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In recent years, high-resolution satellite (HRS) images 
have become an important source of data for extract-
ing geo-spatial information. A deep understanding of 
human cognitive capabilities is required in order to 
automate the method of information retrieval from 
HRS images. The aim of this study is to emulate  
human cognitive processes by integrating cognitive 
task analysis for information extraction from HRS 
images. First, the preliminary knowledge about the 
cognitive processes which human beings acquire  
during the interpretation of satellite images is col-
lected. Then, knowledge is represented in the form of 
rules which are based on the visual interpretation of 
the images by the human beings. During knowledge 
elicitation these rules are used to extract buildings 
from HRS images utilizing the mixture tuned matched 
filtering algorithm. Later, the method is tested using 
14 HRS images of an urban area. The average of pre-
cision, recall and F-score is computed as 79.45%, 
64.34% and 70.28% respectively. 
 
Keywords: Building detection, cognitive processes, 
high-resolution satellite images, urban areas. 
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BUILDING detection from urban areas has been an active 
field of research in computer vision1. It has also been a 
topic of interest in many applications such as change  
detection and urban monitoring. With the availability of 
very high resolution (VHR) images, different types of  
algorithms/methods have been proposed for building  
detection2. A review on object detection and its applica-
tions can be found in the literature3–8. The present  
approach of building detection is categorized into two 
parts (using three-dimensional images and monocular  
remotely sensed dataset) based on the data source (SAR, 
multispectral and LiDAR images). Initially, data-driven 
method was used for extracting low-level features from 
the monocular images9. Analysing the shadow informa-
tion of buildings in monocular images is the prime con-
cern for obtaining better accuracy. Shadow information is 
utilized for identifying the corner and edges of build-
ings10. Then, height of the buildings is obtained based on 
the shadow information. Shadows are used extensively 
for the verification of the building detection methods 
which have been proposed earlier11–13. In the past, few 
methods for building detection have been developed 
which are based on supervised classification algorithm14. 
Later, support vector machines (SVMs), graph theoretical 
tools and scale-invariant feature transform (SIFT) were 
used for detecting buildings from aerial images15,16. Re-
cently, a new method for building detection has been de-
veloped by integrating shadow information with fuzzy 
logic and GrabCut partitioning algorithm17. Then a sys-
tem was proposed for building detection using laser scan-
ning data18. Some studies have used graphical models  
to improve the overall accuracy of the system19,20. A digi-
tal classification based method21 was also used for detect-
ing human settlements from SAR and optical images. 
Later, Markov random field and conditional random field 
models were used for object detection from an urban 
area22. Table 1 provides a brief review of the work done 
in the past in the context of building detection. In this 
communication, we describe a cognitive method for  
detecting buildings from high-resolution satellite (HRS) 
images. First, we briefly describe the cognitive approach 
used for building detection. Then we present the results 
obtained followed by conclusions of the study. 
 In this study, the process of building detection is com-
bined with cognitive task analysis (CTA)23. CTA is used 
in psychological research where lot of decision making 
task are involved. CTA is a hierarchical method which de-
fines the various psychological processes which are being 
used by an analyst for performing a complex task. It illus-
trates the different input parameters and cognitive capaci-
ties that are taken into account for obtaining the output of 
the task. CTA makes the process of information extrac-
tion easier as it uses the thought process of human beings 
for carrying out a task. It is defined as an extension of the 
traditional task analysis (TTA) approaches to provide  
information about thought processes and knowledge in 

order to determine performance of the observer. CTA 
generally uses different types of observations and inter-
views to determine knowledge which a subject uses while 
performing a complex task. Here, a complex task is  
defined as one which requires the use of automated (stra-
tegic and unconscious) and controlled (conceptual and 
conscious) knowledge to complete it. Much time is re-
quired for completing the task. CTA is the only approach 
which is used for describing knowledge necessary for 
evaluating the overall performance. CTA is used by an 
analyst to determine the precise and complete information 
of cognitive processes. The output is generally a descrip-
tion of procedural and conceptual knowledge which is 
used by the analyst while performing the task. This out-
put is formatted so that it can be maintained as a record to 
be used later by a novice to complete the task. In the past, 
three techniques were defined for CTA, i.e. (i) process 
tracing, (ii) observation and interviews, and (iii) concep-
tual methods. Later, one more technique was introduced 
known as formal models (computational models). The 
key advantage of CTA is that it generates precise and de-
tailed information on the basis of the nature of the subject 
performing the task. It is a rich source of information if 
implemented properly. CTA does not use hit or trail  
approach; rather it delivers a systematic approach to dis-
cover the cognitive processes of the subject. However, 
much time is required for analysing and verifying the 
data collected during CTA. The key steps for carrying out 
CTA are described here, which have been used for per-
forming a complex task of building detection from a sat-
ellite image of an urban area. Figure 1 shows the overall 
architecture of the methodology used. 
 In the first phase, the analyst determines the flow of 
the task which is required for CTA. The analyst develops 
elementary understanding of the knowledge domain  
(image analysis) and identifies the method which will be 
used during knowledge elicitation. During this stage dif-
ferent techniques are used for collecting knowledge, such 
as observation, document analysis and interviews (struc-
tured and unstructured)23. In this study document analysis 
has been used for knowledge collection. The analyst  
begins by collecting reviews from the available resources, 
which explain the task related to the domain in which 
CTA is being carried out. These resources consist of 
various documents such as textbooks, research articles,  
reports, handbooks and glossaries. These documents are 
reviewed for obtaining the deep knowledge and for the 
confirmation of ideas that have been implemented in the 
past. The output of this phase is used by the analyst to 
identify the structures and the type of knowledge required 
for performing the complex task. 
 On the basis of the information acquired in the previ-
ous stage, the analyst deeply examines each and every 
task for determining the knowledge and sub-task which 
will be required for cognitive analysis of satellite images. 
In previous studies different methods such as semantic 
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Table 1. Description of previous work 

