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Large microarray datasets usually contain many  
features with missing values. Inferences made from 
such incomplete datasets may be biased. To address 
this issue, we propose a novel preprocessing method 
called dynamic genetic algorithm-based feature selec-
tion with missing value imputation. The significant 
features are first identified using dynamic genetic  
algorithm-based feature selection and then the missing 
values are imputed using dynamic Bayesian genetic 
algorithm. The resulting complete microarray data-
sets with reduced features are used for classification, 
which results in better accuracy than the existing  
methods in eight microarray datasets. 
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THE microarray technology has emerged as an important 
one in the medical field, which helps clinicians in analys-
ing a large number of genes together to draw inferences 
regarding the functionalities of cells. The gene informa-
tion is used to predict the type and criticality of the dis-
eases. However, the microarray datasets are usually large 
and contain many features (attributes) with missing  
values. In order to minimize the time taken for processing 
unnecessary data, feature selection methods are com-
monly used to identify the required features. Information 
is mostly obtained from clinical experiments or surveys 
where some data may remain missing due to technical or 
human difficulties in assessing the study parameters. 
Most of the analysts delete records with missing values 
and perform feature selection on the remaining dataset1. 
This will in turn result in loss of valuable information and 
its statistical power. If accurate inferences should be 
made, the missing values should be estimated and  
included for analysis. This need motivates researchers to 
introduce different methods to treat missing values in  
microarray datasets. 
 In order to reduce the computational complexity in ana-
lysing irrelevant features, here we use dynamic genetic  
algorithm-based feature selection (DGAFS) method to  
select the significant features. Then, a novel methodology 
called dynamic Bayesian genetic algorithm (DBAGEL), 

which combines genetic algorithm (GA) and Bayesian 
principles is introduced to estimate non-ignorable missing 
values which often occur in real datasets. DBAGEL is 
designed by enhancing the principles of Bayesian Genetic 
Algorithm (BAGEL) proposed by Devi Priya and  
Kuppuswami2. The imputation accuracy of DBAGEL at 
missing rates ranging from 5% to 40% is better when 
compared with that of existing techniques and the classi-
fication accuracy of the reduced complete feature subset 
is encouraging in all the datasets. 
 Microarray data classification is usually done to classify 
genes in the datasets, which are then used to make vital 
clinical decisions. Some of the recent studies on micro-
array classification include fuzzy rough set approach3,  
generalized radial basis function neural networks4,  
genetic swarm algorithm5, ensemble classifiers6, particle 
swam optimization (PSO)-based decision tree classifier7, 
etc. 
 Gene (feature) selection should be done prior to gene 
classification or any other analysis8. Methods used for 
feature selection are grouped into (i) filter, (ii) wrapper 
and (iii) embedded methods. Filter methods depend on  
intrinsic characteristics of genes to discriminate them  
using statistical techniques. They are fast, classifier-
independent and suitable for large datasets9. In wrapper 
methods, the gene subsets are initialized using heuristic 
information and then evaluated by the corresponding 
classifier10. In spite of the increased computational com-
plexity, wrapper methods are preferred over filter  
methods, since they utilize heuristic information and  
appropriate classifier to select optimal set of features with 
training and testing sets. In the filter methods, the feature 
subsets selected are not aligned with the predictive model 
and produce only general results with less performance 
than the wrapper methods. The embedded methods utilize 
classifiers to initialize and select features iteratively and 
provide a balanced trade-off between the filter and  
wrapper methods11. 
 At times, specific values of some attributes cannot be 
measured or recorded and the scenario is called not miss-
ing at random (NMAR). The missing values themselves 
cause the missingness, and other attributes in the dataset 
do not have any influence on it. These significant missing 
values cannot be ignored and are defined as non-ignorable 
missing values. Right assumptions are required and models 
have to be developed based on prior knowledge to depict 
corresponding missingness in the dataset. The NMAR 
values cannot be imputed by considering the missing at-
tribute alone; rather related attributes should also be  
included in the model. Researchers have introduced dif-
ferent models for imputing NMAR data12. Selection and 
pattern mixture models are commonly used13. Calibration 
weighting14, pseudo empirical likelihood15 and GAs16 are 
some other methods which have been proposed for treat-
ing NMAR values. Mean or mode value substitution  
and complete case analysis are simple methods, but less 
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//Feature selection using DGAFS 
1. Initialize the population using uniform covering with binary encoded chromosome 
2. Evaluate the chromosomes using classification accuracy (kNN, NB or SVM)  
3. Select the best chromosomes using tournament selection with 10% elitism rate 
4. Repeat // adaptive determination of genetic parameter settings 
  Determine crossover and mutation rates dynamically using eqns. (1) and (2) 
  Perform crossover and mutation 
  Evaluate the chromosomes using classification accuracy 
 Until x% of chromosomes have fitness greater than fthreshold//user defined threshold 
5. If average fitness of population is above fitnessaverage and termination condition is satisfied 
 Return the feature subset contained within best chromosome 
 

