ageing process. They have shown that in-
crease in IL-6 is also correlated with increased production  
 
 

Table 3. Biochemical elements in inflammation 

Factors    Examples Reference 
 

Bacterial products Lipopolysachharide 73 
Cytokine and chemokines IL-1, TNF-a, IL-6, IL-11, IL-8 11 
Acute phase protein C-reactive protein (CRP) 73 
Free radicals ROS/RNS 21 
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Figure 1. Involvement of increased free radicals and increased cytokine level in ageing. 
 
 
of CRP, a marker of inflammation. Polymorphism in re-
ceptors recognizing pathogens has been correlated with 
ageing. Toll-like receptors 1 (TLR1), TLR1 polymor-
phisms associated with mycobacterial infections and 
TLR1 surface expression have been shown to be involved 
in ageing. It has been shown that aged individuals with a 
TLR1pos genotype may have a reduced risk to develop 
inflammatory disorders than aged TLR1neg individuals. 
During ageing fat deposition in adipose tissue has been 
shown to be important factor for infiltration and accumu-
lation of T cells and macrophages, and hence higher  
concentration of pro inflammatory cytokines75. Over-
expression of S100a9 gene encoding pro-inflammatory 
protein (calgranulin) has been shown to be involved in 
ageing76. Canan et al.77 have demonstrated that the lungs 
of old mice have elevated levels of pro-inflammatory  
cytokines and a resident population of highly activated 
pulmonary macrophages that are refractory to further  
activation by IFN-. Macrophages from the lungs of old 
mice secreted more pro-inflammatory cytokines in re-
sponse to Mycobacterium tuberculosis infection than 
similar cells from young mice and also demonstrated en-
hanced M. tuberculosis uptake. 

Conclusion 

This article summarizes the role of free radicals, includ-
ing ROS and RNS, and inflammation in ageing. Excessive 
production of free radicals, cytokines and reduced anti-
oxidant defence with age significantly contribute to ageing 
(Figure 1). Both free radicals and cytokine modulate their 
own functions ultimately leading to tissue damage followed 
by organ dysfunction during ageing. Despite their in-
volvement in ageing, no mechanisms exist that can delay 
ageing. Future studies are required to delineate the precise 
role of inflammatory molecules along with their identifi-
cation so that they can be used in clinics to delay ageing.  
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