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Salinity is one of the most common abiotic stresses 
that limit the production of rice. Since salinity stress 
tolerance is controlled by many genes, identification of 
these stress responsive genes as well as to understand 
the underlying mechanisms is of importance from 
breeding point of view. In this direction, the reverse 
engineering of gene regulatory networks has proven to 
be successful. In this study, we construct the gene 
regulatory network using Kendall’s tau correlation 
coefficient, in order to identify the stress responsive 
genes. The proposed approach was tested on a rice 
microarray dataset and 18 key genes were identified. 
Most of these key genes were found to be involved  
directly or indirectly in salinity stress, as evidenced 
from the published literature. Gene ontology analysis 
further confirmed the involvement of the selected 
genes in ion binding, oxidation-reduction and phos-
phorylation activities. These identified genes can be 
targeted for breeding salt-tolerant varieties of rice.  
 
Keywords: Correlation coefficient, gene regulatory 
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RICE (Oryza sativa L.) is the most important cereal crop, 
and is the major food source for South Asia, India in par-
ticular1. However, the production of rice has been  
increasingly affected by salinity stress present in the soil 
and/or water2. Therefore, to increase the production of 
rice, which can play an important role for ensuring food 
security, it is essential to breed high salt-tolerant varieties 
through molecular breeding techniques3. For this, it is 
necessary to have information regarding salinity stress re-
sponsive genes as well as their underlying mechanisms. 
In this regard, the reverse engineering of gene regulatory 
networks (GRNs; networks that represent genes as well 
as the interactions among them) can be used as a tool to 
understand the molecular mechanisms of underlying bio-
logical process of the salinity stress response in rice.  
 Advancement in microarray technologies has made it 
feasible to draw inference about the pre-existing regula-
tory networks of biological processes, by allowing simul-
taneous measurements of the expression levels of 

thousands of genes. The nodes of GRNs are represented 
by genes and the edges between nodes represent interac-
tions among genes4. Analysis of the GRNs helps in un-
derstanding the interactions among the genes and to 
identify the target genes for the breeding of tolerant va-
rieties. Further, the reverse engineering of GRNs explic-
itly represents the regulatory interaction between genes 
and their products, which helps researchers to understand 
complex regulatory mechanisms in biological systems.  
 Several methods have been developed for inferring 
GRNs from microarray gene expression profiles, which 
vary in terms of precision and computational complex-
ity5. These methods can be broadly categorized into two 
types based on the type of data used, i.e. discrete or con-
tinuous6. For the discrete gene expression data (ex-
pressed: 1, unexpressed: 0), models like Boolean network 
(BN), probabilistic Boolean network (PBN), etc. have 
been proposed7–9, while for the continuous expression 
data, Pearson’s correlation based algorithm10,11, Bayesian 
network modelling12, dynamic Bayesian network model-
ling approach13, etc. have been developed for network  
inference. During discretization of gene expression data, 
there is always a chance of losing information, and hence 
the respective model may not provide the expected result. 
Further, Pearson’s correlation-based approach may not 
detect the nonlinear relationship present among the genes. 
Though, Bayesian network-based methods provide higher 
degree of accuracy, their application in real experimental 
case is limited due to their computational complexity. 
 In the present study, we propose an approach to infer 
GRN on the basis of Kendall’s tau correlation coefficient 
(KTCC). We preferred to use KTCC because it is non-
parametric, captures nonlinear relationships, and involves 
less computational complexity. The proposed approach 
was applied in rice gene expression data for identifying 
the salinity stress responsive genes. The identified genes 
were further validated based on information available in 
the literature. Surprisingly, most of the identified genes 
were found to be involved directly or indirectly in salinity 
stress.  
 In this study, the rice microarray dataset GSE14403 
(ref. 14) was used, collected from the Gene Expression 
Omnibus database (http://www.ncbi.nlm.nih.gov/GEO). 
The collected dataset has been generated from Affymetrix 
Rice Genome Array (GPL 2025 in GEO) and contains 
57,381 probes, where each probe corresponds to an indi-
vidual gene. Here 123 probe sets have been designed as 
control, and hence the remaining 57,258 valid probe sets 
have been used for further analysis. The raw CEL files 
were processed using the robust multichip average 
(RMA) algorithm available in the Affy package15, which 
includes background correction, quantile normalization 
and summarization by the median polish approach16. The 
log2 scale data obtained after executing the RMA algo-
rithm were then used for filtering out differentially  
expressed genes.  
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 A two-stage filtering procedure was applied to identify 
the genes that are differentially expressed in salinity 
stress conditions compared to normal condition. In the 
first stage, t-test was employed and the genes which were 
found to be significant at 0.5% level of significance were 
retained for the next stage of filtering. The test statistic 
for testing the significance of the ith gene expression pro-
file is given by 
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where iy  and ix  are the means, 2

