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Most of the physical phenomena are multiscale in  
nature and therefore, to depict it properly one requires 
multiscale modelling techniques, i.e. physical models 
that are accurate over multiple length and time scales. 
The seminal work by Warshel and Levitt marks the 
beginning of hybrid quantum mechanics/molecular 
mechanics (QM/MM) method as a successful strategy 
towards the understanding of chemistry and physics 
in condensed phases and especially in biological sys-
tems. Recently, these methods have been extended to 
problems such as light–matter interaction, where the 
QM sub-system is excited from the ground to the  
excited states. The MM environment provides a field 
that changes the potential energy landscape of both 
the ground and excited states in a distinctly different 
way. In this review, we discuss the general strategy of 
multiscale modelling with emphasis on hybrid 
QM/MM and the recent developments in excited state 
QM/MM methods. 
 
Keywords: Biological systems, hybrid quantum  
mechanics/molecular mechanics, multiscale. 

Multiscale modelling 

MANY real-world phenomena are multiscale in nature, i.e. 
they show complex behaviour that spans over a large 
range of length and time scales. Length scales can span 
from few Å in case of bond lengths to a few microns in 
case of living cell. On the other hand, time scales can 
range from femtosecond (10–15 s) for bond vibrations to 
milliseconds (10–3 s) for protein folding. In most cases, 
the different scales (microscopic and macroscopic when it 
is the length scales) might be a continuum of varying 
scales. The microscopic behaviour in most cases is spe-
cific and complex, while the macroscopic behaviour can 
be defined by more general rules. For example, the flow 
of traffic or pedestrians in a crowded street. If one tracks 
the trajectory of individual pedestrians, they have a spe-
cific destination and, therefore, they move towards that 
destination while avoiding the nearest neighbour interac-
tions or collisions. However, when one zooms out and 

looks at the average pattern of flow it is very similar to 
fluid dynamics through a constrained space. 
 Traditionally models have been developed that  
describe the physics associated with a single time and 
length scale. However, since the real-world phenomena 
requires one to span over more than one scale, simulation 
or modelling techniques have evolved such that they can 
handle multiple scales in a seamless fashion1. 

Analytical multiscale methods 

Analytical multiscale approaches have been developed 
for quite a few decades now. In this approach, one  
derives the rules (or phenomenological models) of a  
macroscale system from that of a microscale model.  
Renormalization group (RG) is a classic example of such 
analytical multiscale method2. RG has been used to study 
phase transitions and critical phenomena. The need for 
renormalization arises when there are two or more differ-
ent scales (time or length) and there is no clear demarca-
tion between them. RG is a technique to reduce the 
degrees of freedom by integrating out less important  
degrees of freedom in a consistent fashion. 
 Numerical RG technique was developed by Wilson and 
co-workers to solve the Kondo problem3. The idea is eas-
ily understood in a 1D or 2D spin block model. Let us say 
we have a 2D system of atoms (Figure 1) arranged in a 
lattice and let us assume that only the nearest neighbours 
interact with each other with a strength J (coupling  
constant). Now, the Hamiltonian of the system can be 
 
 
 

 
 

Figure 1. Renormalization group provides the tools to coarse grain 
interactions and have been successfully used in 2D lattice systems. 
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described as a function of J. However, we can divide the 
system into super-blocks containing 2  2 atoms. Instead 
of defining the interactions in terms of atoms, we can 
proceed to define it in terms of these super-blocks of at-
oms where we have a renormalized coupling constant J. 
 Similar ideas have also been used to solve the many-
body quantum mechanical wave function, where  
renormalization is performed using information from the 
density matrices. The density matrices describe the im-
portance of various electronic configurations and, there-
fore, can be used as a measure to eliminate less important 
degrees of freedom. This is called density matrix renor-
malization group (DMRG) and has been developed for 
strongly correlated electronic Hamiltonians4–6. 

Hierarchy of physical models 

Physical models have been built to deal with numerical 
solutions in different length and time scales. As men-
tioned before, traditional modelling approaches focus on 
one or other time and length scale (Figure 2). 