 Else 
  Mutate top e% of elite solutions in the current population 
  Iterate the steps 2 thru 5 
 

//Missing value imputation using DBAGEL 
1. Define the model for initializing the population as given in eqn. (3) 
2. Initialize the population using the model created with real valued chromosomes 
3. Repeat 
  If missing value is discrete, evaluate chromosomes using Bayesian (eq. (4)) 
  Else if missing value is continuous, evaluate chromosomes using Bayesian (eq. (5)) 
  Select the best parents using tournament selection 
  Determine the crossover and mutation rates dynamically using eqs (1) and (2) 
  Perform crossover and mutation 
 Until termination condition is reached 
 

//Final classifier 
Classify the complete dataset using classifier (kNN, NB or SVM). 

 
Figure 1. Basic outline of dynamic genetic algorithm based feature selection – missing value imputation. 

 

 

 
 

Figure 2. Two-point crossover in dynamic genetic algorithm based 
feature selection (DGAFS). 
 
 

 
 

Figure 3. Mutation in DGAFS. 
 
 
efficient and rarely preferred17. Bayesian methods like  
approximate Bayesian bootstrap (ABB) integrated with 
multiple imputation18 and non-parametric Bayesian-based 
multiple imputation (Bay-MI)19 are preferred since the 
assumptions and constraints required for imputation can 
be easily incorporated in the Bayesian rule. With the 
knowledge that performance of Bayesian methods can be 
enhanced when hybridized with optimization methods, 
DBAGEL is proposed by combining Bayesian methods 
and GA, where the parameter values of GA are dynami-
cally adapted. 