yis  and 2
xis  are the vari-

ances, ny and nx are the sample sizes under salinity stress 
and normal conditions respectively. In the second stage 
of filtering, fold change (FC) measure was computed for 
the genes selected in the first stage. The genes having at 
least 2.5-fold change in their expression levels were  
selected for further analysis. For the ith gene expression 
profile, the FC measure was computed as FCi = log2 iy – 
log2 .ix  
 After filtering out the differentially expressed genes 
through two-stage filtering procedure, the regulatory rela-
tionships among them were computed using KTCC as 
follows. 
 Let (x1, x2, … , xn) and (y1, y2, … , yn) be the expression 
profiles of x and y genes respectively. Then, there are 
n(n – 1)/2 possible distinct pairs of (xi, xj) and (yi, yj), and 
such pairs of gene expression values are said to be con-
cordant if (xi > xj and yi > yj) or (xi < xj and yi < yj), and 
discordant (xi < xj and yi > yj), or (xi > xj and yi < yj). 
KTCC was then computed as 
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where C and D are the number of concordant and discor-
dant pairs respectively. Based on the value of KTCC 
(xy), the following interpretation was made. 
 
 If xy > 0, then gene y acts as an activator for gene x. 
 
 If xy < 0, then gene y acts as an inhibitor for gene x. 
 
After the computation of KTCC, weakly correlated genes 
were eliminated based on a certain threshold value and 
the remaining highly connected genes were retained for 
constructing the regulatory networks. Based on KTCC, 
the GRN was constructed using RCytoscape package17 of 
R software. 
 Unravelling the underlying mechanism of salinity 
stress in rice as well as the regulatory relationships 
among the salinity stress responsive genes will be of help 

for the breeder community to develop salt-tolerant varie-
ties of rice. To this end, the GRN plays an important role. 
Though there are several approaches available in the lit-
erature for inferring GRN, each has its own advantages 
and disadvantages. In this study, we propose an approach 
to infer GRN on the basis of KTCC, which avoids some 
of the limitations of the earlier approaches, e.g. it does 
not make any assumption about the probability distribu-
tion, can captures nonlinear relationships, involves less 
computational complexity, etc. The proposed approach 
was applied on rice gene expression profile as mentioned 
earlier. 
 Using complete gene expression profile, the expected 
differentially expressed genes were selected using a two-
stage filtering procedure. In the first stage t-test was used, 
where 2936 genes were selected with P values <0.005, 
which comprises 5.2% of the total number of genes. In 
the second stage, out of 2936 genes, 117 (0.2% of the  
total number of genes) with FC value 2.5 were selected. 
The regulatory relationships among these 117 genes were 
then computed using KTCC. Out of the 117 genes, the 
pairs with KTCC < 0.81 (50 genes) were excluded from 
the analysis to avoid weakly connected genes. Among the 
remaining 47 highly connected genes, 120 regulatory  
relationships were identified, which is shown graphically 
in Figure 1.  
 From the node-degree distribution of the constructed 
regulatory network (Figure 1), 18 genes are observed to 
have connection degree  6 (the average node-degree dis-
tribution), and therefore these are considered as the genes 
participating in the hub gene interaction. Among these 18 
genes, Os11g0293800, Os07g0418700, Os06g0647500, 
Os03g0826800, Os03g0809000, Os03g0184100, 
Os02g0685200, Os01g0775100, LOC_Os12g38770, 
LOC_Os10g39360, and LOC_Os07g12240 are found to 
have connection degree 10 (both in-degree and out-
degree), and the rest have between 6 and 10. The genes 
having connection degree 10 are considered as hub genes.  
 After analysing the regulatory network, the regulatory 
relationships among the hub genes were decided based on 
the sign of the KTCC (Table 1). From the table it can be 
seen that the gene Os03g0184100 is activated by the 
genes Os03g0826800, LOC_Os12g38770, Os03g0809000, 
LOC_Os10g39360, Os11g0293800, and LOC_Os06g36850, 
and inhibited by the genes Os07g0418700, Os06g0647500, 
Os01g0775100, and Os02g0685200. Similarly, 
Os07g0418700 is observed to be regulated by nine genes, 
namely Os06g0647500, Os01g0775100, Os02g0685200, 
Os03g0826800, LOC_Os12g38770, Os03g0809000, 
LOC_Os10g39360, Os11g0293800 and LOC_Os07g12240. 
More interestingly, Os11g0702400 which is not found to 
be activated by any other genes, seems to act as an inhibi-
tor for genes Os07g0525100, Os07g0525100, and 
Os01g0826000, and an activator for Os10g0370500. 
Similar interpretation can be made for other genes as 
well. 
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Figure 1. Inferred gene regulatory network in rice under salt stress condition. 
 