Continuum 

Materials are made up of atoms and molecules, but from 
a length scales significantly larger than inter-atomic  
distances, it can be considered as continuous, and the  
dynamics can be defined by fundamental physical laws 
and differential equations derived from them. Continuum 
models disregard the atomistic or discrete nature of mate-
rials. 
 Polarizable continuum model (PCM) is a popular con-
tinuum model that is used to describe solvation effects7. 
Tomasi and co-workers defined the free energy of solva-
tion as composed of electrostatics, dispersion-repulsion 
and cavity effects. The solvents do not have any atomistic 
detail but the overall dielectric constant of the medium 
 
 

 
 

Figure 2. Different physical models that can be used for various time 
and length scales. 

provides the basis for electrostatics. The dispersion–
repulsion and cavitation energies are derived from  
the overlapping van der Waals radii of the solute  
atoms. The various types of PCM models are dielectric 
PCM (D-PCM)8, conductor like PCM (C-PCM or 
COSMO)9 and other models such as SMx models10. The 
continuum models are computationally very fast but lack 
specific interactions since they do not have atomistic  
details. 

Molecular mechanics 

Force field or molecular mechanics are empirical poten-
tials for interactions between atoms in the molecules of 
the system. This empirical potential, once fitted with  
respect to either experimental data or more accurate 
(quantum mechanical) calculations, can be used to study 
the dynamics of the system. This is the basic principle of 
classical molecular dynamics (MD), i.e. the force on the 
system can be written as 
 
 ( ),F V r 
   (1) 

 
where the potential ( )V r  is the empirically fitted poten-
tial. The motion of the atoms or molecules are derived 
from the forces using Newton’s laws of motion 
 
 ,F ma
   (2) 

 
where m is the mass of the molecule or atom and a  is the 
acceleration. 
 The force field or the fitted potential can be divided  
into bonded and non-bonded interaction terms 
 
 MM bonded non-bonded .V V V   (3) 
 
 Classical MD can be of two broad types depending on 
the level at which the force fields are computed – 
atomistic and coarse grain. 
 
Coarse grain MD: The system size and time scales  
required for understanding some processes precludes the 
use of full atomistic details, but on the other hand might 
require more degrees of freedom than a complete contin-
uum description. In such situations, force fields can be 
developed which do not depend on the position of indi-
vidual atoms11,12, but rather depend on groups of atoms. 
For example, in MARTINI (a popular coarse grain force 
field)13, each residue on the backbone of an amino acid is 
described as a single bead at the centre of mass of the  
residue. This reduces the number of degrees of freedom 
significantly from the full atomistic description. These 
residues or beads interact with each other with bonded 
and non-bonded interaction energy terms. 
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Atomistic MD: For a more detailed (accurate) descrip-
tion of the system, one requires a full atomistic descrip-
tion, where the force field depends on the positions of all 
the atoms in the system. The force field is again divided 
into bonded and non-bonded interaction terms. 
 The bonded interactions can be classified into 
 
 bonded bond angle dihedralV V V V    
 

     2 2
b 0 0

bonds angles
( ) ( )ak r r k        

 

     
torsions

1 [1 cos( )],
2 nV n     (4) 

 
where the terms Vbond, Vangle and Vdihedral represent the  
interaction energies between covalently bonded atoms, 
between orbitals in adjacent bonds, and that due to the 
twisting of a bond, i.e. bond order. The bond and angle 
terms are most commonly parametrized as harmonic  
potentials and the dihedral energy term as a periodic 
function such as cosine. The non-bonded interactions can 
be classified as electrostatics and van-der Waals’ inter-
actions 
 
 non-bonded electrostatics vdwV V V   
 

     12, 6,
12 6

1 1
,

N N
i j ij ij

iji j i ij ij

q q C C
r r r  

  
    

    
   (5) 

 
where qi and rij denote the charge on atom i and the  
distance between ith and jth atoms respectively. The C6 
and C12 terms depend on the van der Waals radii of atoms 
and the strength of van der Waals interaction energy be-
tween the non-bonded atoms. Thus, electrostatics forms 
the long-range interactions while the van der Waals inter-
actions are more short range in nature. Force fields such 
as AMBER, CHARMM, GROMOS, OPLS, etc. follow 
this general form of parametrization or small changes the-
reof. They form the general class of non-polarizable force 
fields14. 

Quantum mechanics or electronic structure 

While molecular dynamics in both atomistic and coarse 
grain scale are powerful tools for understanding large 
scale dynamics of systems, it is still incapable of describ-
ing chemical reactions. Chemical reactions deal with 
breaking and forming chemical bonds and, therefore, the 
motion of electrons. For understanding such phenomena 
one requires not only atomistic but also electronic  
degrees of freedom, and therefore, quantum mechanical 
or electronic structure methods, i.e. Schrödinger equa- 
tion 

 ˆ ,H E   (6) 
 
is solved to calculate the wavefunction and energy of the 
system. 
 