Author Data type Image type Article type Year 
 

Huertas and Nevatia Airborne Grey scale Research 1988 
Irvin and Mckeown Airborne Grey scale Research 1989 
Liow and Pavlidis Airborne Grey scale Research 1990 
Shufelt and Mckeown Airborne Grey scale Research 1993 
McGlone and Shufelt Airborne Grey scale Research 1994 
Weinder and Forstner Airborne Grey scale Research 1995 
Krishnamachari and Chellappa Airborne Grey scale Research 1996 
Baillard Elevation Grey scale Research 1998 
Zang Spaceborne Multispectral Research 1999 
Stassopoulou and Caelli Airborne Grey scale Research 2000 
Cord et al. Elevation Grey scale Research 2001 
Ruther et al. Elevation Grey scale Research 2002 
Lee et al. Spaceborne Grey scale Research 2003 
Benediktsson et al. Spaceborne Grey scale Research 2004 
Brenaner – – Review 2005 
Hongjian and Shiqiang  LIDAR Grey scale Research 2006 
Sohn and Dowman Spaceborne and airborne Multispectral Research 2007 
Katartzis and Sahli Airborne Multispectral Research 2008 
Karantzalos and Paragios Spaceborne and airborne Grey scale Research 2009 
Haala and Kada – – Review 2010 
Cui et al. Airborne Multispectral Research 2011 
Tack et al. Spaceborne Multispectral Research 2012 
Senaras et al. Spaceborne Multispectral Research 2013 

 

 
 

Figure 1. Overall architecture of the methodology used. 
 
network, flow chart and concept maps have been used for 
knowledge representation23. In this study, rule-based  
method is taken into account for knowledge representa-
tion. First, a training dataset is prepared for the input  

image. The objects in the satellite image which are visu-
ally interpreted as buildings and non-buildings by human  
beings are labelled manually. Later, these interpretation 
results are used as rules for object detection from satellite 
images. 
 In the third phase, the analyst uses different methods 
for combining the knowledge acquired during the second 
phase. Several knowledge elicitation techniques (simula-
tion method, prototyping method and observation 
method)23 have been introduced in past in order to deter-
mine the information necessary for solving a complex 
problem. Elicitation is defined as a process of collecting 
knowledge or information from a variety of available re-
sources. Due to the availability of different knowledge 
elicitation methods, it is difficult to select an appropriate 
method. In previous literature24, three types of knowledge 
elicitation methods are discussed. 
 (i) Direct- and indirect-based: One of the simplest  
approaches is to directly collect information about a  
particular task from the subject expert. In this approach, 
information is gathered by asking questions from the  
domain expert. However, in the indirect approach the 
output of the knowledge elicitation needs to be analysed 
and verified rigorously so that the required information 
can be extracted. 
 (ii) Interaction based: In this approach the obtained 
knowledge is grouped together based on the interaction 
(interviewing, teachback, critiquing, sorting and case 
studying) with the subject expert. 
 (iii) Based on the type of knowledge acquired: Knowl-
edge elicitation techniques can be grouped on the basis of 
the type of information (such as relationships, procedures 
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and evaluation) which has been acquired. Another key 
approach which falls in this category is known as classi-
fication. This method is used to classify different  
objects and entities in a particular domain. In order to de-
tect the buildings from HRS images, a strong target  
detection method is needed. Therefore, mixture tuned 
matched filtering (MTMF)25, which is a classification 
method and also a powerful target detection method is 
used here. MTMF algorithm detects the desired target 
from the HRS image based on the rules defined in the 
previous stage. These rules are defined on the basis of the 
cognitive interpretation of human beings. The MTMF  
algorithm is divided into three different stages: 
 (a) First, the forward minimum noise fraction (MNF) 
transformation of the reflection data is computed25. The 
MNF transformation is basically principal component 
transformation (PCT)26 in which the information is segre-
gated into two parts, where the first part is determined 
with compared feature image and the larger eigenvalues, 
and the second part is fixed with comparative eigenval-
ues27,28. The key advantage of MNF is that it can easily 
identify the relationship among several bands of the input 
image. It has the capability to collect data in smaller 
parts. The feature space isolates the spectral information 
of different components and frail dataset is updated  
during denoising phase. Due to this the seperability of 
features gets maximized26. 
 (b) Matched filtering for determination of abundance 
estimation. 
 (c) Determination of false-positive pixels using mix-
ture tuning (MT)25. The matched filter vector (MFV)25 is 
determined using eq. (1) given below. 
 