 The selected genes were further validated based on in-
formation available in the literature and biological data-
bases. Surprisingly, most of the genes were found to be 
involved directly or indirectly in salinity stress response 
mechanism in plants and other species, a brief description 
of which is provided in Table 2. More specifically, the 
hub gene Os11g0702400 that encodes zinc finger DNA-
binding protein is expected to have some role in salinity 
tolerance in rice18 and Arabidospis19. Further, the genes 
LOC_Os10g39360 and Os01g0868600, which are mem-
bers of eukaryotic aspartyl protease family protein, are 
found to be involved in response to salt stress in Arabi-
dospis20. The gene Os10g0539300 that encodes aspartic 
proteinase nepenthesin-2 is expected to be linked to salin-
ity stress tolerance in Arabidospis21, rice22 and Poa an-
nua23. Also, the gene Os01g0826000, which represents 
heavy metal-associated domain containing protein in 
halophytic plant Atriplex canescens, confers tolerance to 
iron and other abiotic stresses24. 
 To be more confident, the selected genes were further 
subjected to Gene Ontology (GO) enrichment analysis. 
This was performed using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID)25, 
which is a biological knowledge base and analytic tool 
aimed at systematically extracting biological meaning 
from gene lists. Table 3 provides results of GO analysis. 
From the table it can be seen that the chosen genes are 
over-represented in the categories of cation binding, and 

ion binding, metal ion binding, iron ion binding, transi-
tion metal ion binding, all of which may be active due to 
the high concentration of ionic salts in soil and water. 
The behaviour of the genes in electron carrier activity 
may be related to cell membrane disruption due to high 
concentration of salt ions, thereby inhibiting the activities 
of membrane associated electron carriers and en-
zymes26,27. Further, they may be involved in transporting 
the ions outside the cell to maintain proper pH in the cell. 
In biological processes, the selected genes are represented 
in two categories, i.e. reduction–oxidation (redox) and 
phosphorylation. The behaviour of these genes in redox 
activities may be related to electron transport in chemical 
reaction that ensures the balance of charges during ion 
transport22. It may also be linked to the generation reac-
tive oxygen species that are produced in response to oxi-
dative stress due to water deficit during salinity stress, 
which is lethal and can cause cell death28. 
 The role of some genes in phosphorylation activity for 
salt stress condition is detected in GO analysis that sup-
plements the recent report on the active role of phos-
phorylation activity in salinity stress22. It has been 
reported that biological processes like phosphorylation 
activity have a key role in ion homeostasis under salinity 
stress in Arabidopsis29. 
 The complex gene–gene interactions underlying the sali-
nity response mechanism may be due to perturbations in 
the GRNs. Therefore, identification of salinity-responsive
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Table 1. Interaction between genes involved in salinity stress response in Oryza sativa 