Semi-empirical: Semi-empirical methods are the most 
affordable among the quantum mechanical methods. 
Semi-empirical methods are based on mean field descrip-
tions, such as Hartree-Fock, with added approximations 
and empirical data. Huckel’s theory and extended Huckel 
methods are successful examples of semi-empirical  
methods. Such methods can deal with conjugated systems 
and  electronic excited states. The  orbitals are not  
described explicitly in these methods and the  orbitals 
are described by empirical parameters, i.e. the Hamilto-
nian Ĥ  is a reduced empirical Hamiltonian. CNDO, 
MNDO, INDO, etc. are other examples of semi-empirical 
quantum mechanical methods. 
 
Density functional theory: Density functional theory 
(DFT) is one of the most successful approaches in quan-
tum mechanics used for a wide variety of systems. In  
order to reduce the degrees of freedom, instead of the 
complex n particle wavefunction ( (x1, y1, z1,…, xn, yn, 
zn)), one solves the electron density () which is a func-
tion of space (x, y, z) and time15. The Hohenberg-Kohn 
theorem states that the electron density ( (x, y, z)) deter-
mines all the properties of the ground state of the  
system16,17. 
 Thus, by focussing on the calculation of electron den-
sity (and not the wavefunction), an effective one-electron 
Schrödinger equation can be derived and solved. The 
problem is, thus, reduced to finding the kinetic and  
exchange correlation energies. There are a variety of 
functional forms of the kinetic and exchange correlation 
part of the Hamiltonian that gives rise to various DFT 
functionals. 
 
Many-body theory: Many-body theory requires consid-
eration of the full electronic Hamiltonian and its solution. 
It is the most rigorous form of quantum mechanical  
calculations and is computationally expensive. One starts 
with the mean field approximation to get a reference  
wavefunction, i.e. Hartree-Fock theory. This reference 
wavefunction is refined most often in a perturbative  
approach giving rise to a variety of post Hartree Fock  
methods, such as MP2, CCSD, etc. 

Multi-physics models 

As mentioned before, there are many phenomena in  
nature that requires consideration of a multitude of time 
and length scales and, therefore, a single physical model 
is not adequate to describe it. Therefore, multi-physics or 
multiscale models have been developed. Multiscaling can 
be achieved in sequential and concurrent fashion. 
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 Sequential multiscale methods: In sequential multis-
caling, one has a macroscale model, the parameters 
for which are pre-computed using microscale models. 
This is essentially parameter-passing and is conceptu-
ally simple since it does not require consideration of 
two physical models in the same computation. 

 Concurrent multiscale methods: In concurrent multis-
caling, the macro- and microscale are treated together 
in a hybrid framework and the interaction between 
them is computed on the fly. Most the multiscale  
methods such as hybrid quantum mechanics/molecular 
mechanics (QM/MM) discussed in this article are 
concurrent multiscale methods. 

Domain decomposition methods 

The idea of domain decomposition methods is often used 
in multiscale methods. The system of interest is divided 
into domains or sub-systems. The properties of sub-
systems are then calculated separately and at different  
levels of theory. Domains can either be overlapping or 
non-overlapping. Hybrid QM/MM belongs to the general 
class of domain decomposition methods1,18,19. 

Hybrid QM/MM 

Proteins are typically made up of 1000 s of atoms and the 
system is even larger when one considers the surrounding 
water molecules. All these atoms and molecules contribute 
to the properties of the protein, in both ground and ex-
cited states. Therefore, for treatment of proteins and other 
biological systems, classical force fields are required. 
 However, chemists have always been fascinated by re-
actions in nature, i.e. in proteins and for that one needs to 
consider the electronic structure of the bio-system. There-
fore, for treatment of chemical reactions in condensed 
phases, hybrid treatment is required. The important parts 
of the system, i.e. the active site, requires QM treatment. 
In the active sites the electronic degrees of freedom are 
important for phenomena such as bond breaking or for-
mation, or electron transfer processes. The rest of the sys-
tem is viewed in a more spectator-like fashion, i.e. it 
provides an effective field to the active site. 
 Thus, in such active site-driven processes in proteins, a 
small part of the system is treated at a higher level of the-
ory, typically a quantum-mechanical method, while the 
rest of the system is treated at a lower level of theory, 
typically a molecular mechanical method (Figure 3 shows 
such a division of a enzymatic reaction where only the 
active site is treated quantum mechanically). Hybrid 
QM/MM embedding can be achieved in two ways – 
subtractive and additive. 
 1. Subtractive embedding: In subtractive embedding 
(shown in Figure 4), the total QM/MM Hamiltonian of a 
system can be written as 