 
1

mnf mnf
1 T

mnf mnf mnf

(CV  × TS )MFV ,
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


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 
 (1) 

 
where 1

mnfCV  represents the diagonal inverse of covari-
ance matrix for the MNF dataset and TSmnf represents the 
target spectrum that is converted to MNF space. 
 Further, matched filtering image (MFI)25 is determined 
using eq. (2). 
 
 MFI = (MFV  DSmnf), (2) 
 
where MFI represents the output image obtained after 
matched filtering and DSmnf represents the MNF data. 
 Finally, MT is estimated using eq. (3). 
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  (3) 

 
where MTi represents the mixture tuned value for pixel i, 
Dmnfi represents the MNF spectrum for a pixel i, dmvi 
represents the mean value for pixel i and IVevali repre-

sents the value of the interpolated vector of eigenvalues 
for pixel i. 
 MTMF is a well-known spectral unmixing algorithm 
based on the concept of signal processing which uses  
linear mixing and statistical matched filtering model29. It 
is able to detect different classes of land cover using their 
spectral properties29. The process of unmixing is carried 
out by identifying abundance of the endmember. Further, 
the response of endmembers is maximized, while the  
response of unidentified background is minimized30. 
Whenever unmixing is applied for target detection, it is 
not necessary that an accurate value of target abundance 
will be extracted. The results of the image classification 
will be more productive if the estimated value of the 
abundance fraction for the desired target pixel vector is 
adequate to discriminate that pixel from neighbouring 
pixels31. 
 It has been observed that the outcome of CTA is  
dependent on the procedure used during knowledge elici-
tation. Therefore, a qualitative and quantitative analysis 
is necessary to validate the output obtained after knowl-
edge elicitation. In this phase, the output image obtained  
after knowledge elicitation is compared with the corre-
sponding ground truth of the input dataset for calculating 
the overall accuracy. 
 In this last phase all the output of CTA (statistical and 
theoretical results) is organized in the form a report. This 
output is used in different automated applications. The 
CTA used must be compared with other available  
methods in order to reach a decision. The cognitive  
method implemented here can be used in various deci-
sion-making tasks in remote-sensing domain. 
 The benchmark dataset used here includes 14 test  
images32 obtained from two satellites, namely Quick Bird 
and IKONOS-2 having a resolution of 0.60 m and 1 m  
respectively. All the test images consist of four multi-
spectral bands (blue, green, red and near infrared) with a 
radiometric resolution of 11 bits per band. The ground-
truth data for each test image are produced manually by 
an expert human operator32. The key point regarding this 
dataset is that buildings that are partially visible are also 
included in the ground truth dataset. 
 To evaluate the overall performance of the method, 
three standard quality measures (precision, recall and  
F-score) given in eqs (4)–(6) below are used33,34. 
 

 || TP ||Precision ,
(|| TP || || FP ||)




 (4) 

 

 || TP ||Recall ,
(|| TP || || FN ||)




 (5) 

 

 (2  Precision  Recall)* *-score .
(Precision Recall)

F 


 (6) 
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Figure 2. Output of the building detection method: a, test images, b, detected buildings; c, corresponding ground truth. 
 
During the assessment all the pixels of the image were 
classified into three different classes, namely true posi-
tive (TP), false positive (FP) and false negative (FN)35. 
TP indicates a pixel that is labelled as a building by the 
proposed method and also represents a building in the 
ground truth dataset. FP signifies a pixel that does not 
represent any of the pixels labelled as buildings in the 
ground truth dataset, while FN represents a pixel that is 
labelled as a building in the ground truth dataset but it is 
not available in the proposed method. In eqs (4) and (5) 
||.|| denotes the number of pixels assigned to each class 
and F-score is the combination of precision and recall  
into a single score. 
 The qualitative assessment of this approach is performed 
through visual inspection of the results illustrated in  
Figure 2. On the basis of visual analysis, it can be seen 
that all the true pixels of buildings are clearly detected in 
test patch 7. Further, performance of the method is below 
average for test patch 4 because several false pixels are 