  Activate (+)/ 
Target  Regulator  repress (–) 
 

Os03g0184100 Os03g0826800, LOC_Os12g38770,Os03g0809000, LOC_Os10g39360,Os11g0293800, LOC_Os06g36850 + 
 Os07g0418700, Os06g0647500, Os01g0775100, Os02g0685200 – 
Os07g0418700 Os06g0647500, Os01g0775100, Os02g0685200 + 
 Os03g0826800, LOC_Os12g38770, Os03g0809000, LOC_Os10g39360, Os11g0293800, LOC_Os07g12240 – 
Os06g0647500 Os01g0775100 + 
 Os03g0826800, LOC_Os12g38770, Os03g0809000, Os11g0293800, LOC_Os07g12240, LOC_Os10g39360 – 
Os03g0826800 LOC_Os12g38770, Os03g0809000, LOC_Os10g39360, Os11g0293800, LOC_Os07g12240 + 
 Os01g0775100 – 
Os01g0826000 Os10g0370500, Os07g0525100 + 
 Os04g0535600, Os11g0702400, Os01g0220700, Os10g0539300 – 
Os07g0525100 Os01g0220700, Os10g0539300 + 
 Os10g0370500, Os04g0535600, Os11g0702400 – 
Os01g0220700 Os10g0539300 + 
 Os10g0370500, Os04g0535600, Os11g0702400 – 
Os10g0370500 Os04g0535600, Os11g0702400 + 
 Os10g0539300 – 
Os01g0775100 Os02g0685200 + 
 LOC_Os12g38770, Os03g0809000, LOC_Os10g39360, Os11g0293800, LOC_Os07g12240 – 
LOC_Os12g38770 Os03g0809000, LOC_Os10g39360, Os11g0293800, LOC_Os07g12240 + 
 Os02g0685200 – 
Os03g0809000 LOC_Os10g39360, Os11g0293800,LOC_Os07g12240 + 
 Os02g0685200 – 
Os11g0702400 Os10g0539300 – 
Os11g0293800 LOC_Os07g12240 + 
 Os02g0685200 – 
LOC_Os10g39360 Os11g0293800, LOC_Os07g12240 + 
 Os02g0685200 – 

+, represents the activation; –, represents the inhibition. 
 
 

Table 2. List of genes involved in salinity stress response in rice 

Genes     Brief description Organism Reference 
 

LOC_Os10g39360, Os01g0868600 Eukaryotic aspartyl protease family protein AT 20 
LOC_Os07g12240 EF hand family protein OS 30 
Os11g0293800 Phosphatidylethanolamine-binding protein HV 31 
Os07g0418700 Vegetative cell wall protein  HG 32 
Os03g0809000 Dirigent-like protein SO 33 
Os01g0775100 Plus-3 domain containing protein –  
Os11g0702400 Zinc finger DNA-binding protein, putative AT, OS 18, 19 
Os10g0539300 Aspartic proteinase nepenthesin-2 precursor AT, OS 21, 22 
Os01g0826000 Heavy metal-associated domain containing protein AC 24 
Os01g0220700 Nodulin MtN3 family protein AT 34 
Os08g0249000 CONSTANS-like protein CO8 AT 35 
Os06g0306600 Gibberellin receptor GID1L2 OS 22 
Os04g0415800 protease inhibitor/lipid transfer protein – 36 
Os12g0151000 Serine/threonine protein – 37 
Os11g0643800 Sugar transporter family protein SC 38 
Os04g0347100 Similar to basic endochitinase precursor AT 39 

Genes are represented by their uni-gene id or locus id. ‘Organism’ indicates the one in which the genes are reported.  
AT, Arabidospis thaliana; OS, Oryza sativa; AC, Atriplex canescens; HV, Hordeum vulgare; SO, Saccharum officinarum;,  
Sc, Saccharomyces cerevisiae; HG, Halogeton glomeratus. 