 HQM/MM(sub) = HMM (full system) 
 
    + [HQM (active site) – HMM (active site)], (7) 
 
where the subscript QM and MM denotes the levels of 
theory used in the calculation. Since QM calculation can-
not be performed on the full system, that is tackled at the 
MM level of theory. To look at the phenomena in the ac-
tive site that requires electronic degrees of freedom, QM 
level of theory is used. Finally to remove the double 
counting, MM level calculation on the active site is per-
formed and subtracted. Thus, one needs to perform three 
decoupled calculations – (i) full system at the MM level 
of theory; (ii) active site at the QM level of theory, and 
(iii) active site at the MM level of theory. This sort of 
embedding, while reasonable for decomposition of  
energy, is not a good way of calculating the properties of 
the system since the QM wavefunction is not modified by 
the field due to the MM environment. An extension of the 
subtractive embedding, where more than 2 levels of  
theory are used is called ONIOM20. 
 
 

 
 

Figure 3. Hybrid QM/MM scheme shown in green fluorescent pro-
tein (GFP). The GFP chromophore lies at the centre of barrel formed by 
-sheets. The chromophore (which absorbs visible and fluoresces) is 
treated quantum mechanically, while the rest of the system is treated at 
a molecular mechanical level. 

 
 

 
 

Figure 4. Subtractive scheme of QM/MM embedding. 
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 2. Additive embedding: In the additive scheme of 
embedding, one writes the total Hamiltonian of the sys-
tem as 
 
 HQM/MM(sub) = HQM (active site) 
 
        + HMM (environment) + HQM/MM, (8) 
 
where the HQM/MM denotes the interactions between  
the QM and MM sub-systems, i.e. the active site and the 
environment. Thus, it is the proper implementation of  
the QM and MM subsystem interactions that is the most  
crucial and complicated part. Depending on the different 
methods of handling the interaction terms there are three 
different approaches – mechanical embedding, electronic 
embedding and polarization embedding. 

Additive scheme of hybrid QM/MM 

Mechanical embedding 

In case of mechanical embedding the QM and MM sub-
systems, i.e. HQM and HMM are solved separately at dif-
ferent levels of theory. The interaction between the QM 
and MM sub-systems is added as energy corrections at 
the end of the calculation, as Coulomb interaction energy 
between the charge density in the QM region and the 
point charges in the MM region 
 

 EQM/MM = 
_ ( )

d ,i

i

r q
r

r


  (9) 

 
where  (r) denotes the charge density of the QM region 
at point r, qi denotes the charge of the ith point in MM 
region and ri denotes the distance from the ith MM point 
and position r in the QM region. The charge density (r) 
of the QM region and qi are calculated separately and do 
not affect each other. This is the major drawback of this 
scheme. 
 Since this is a correction to the energy and not the  
Hamiltonian, this approach suffers from the same defi-
ciencies of the subtractive scheme. Since the Hamiltonian 
of the QM region is not changed due to the QM/MM in-
teractions, the wavefunction does not change due to the 
interactions and, therefore, properties apart from energy 
cannot be correctly predicted with this approach. 
 
 

 
 

Figure 5. Additive scheme of QM/MM embedding. 

Electronic embedding 

To alleviate the deficiency of mechanical embedding, in 
electronic embedding, the effect of charges in the MM 
region on the QM charge density is accounted for. In  
other words, the effective field due to MM region on the 
QM region is included as a perturbation to the Hamilto-
nian of the QM part. Therefore, in the electronic embed-
ding, although the QM/MM interaction energy takes a 
similar form as eq. (9), the charge density  (r) is cor-
rected due to the effect of MM environment. 
 Furthermore, since the Hamiltonian is changed pertur-
batively due to the presence of the MM region 
 

 QM QM/MM
ˆ ˆ ˆ .H H V    (10) 

 
The charge density  (r) obtained from solving this Ĥ   
gives access to all the perturbatively corrected properties 
of the system. 