 DGAFS-MI algorithm consists of three main steps 
which are discussed in detail below. Figure 1 shows the 
basic outline of the algorithm. 
 In DGAFS, binary encoding is used where 1 and 0 rep-
resent presence and absence of genes in the corresponding 
positions of chromosomes. The required chromosomes are 
initialized through uniform covering initialization, where 
the density of 1 is randomly selected in the interval [0, 1] 
and then 1 is placed in the chosen positions with the se-
lected probability. 
 The initialized chromosomes are then evaluated using 
fitness function. Classifiers like k nearest neighbour 
(kNN), naïve Bayes (NB) or support vector machine (SVM) 
can be implemented, and the obtained classification accu-
racy can be used as fitness value of the corresponding 
chromosome. Then, chromosomes with good fitness  
values are selected as parents for crossover operation. 
Parents are selected through appropriate mechanisms like 
roulette wheel, tournament or rank selection. In two-point 
crossover, two random crossover points from the selected 
parents are chosen and genes from two parents are  
exchanged to form new children (Figure 2). The children 
will have new recombined characteristics which increase 
the explorative capability of the algorithm. The resulting 
chromosomes are then mutated to enhance their exploita-
tive capabilities, where the genes are flipped (for example 
0 to 1 and 1 to 0 in Figure 3). 
 The significant contribution of DGAFS is dynamic  
determination of crossover and mutation probabilities. 
They indicate the number of chromosomes to be crossed 
over and the number of genes to be mutated respectively. 
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The crossover probability Pc is defined using the  
formula: 
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where fitnesscrs indicates the largest fitness value of two 
chromosomes chosen for crossover, while fitnessmax and 
fitnessavg refers to maximum and average fitness of the 
population. The mutation probability Pm is given by 
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where fitnessmut refers to the fitness value of the mutated 
chromosome and fitnessmed is the median fitness value in 
the population. The constants x and y are set by the user 
in the range [0, 1]. The crossover and mutation operations 
are repeated until n% of chromosomes have fitness value 
greater than fitnessthreshold set by the user. This iterative 
determination of crossover and mutation rates and opera-
tions controlled by threshold value help in achieving  
better exploration and exploitation and prevent the  
algorithm from being tapped in local optimum. 
 The algorithm is repeated until the termination point is 
reached or the population gets the required chromosomes 
with predefined average fitness value, fitnessaverage. If the 
defined threshold is not reached, top e% of elite solutions 
in the current population are mutated and introduced into 
the new population for the next generation. The genes 
(features) present in the final optimal solution are  
included in the feature subset. 
 In the feature subset selected by DGAFS, the missing 
values are imputed by DBAGEL. GA and Bayesian  
methods are integrated with dynamic determination of  
parameters in DBAGEL in order to impute non-ignorable, 
discrete and continuous NMAR values. In both model 
creation and fitness estimation of GA, Bayesian princi-
ples are used. 
 In a dataset with N instances, let x and y represent the 
target and covariate attributes respectively. The missing 
variable Mj is set to 1 if jth record is complete and 0, if its 
values are missing. The complete instances are selected 
in the subset P in which the given factorization as shown 
in eq. (3) is applied on all its samples. 
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where fP(xj
 | yj) indicates conditional probability function 

(pdf) of target variable xj. Appropriate pdf is chosen  
depending upon data distribution in the dataset. Univari-
ate, bivariate or multivariate distributions can be imple-
mented based upon the number of variables involved. 
Normal distribution is chosen for the example, since it is 
commonly assumed in Bayesian models. Even if the real 
distribution of data is not known, analysts usually prefer 
normal distribution. If the dataset has some other type of 
distribution, it can also be modelled in the same way. 
This Bayesian model can be implemented for handling 
both homogeneous and heterogeneous missing values. 
The samples are sorted in decreasing order of their pdf 
values and the top ones are selected for the initial popula-
tion. This model thus successfully inserts good chromo-
somes into the population with integer encoding, where 
the gene values are depicted as such in the chromosome. 
 Fitness of chromosomes in the population is then eva-
luated using Bayes’ rule. Equation (4) is used to calculate 
the Bayesian probability for discrete attribute, where Xmis, 
Y and  indicate the missing target attribute, covariates 
and model parameters. 
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Probability is replaced by pdf, if the missing attribute is 
continuous as given in eq. (5). f (Xmiss | Y, ) represents 
the joint probability of the missing attribute with covari-
ate and model parameters. The function f (.) indicates the 
pdf with normal distribution. The implementation of pdf 
takes more time than probability estimation since it in-
volves integral calculation of the variables involved. 
 

 miss miss
miss

.( , | ) ( )
( | , ) .