 
 
hub genes and their regulators in GRN is a step forward 
for developing salinity-tolerant varieties in rice. A di-
rected regulatory network like GRN is a legitimate way 
of representing gene–gene interactions responsible for 
such mechanism and also facilitating the activatory and 

inhibitory relationship between gene pairs. Here we pre-
sent a simple approach to infer GRN based on KTCC, 
this has been applied to rice gene expression profile  
to extract the salinity stress responsive genes in rice. 
Based on the proposed approach, 18 hub genes have



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 112, NO. 6, 25 MARCH 2017 1261 

Table 3. GO term enrichment analysis of selected genes 

GO term   Description  Number in the selected gene set P-value Ontology 
 

GO:0009055 Electron carrier activity 4 6.00E-02 MF 
GO:0043169 Cation binding 8 6.10E-02 MF 
GO:0043167 Ion binding 8 6.10E-02 MF 
GO:0046872 Metal ion binding 7 1.30E-01 MF 
GO:0005506 Iron ion binding 3 2.30E-01 MF 
GO:0046914 Transition metal ion binding 5 3.30E-01 MF 
GO:0055114 Oxidation–Reduction activity 5 4.00E-01 BP 
GO:0016310 Phosphorylation activity 4 2.34E-02 BP 

MF, Molecular function, BP, Biological process. Number in the selected gene set is the number of genes in the 
query gene list. P value represents the significance of the gene enrichment test.  

 

 
been identified and are expected to have some role in sa-
linity response mechanism in rice, as evidenced from the 
available literature and GO analysis. The regulatory in-
teractions between gene pairs in case of salinity stress 
condition in rice are not freely available in databases and 
the literature, which limits the realistic validation of these 
interactions. The utility and validity of the results ob-
tained in this study further need wet-lab experimental 
validation. The breeder can target these genes (validated 
genes) to develop salt stress-tolerant varieties of rice. 
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An interactive computer vision system  
for tree ring analysis 
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Tree rings (growthing) analysis provides useful infor-
mation about the age of a tree and the past climatic 
conditions. Analysis of tree rings manually is a hercu-
lean task and requires a domain area expert. The pre-
sent work proposes a soft technique to analyse tree 
rings. Effective canny edge detection approach was 
utilized to process high-quality digital images of tree 
rings. The developed program successfully performs 
interactive tree-ring image analysis with MATLAB 
Image Processing Toolbox. It generates information 
about the width of earlywood and latewood of the 
growth ring. The information generated may be fur-
ther utilized by domain area expert to deduce the age 
of a tree. The development of such a system will ease 
the human analysis efforts. 
 
Keywords. Canny edge detection, digital image proc-
essing, pixel labelling, tree rings. 
 
DENDROCHRONOLOGY was developed during the first half 
of the 20th century, by astronomer A. E. Douglass, foun-
der of the Laboratory of Tree-Ring Research at the Uni-
versity of Arizona, USA. 
 Each year, new cells are formed in a tree. These cells 
are arranged in concentric circles called annual growth 
rings, which show the amount of wood produced during 
one growing season. In summer, dark wood also known 
as latewood is produced because growth is slow, whereas 
in spring growth is fast and light wood also known as  
earlywood is produced. An alternate layer of light and 
dark wood appears on the cross-section when a tree is cut 
down. One year of growth is therefore represented by a 
ring consisting of a light part (earlywood) and a dark part 
(latewood). The older rings are near the centre of the tree. 
Width of a growth ring depends upon duration of growing 
season of the tree. The study of tree growth rings pro-
vides a glimpse of the past climatic conditions. 
 The automation of analysis of tree rings requires image 
analysis and processing. The task is difficult as the  
images contain high levels of noise. The appearance of 
tree rings has a greater contrast when the tree grows in an 
environment where climate is influenced by seasonal 
weather change; for example, temperate-zone tree rings 
compared to tropical-zone tree rings. Therefore, seasonal 
changes cause the tree to grow at different rates. 