Polarization embedding 

While electronic embedding accounts for the effect of 
MM region on the QM region, the QM region can also  
affect the MM region which might self-consistently 
change the QM Hamiltonian. This self-consistent effect  
is called polarization embedding. There are various  
approaches of polarization embedding and this continues 
to be an active field of reach. Drude oscillator model, 
fluctuating charge model, induced dipoles, etc are some 
of the polarization embedding methods. Effective frag-
ment potential (EFP)21–23 and polarizable embedding 
(PE)24 are two sophisticated polarizable force fields, 
which have been used for both ground and excited state 
properties in the hybrid QM/MM framework. 
 In all the embedding schemes, a crucial component for 
the proper functioning of the hybrid QM/MM formalism 
is the accurate treatment of boundary atoms, i.e. the at-
oms that are very near to the QM and MM boundaries. 
Since, in the case of MM atoms, the force field is  
depicted as charges and higher multipoles (permanent or 
induced), it can cause unphysical electric fields on the 
nearest neighbouring QM atoms and, therefore, charge 
damping schemes are often used. This situation is further 
complicated in a biological system, such as protein, 
where the QM boundary atom and MM boundary atom 
are bonded to each other. This requires satisfying the  
valency of the boundary QM atom. Methods such as link 
atom (LA)25, and molecular fractionation with conjugate 
capping (MFCC)26 have been developed for this purpose. 

Enzyme catalysis with hybrid QM/MM 

Hybrid QM/MM as a viable multiscale method was first 
formulated in the seminal work by Warshel and Levitt1. 
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In their work, they studied the cleavage of glycosidic 
bond by lysozyme and the stability of the carbonium ion 
that is formed in the reaction. The main idea of the work 
is that the enzyme provides an environment that gives an 
effective electrostatic field, thereby preferentially stabi-
lizing the transition state and increasing the speed of the 
reaction. The main reaction site is treated quantum-
mechanically since it involves a bond breaking and re-
quires electronic degrees of freedom. It was shown in this 
study that the effective field provided by the environment 
need not be described at the quantum mechanical level 
for understanding the mechanism of catalysis. 
 Since then numerous studies have been carried out on 
elucidating the mechanisms of various enzyme catalytic 
reactions in this hybrid framework. 

New developments 

Excited states with QM/MM 

Understanding the relative changes between ground and 
excited states is crucial to the exploration of light–matter 
interactions. Light–matter interactions are important for 
processes such as photo-synthesis, light harvesting and so 
on. Excited state processes are also important for under-
standing biological processes, such as chemiluminis-
cence. Given the vast number of biological processes that 
involve both ground and excited states of the system, it is 
instrumental to develop computational methods that are 
capable of dealing with both ground and excited states of 
large systems. 
 While hybrid QM/MM methods have been developed 
quite extensively over the last three decades for chemical 
reactions in ground state and especially for enzyme  
catalysis, its use for the understanding of excited state 
processes and spectroscopic measurements in condensed 
phases is a more recent phenomena. It requires the use of 
not only state-of-the-art quantum mechanical methods for 
excited states, but also its seamless interface with MM 
methods. Since the charge densities of ground and excited 
states can be quite different, especially for charge transfer 
excited states, the field due to MM region can also be 
significantly altered in the excited state, thus, requiring a 
proper description of the polarizability of MM region. 
 Effective fragment potential (EFP) is one such polariz-
able and sophisticated MM method22,23. It is derived from 
an a priori ab initio calculation on a fragment (typically a 
solvent molecule) and is therefore, non-empirical. EFP was 
originally developed and implemented in GAMESS to 
study water. It was later extended to any general molecule. 
 The potential due to the effective fragments is divided 
into four terms – electrostatics (Coulomb), polarization, 
dispersion and exchange repulsion 
 
 EEFP – EFP = ECoul + EPol + EDisp + EEx –  rep. (11) 

The Coulomb potential of the EFs includes charges,  
dipoles, quadrupoles and octupoles, and fitted using dis-
tributed multipole analysis. Apart from static multipoles, 
polarizability is an important factor especially for excited 
state properties. Polarizability is the self-consistent 
change in charge density of one fragment due to the pre-
sence of other fragments. In EFP, the polarizability is  
estimated as the self-consistently calculated induced  
dipole moments 
 