( , )
f Y X f X

f X Y
f Y





  (5) 

 
Based on fitness values of the chromosomes, best parents 
are selected for reproduction operation. One-point,  
two-point or uniform crossover can be used. Since the  
selected feature subset contains limited number of signi-
ficant features, one-point crossover will suffice where 
one random crossover point is chosen and the genes are  
 
 

 
 

Figure 4. One-point crossover in DBAGEL. 
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Table 1. Performance results of dynamic genetic algorithm based feature selection (DGAFS) with  
 different classifiers 

 DGAFS- DGAFS- DGAFS- 
Dataset naïve Bayes (NB) k-nearest neighbour (kNN) support vector machine (SVM) 
 

Colon  4 (93.7)  6 (93.5)  4 (94.2) 
DLBCL  4 (94.8)  6 (94.3)  2 (95.6) 
CNS  3 (74.4)  5 (75.3)  3 (78.6) 
ALL/AML  4 (94.5)  4 (95.2)  4 (95.8) 
Lung  3 (99.1)  2 (99.1)  2 (99.5) 
Prostate 19 (72.3) 20 (73.3) 17 (75.1) 
Ovarian  3 (99.1)  5 (99.1)  3 (99.3) 
Breast  6 (82.9) 15 (83.6)  6 (84.2) 

Note: Each entry represents the number of selected features (classification accuracy %). 
 

 
Table 2. RMSE of BAGEL and other methods at different missing rates 

 Missing rate 
 

Dataset Algorithm 10% 20% 30% 40% 
 

Colon Mean 3.64 3.83 4.31 6.70 
 ABB 3.17 3.96 4.25 6.32 
 Bay-MI 2.34 3.45 3.83 5.27 
 DBAGEL 1.47 2.98 2.98 3.94 
 

DLBCL Mean 5.75 6.45 7.14 7.98 
 ABB 4.23 3.38 3.02 7.48 
 Bay-MI 3.48 2.48 2.84 5.61 
 DBAGEL 1.47 2.05 2.79 4.35 
 

CNS Mean 4.20 5.97 6.32 7.21 
 ABB 4.13 5.55 5.45 6.84 
 Bay-MI 3.75 4.15 5.02 6.23 
 DBAGEL 2.46 3.30 4.87 5.47 
 

ALL/AML Mean 4.81 5.46 7.59 8.63 
 ABB 3.26 3.84 4.57 5.31 
 Bay-MI 2.36 2.94 3.94 5.81 
 DBAGEL 1.45 2.63 3.27 4.18 
 

Lung Mean 2.13 3.46 4.97 6.18 
 ABB 2.91 3.78 4.79 6.75 
 Bay-MI 2.56 3.14 4.67 5.78 
 DBAGEL 1.23 2.28 3.56 4.13 
 

Prostate Mean 2.05 2.90 3.14 5.02 
 ABB 4.17 5.23 5.61 7.17 
 Bay-MI 3.14 4.26 5.15 6.38 
 DBAGEL 1.97 2.34 3.25 4.76 
 

Ovarian Mean 4.56 4.58 5.19 6.23 
 ABB 3.24 3.45 3.97 4.28 
 Bay-MI 2.97 3.12 3.96 4.27 
 DBAGEL 2.31 2.84 3.25 4.89 
 

Breast Mean 5.33 5.85 6.34 7.28 
 ABB 4.36 4.91 5.32 6.18 
 Bay-MI 4.18 4.76 5.21 6.04 
 DBAGEL 3.56 3.84 4.29 4.37 

ABB, Approximate Bayesian bootstrap; Bay-MI, Bayesian based 
multiple imputation; DBAGEL, Dynamic Bayesian genetic algorithm. 
 
 
exchanged among parents (Figure 4). Mutation is per-
formed on the new offspring, where genes in different 
positions are swapped (Figure 5). 

 
 

Figure 5. Mutation in dynamic Bayesian genetic algorithm. 
 