detected along with few true pixels of the buildings. The 
proposed cognitive method could not clearly detect the 
boundaries of the buildings; however, still it performs 
well for all test images. 
 Tables 2 and 3 show the quantitative and statistical  
results of the method respectively, while Figure 3 shows 
the comparative results. In the entire dataset, maximum 
precision (93.46%) is produced by test patch 14 and mini-
mum precision (41.19%) by test patch 4, whereas maxi-
mum recall (86.38%) is produced by test patch 2 and 
minimum recall (18.99%) by test patch 4. Further, maxi-
mum F-score (85.27%) is produced by test patch 7 and 
minimum F-score (25.99%) by test patch 4. The overall 
average of precision, recall and F-score is computed as 
79.45%, 64.34% and 70.28% respectively, which shows 
promising results for such a complex dataset. This build-
ing detection benchmark dataset consists of buildings of 
different shapes and sizes, and the method has resulted in 
a fair performance. 
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Table 2. Quantitative performance of the method 

Dataset MTMF MPP32 
 

Test image ID (size) Precision (%) Recall (%) F-score (%) Precision (%) Recall (%) F-score (%) 
 

1 (560*367) 73.50 70.42 71.93 35.1 48.8 40.8 
2 (554*483) 79.46 86.38 82.77 41.0 75.7 53.2 
3 (468*304) 84.95 73.13 78.60 40.3 63.7 49.4 
4 (896*600) 41.19 18.99 25.99 39.2 36.1 37.6 
5 (1213*958) 79.61 74.76 77.11 46.2 82.2 59.2 
6 (922*634) 77.91 51.50 62.01 41.9 59.2 49.1 
7 (928*639) 90.53 80.60 85.27 56.1 69.8 62.2 
8 (1009*695) 85.94 67.81 75.80 49.9 49.7 49.8 
9 (1615*1209) 72.60 77.65 75.04 37.8 67.7 48.5 
10 (1656*1240) 68.89 35.63 46.97 32.3 43.7 37.1 
11 (1222*915) 85.36 75.50 80.13 63.9 53.7 58.4 
12 (1311*848) 88.39 67.25 76.39 70.8 56.7 62.9 
13 (1193*771) 90.59 55.93 69.16 67.9 60.2 63.9 
14 (1193*772) 93.46 65.21 76.82 76.7 66.5 71.2 
Average 79.45 64.34 70.28 52.7 59.9 56.1 
Maximum 93.46 86.38 85.27 76.7 82.2 71.2 
Minimum 41.19 18.99 25.99 32.3 36.1 37.1 

MTMF, Mixture tuned matched filtering algorithm; MPP, Marked point process model. 
 

Table 3. Statistical results of the target area 

  Total area Average  
Image ID Target count (pixels) area (pixels) 
 

 1   365  18,659.000  51.120548  
 2   128  36,918.000  288.42188  
 3   257  12,157.000  47.303501 
 4   884  144,181.00  163.10068  
 5  457  178,066.00  389.64114  
 6  904  93,636.000  103.57964  
 7  197  63,572.000  322.70050  
 8  739  85,107.000  115.16508  
 9 1251  278,329.00  222.48521  
10 4391  657,679.00  149.77887 
11  669  219,124.00  327.53961  
12  168  95,550.000  568.75000  
13  229  145,320.00  634.58514  
14  152  91,316.000  600.76318  

 

 
 

Figure 3. Comparitive results of the F-score. 

 The computational complexity was also taken into con-
sideration, and it was noticed that the time taken for 
processing of the data was directly dependent on the size 
of the input image. Lager the size of input image more 
will be the computational time, while smaller the size of 
input image, lesser will be the computational time.  
Maximum time was taken by test patch 10, whereas mini-
mum time was taken by test patch 3 due to their different 
sizes. 
 Lastly on the basis of qualitative and quantitative  
results, it can be inferred that the cognitive approach for 
detecting man-made objects from HRS images performs 
well. 
 CTA is one of the key contributions in the field cogni-
tive psychology. When an analyst performs a given task, 
CTA is capable of generating descriptive information 
which is directly dependent on the performance of the 
analyst. CTA is a relevant source of information which is 
the outcome of the cognitive processes of an analyst. 
Some of the automated methods for building detection 
have limitations due to differences in size, shape, colour 
and density (which is relatively high in urban areas com-
pared to rural areas) of buildings. Therefore, in this study 
a method is implemented which is capable of detecting 
buildings, irrespective of their shape and size, from HRS 
images. This method has a limitation that it is not capable 
of performing discrete separation between non-building 
and building regions which have similar spectral values. 
In future this cognitive approach for building detection 
needs to be tested using a larger geographical region and 
more number of testing images for improving the accuracy. 
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