 ,F 
 
  (12) 

 

where  denotes the polarizability tensor and F


 is the 
field due to the rest of the multipoles. The dispersion  
interaction can be expanded in the London dispersion  
series, where only the first term is retained in EFP, i.e. it 
takes the C6/R6 form. Exchange repulsion, which has its 
origin in the Pauli exclusion principle, is an inherently 
quantum mechanical part of the interaction. It is also the 
most expensive part of the EFP calculation and depends 
on the overlap integrals of localized molecular orbitals 
(LMOs). 
 In the hybrid QM/MM framework with EFP as the MM 
method of choice, the Hamiltonian can be written as 
 

 QM/EFP QM Coul Pol EFP EFP
ˆ ˆ| | ,H H V V E         (13) 

 
where the Hamiltonian of the QM part is perturbed by the 
Coulomb and polarization terms of the EFs in the envi-
ronment. Since polarization is an inherently many-body 
property, it is solved self-consistently. The solution of 
this equation would give a wavefunction that is corrected 
for the presence of the environment. This is the ground 
state QM/EFP wavefunction. 
 The charge density of the excited state wavefunction is 
different from the ground state and, therefore, the many-
body effect that it exerts on environment is different. 
Therefore, the polarization due to excited state can be 
drastically different from the ground state. This is espe-
cially true in case of charge transfer excited states. To  
account for that, an added perturbative polarization cor-
rection is included for the excited state that depends on 
the induced dipole moments on the environment (MM  
region) at the excited state. 
 Using this formalism, we have been able to accurately 
predict the ionization energies and excitation energies of 
biological systems such as DNA bases, GFP chromopho-
res etc in solvation27–29. 

Redox potential with QM/MM 

While excitation and ionization energies are important 
properties, experimentally it is easier to observe quanti-
ties such as redox potential. Therefore, it is important to 
estimate and predict redox potentials. Traditionally redox 
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potentials are calculated by constructing the Hess’s cycle, 
calculating the ionization energies in gas phase (which 
requires a purely quantum mechanical level of theory) 
and the solvation energies using continuum models. 
However, continuum models lack the description of  
specific interactions such as H-bonds which are crucial 
for the accurate estimation of solvation energies. There-
fore, to achieve the quantitative accuracy in the redox  
potential calculations, one requires a hybrid QM/MM 
formalism with discrete atoms in the MM region and pre-
ferably polarization. Thus, we have used hybrid QM/EFP 
as described in the previous section. Furthermore, the  
total free energy change of the electron transfer process 
can be written as 
 

 
B B

1 ln exp ,
i

EG
k T k T


     (14) 

 

where i denotes ensemble average over state i. Using 
linear response analysis (LRA), it can be reduced to 
 

 Red Ox
1 ( VIE VEA ),
2

G      (15) 
 

where VIERed denotes the ionization energy ensemble  
averaged at the reduced state and VEAOx denotes the 
electron affinity ensemble averaged at the oxidized state. 
Both these quantities can be calculated in the hybrid 
QM/EFP framework described above. Using QM/EFP 
along with LRA we have been able to predict the redox 
potentials of small molecules very accurately30. The  
details of the excited state QM/EFP developments are  
explained by Ghosh31. 

Complex biological systems 

Much of the on-going research is towards developing hy-
brid QM/MM formalisms for complex biological systems. 
Molecular tailoring approach (MTA)32, molecular frac-
tionation by conjugate capping (MFCC)26, fragment  
molecular orbitals (FMO)33, and molecule in molecule34 
are some examples of the divide and conquer approaches 
that have been extremely successful. MFCC-like ap-
proaches have also been developed for hybrid QM/EFP 
very recently35. Other fields of development are towards 
faster and more accurate polarizable force fields. The 
proper treatment of boundary between QM and MM  
regions, where they are covalently bonded, is another  
developing field. Methods such as link atom scheme25 
and frozen molecular orbitals (FMO)33 are noteworthy 
among these. 

Conclusion 

Since the processes in nature are multiscale in nature, 
multi-physics methods both in analytical and numerical 

fields have been developed over the last few decades. 
With the increase in computational power these are  
increasingly being used to solve chemical and physical 
real world problems. Hybrid QM/MM is one such highly 
successful technique for solving chemical problems rang-
ing from enzyme catalytic reactions to excited state phe-
nomena in more recent times. 
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