 
 If the stopping condition is reached, chromosome with 
the best fitness value is returned as the optimal solution 
which contains the value to be replaced in the missing 
place. Otherwise, the steps from fitness estimation to  
genetic operations are repeated. The algorithm is run until 
the chromosomes remain consistent in n successive  
generations. 
 Finally, classifiers like NB, kNN and SVM are imple-
mented with ten-fold cross validation to test the classifi-
cation performance in the processed datasets. 
 DGAFS-MI is implemented on eight microarray data-
sets taken from public repositories and its classification 
accuracies after feature selection and missing value impu-
tation are estimated. 
 In the original datasets, the relevant features are first 
selected using DGAFS with the following genetic para-
meters. 
 Population size, 40; Encoding, Real encoding; Selec-
tion, Tournament selection; Crossover, Two-point cross-
over; Mutation, Flip mutation; Elitism, 10%; Crossover 
rate (Pc), Determined dynamically using eq. (2); Mutation 
rate (Pm), Determined dynamically using eq. (3). 
 The fitness of chromosomes is given by the classifier 
accuracy obtained from classifiers like NB, kNN and 
SVM. Ten-fold cross validation is done on the results ob-
tained by implementing classification mechanisms in the 
datasets. The optimal feature subset obtained from 
DGAFS with the best classification accuracy is returned 
as the solution in every run. The algorithm is executed for 
50 runs and the best result obtained among all the runs is 
given in Table 1, showing the number of selected features 
and their corresponding classification accuracies. 
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Table 3. Classification accuracy% of DGAFS-MI with different classifiers 

Dataset DGAFS-MI-NB DGAFS-MI-kNN DGAFS-MI-SVM 
 

Colon 98  1.02 98  1.51 99  0.08 
DLBCL 97  1.64 97  1.35 98  0.85 
CNS 93  1.17 92  0.14 94  0.63 
ALL/AML 98  1.64 97  1.28 98  0.45 
Lung 99  0.20 99  0.35 99  0.50 
Prostate 89  0.61 90  1.58 92  1.04 
Ovarian 99  0.40 99  0.50 99  0.50 
Breast 90  1.63 90  1.82 91  1.34 

NB, Naïve Bayes; kNN, k-nearest classifier; SVM, support vector machine. 
 

 
 Both lung and ovarian cancer datasets, DGAFS results 
in more than 99% classification accuracy. In ovarian da-
taset, NB and SVM classifiers achieve best classification 
accuracy with less number of features than kNN. In lung 
dataset, kNN and SVM are significant than NB. In gen-
eral, it is observed that NB selects few features than kNN. 
But the classification accuracy of kNN is better than that 
of NB. A compromise has to be made on these two  
factors when the two classifiers are considered. In all the 
datasets, SVM achieves better classification accuracy 
than the other two classifiers because of the kernel func-
tions used in it. But its computational complexity is  
higher than the others due to more calculations involved. 
The final performance depends upon the initial set of  
features selected. Hence utmost care must be taken to in-
duce right features into the subset. Since SVM is better in 
terms of both features and classification accuracy, it is 
used in further experiments. 
 The reduced feature set contains only the relevant fea-
tures which are essential for efficient classification. From 
the complete dataset, non-ignorable missing values are 
simulated at different missing rates of 5%, 10%, 20%, 
30% and 40%. DBAGEL is then used to impute them and 
root mean square error (RMSE) is evaluated. In DBAGEL, 
population size is an important parameter affecting the 
results and hence needs careful attention. If the number of 
chromosomes is too few, efficient chromosomes may not 
get a chance in the population. If it is high, convergence 
of the algorithm is delayed. Twenty-five trials are con-
ducted with different population sizes of 30, 40, 50 and 
60. It is found that 40 chromosomes produce better  
results and hence the population size is fixed to 40. The 
genetic parameters of DBAGEL are the same as those of 
DGAFS, except that one-point crossover is used in 
DBAGEL instead of two-point crossover in DGAFS. 
 In Table 2, RMSE of DBAGEL, mean imputation,  
approximate Bayesian bootsteap (ABB) used in Siddique 
and Belin18 and Bay-MI used in Si19 are reported. Mean 
imputation is easy, but it substitutes the mean value in all 
missing holes and does not try to impute the exact values. 
It is less preferred by researchers since it produces only 
biased results than other imputation methods. ABB and 
Bay-MI are both Bayesian-based methods. In ABB, boot-

strap technique is integrated with Bayesian principle. It is 
observed that it produces better results than mean imputa-
tion, but underperforms when compared with Bay-MI and 
DBAGEL. Since Bay-MI hybridizes the Bayesian method 
with multiple imputation which is already a standard 
technique for missing value imputation, it is able to pro-
duce good results in all the eight datasets at different 
missing rates. DBAGEL outperforms the other three 
methods due to its dynamic adaptation of genetic parame-
ters as in DGAFS. Even at the missing rate of 40%, 
DBAGEL shows RMSE only within 5% in all the data-
sets. 
 After the missing values are estimated using DBAGEL, 
the dataset can be used for classification. Classifiers like 
NB, kNN and SVM are implemented in the processed  
microarray datasets and their accuracies in classifying the 
datasets are estimated again and compared. Significant 
difference is observed between the classification accura-
cies of Table 1 (without missing value imputation) and 
Table 3 (after missing value imputation). Average of 7% 
performance improvement is seen in the results, which is 
encouraging. The main factor behind the improvement in 
Table 3 is because the missing values are efficiently im-
puted and the dataset is made complete retaining useful 
information. When the missing values are ignored, useful 
information required for strategic clinical decisions are 
left out. For example, if there are 200 instances and 50 
features in the dataset with 2% missing values in different 
instances, 50% of the instances will be incomplete and 
analysis made from this will not be accurate. After  
implementing DGAFS-MI on large lung and ovarian 
datasets with 12,533 and 15,154 genes respectively, clas-
sification accuracy observed is close to 100% with all 
three classifiers. SVM is better in terms of classification 
accuracy. But its computational complexity is higher than 
that of NB and kNN. If accuracy is required, SVM can be 
used and if the implementation needs to be simple, NB or 
kNN can be used. But again some heuristic procedure is 
required to choose the value of k in kNN. 
 Classification in microarray datasets becomes difficult 
due to the presence of many irrelevant attributes and 
missing values. Here we propose DGAFS-MI by select-
ing significant features and imputing missing values. The 
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threshold maintained for dynamically updating popula-
tion size, crossover and mutation probabilities restricts 
the unwanted attributes and retains only optimal features 
in the population. BAGEL supports this process by effi-
cient imputation of missing values. The proposed algo-
rithm is implemented on real datasets. The results show 
that the classification accuracy obtained on the processed 
datasets is better than other existing algorithms. DGAFS-
MI can thus reduce the burden of clinicians and help 
them in efficient analysis of microarray datasets. 
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Exposure to particulate matter in  
different regions along a road network,  
Jharia coalfield, Dhanbad, Jharkhand, 
India 
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Occupational particulate matter (PM) concentrations 
were measured during November 2014 along a road 
network in the mining and non-mining areas at Jharia 
coalfield, Dhanbad, Jharkhand, India. The monitoring 
was conducted for a week in the peak time using a 
portable GRIMM (model 1.109) aerosol spectrometer. 
Measured PM was designated as inhalable, thoracic 
and alveolic particles for aerodynamic diameter 10–
34, 4–10 and less than 4 m respectively. The main 
sources of PM along the roadside in the study area 
were mining operations as well as heavy traffic and 
resuspension of road dust. Concentration of inhalable 
particles was maximum at Bankmore (BMO), whereas 
concentration of thoracic and alveolic particles was 
maximum at Katrasmore (KMO) in the mining area. 
Concentration of all three types of particles was min-
imum at the Indian School of Mines in the non-mining 
area. The distribution curves of inhalable particles 
were positively skewed and platykurtic in nature, 
whereas for thoracic and alveolic particles these 
curves were positively skewed at all locations, except 
BMO and also platykurtic in nature, except Godhar 
(GDR). Contribution of alveoli particle sizes for 0.375 


