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This study compares two models of the production–
inventory system – optimal control and linear pro-
gramming. We derived the optimality conditions of 
optimal control model and formulated the linear pro-
gramming model. A new method to determine the 
theoretical solution of the boundary value problem 
has been suggested. Our numerical results suggest 
that control on the inventory level was realized at the 
end of the planning period, depending on the optimal 
control model, while in the linear programming 
model, it was realized from the beginning of the plan-
ning period. Also, the method to determine the theo-
retical solution of the boundary value problem has 
proven to be efficient. 
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INVENTORY control plays a major role in production 
systems. Companies hedge the demand of products with 
the highest profit. Inventory control is one of the most 
important factors that contributes to the reduction of 
costs. It is therefore studied using continuous or periodic 
review policies. Model periodic-review inventory control 
strategies have gained widespread acceptance in the 
industry, and it is known that this model is an interesting 
alternative to the real-time control of industrial processes. 
This field is associated with problems, such as deterio-
ration. The development of mathematical models serves 
to deal with the aforementioned problem, such as optimal 
control and linear programming. 
 An economic order quantity (EOQ) model with dete-
riorating inventory is one example. A model with con-
stant rates of deterioration and production was developed 
by Khanra and Chaudhuri1. They assumed model with 
shortage, and the time of start and end production cycle is 
a random variable. Also with a constant rate of deteriora-
tion, Begum et al.2 studied shortage, quadratic function of 
demand, and the effect of goods displayed, which repre-
sent inventory, on the sales. Jhaveri3, and Karmakar and 

Choudhury4 studied a model with holding costs as a func-
tion of time. Roy5 and Bansal6 developed an inventory 
system model with its deterioration rate as a function of 
time with and without shortages, and a demand rate as a 
function of price and constant respectively. The demand 
that rises quickly to a peak in the middle and falls quickly 
at the end of the planning time, i.e. a quadratic function, 
in a production–inventory system without shortage was 
studied by Gite7. A model that includes the cost of dete-
rioration, with the deterioration rate as a random variable 
that follows a Weibull distribution, was developed by 
Sharma and Choudhury8. Further references on the EOQ 
model with deteriorating items can be found in the litera-
ture9–16. 
 An economic production quantity (EPQ) model was 
used to determine the optimal production rate in inven-
tory systems. Model with deterioration rate as a random 
variable that adheres to the Weibull distribution and dis-
count price in a model of single items was addressed by 
Rao et al.17, and Kawale and Bansode18. In the context of 
inflation, Pal et al.19 clarified the length effect of the pro-
duction cycle on the total cost with back orders, neglected 
lead time and loss in sales. Das et al.20 discussed two 
constant rates of deterioration for raw materials and 
products for a single item model with constant rates of 
demand and holding costs. 
 An optimal control model of an inventory system was 
developed by Benhadid et al.21 and Emamverdi et al.22. 
The former group assumed a linear deterioration function, 
single item, time functions of demand and holding cost, 
and two policies of inventory review – continuous and 
periodic. With periodic review policy, Emamverdi et al.22 
developed a model to realize administration goals on  
inventory levels and production rate with demand that 
depends on time. 
 Another mathematical model used for production–
inventory system is linear programming. Most research-
ers intend to minimize total costs or maximize total pro-
fits. Zanoni and Zavanella23, and Moengin and Fitriana24 
developed models for planning the production of steel. 
They took into account many parameters in their plan, 
such as storage space, multi-period, machine work, multi-
product and production capacity. Lee and Kang25  
addressed a model with multi-period, only one order to 
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each period, limited storage and without shortages with 
known time of replenishment. The target was to deter-
mine the quantity of replenishment for each period equal 
in duration. Linear and nonlinear models with single-
stage, single-item, and machine-work hours were consid-
ered by Kefeli et al.26. They formulated a nonlinear clear-
ing function and queuing system with a single server for 
the resource. Grimmett27 developed a model with known 
inventory levels at the beginning and ending time peri-
ods, annual interest rates, and demand depending on  
the time. The aim of this work was to minimize the total 
cost of production and back orders. Veselovska28 devel-
oped a model of production processes to induce more 
flexibility in production and minimize the total cost, 
which includes cost such as production, inventory and 
transportation. Talapatra et al.29 analysed three cases of 
the workforce – fixed, change and both combined to  
reduce the production cost and meet the fluctuating  
demands by determining the levels of production, work-
force and inventory. 
 The present model is useful in several ways. The first 
step involves the formulation of a linear programming 
model of the production–inventory system with deterio-
rating items. This is followed by the introduction of a 
new method to determine the theoretical solution of the 
boundary value problem. Then, we compare the results of 
the production–inventory system – optimal control and 
linear programming. 
 This article is organized in the following order. First 
we introduce the notations and assumptions involved in 
the optimal inventory model. Then we discuss the formu-
lation of the optimal control model and derivation of the 
optimality conditions of the periodic-review system. The 
next section deals with the linear programming model 
followed by the section illustrating the results of the two 
aforementioned models. The final section summarizes our 
findings and suggests future researches. 

Notations and assumptions of the model 

Notations 

The following variables and parameters were used: 
 

T: length of the planning horizon (T > 0). 
Y(t): inventory level at time t. 
N(t): production rate at time t. 
D(t): demand rate for production at time t. 
 (t): deterioration rate, which depends on time. 
ˆ( ) :y t  inventory goal level.  
ˆ( ) :n t  production goal rate. 
Y(0): initial inventory level. 
h: penalty incurred when the inventory level deviates 
from its goal level (h > 0). 
k: penalty incurred when the total production rate deviates 
from its goal rate (k > 0). 

Assumptions 

We took into account the following assumptions: 
 
1. A firm can produce a certain product, sell some, and 

stack the rest in a warehouse. 
2. Increasing demand rate. 
3. The firm has set an inventory goal level and a produc-

tion goal rate. 
4. No shortage, and items are subjected to deterioration 

through storage. 
 
The inventory management aims to control inventory at 
the specific level to reduce the cost and at the same time 
satisfy the exogenous demand without loss in sales, thus 
controlling the production quantity for sale and storage at 
a specific level. A specific level of inventory is possible 
at any time or at the end of the planning period depending 
on the inventory management. 

Optimal control model 

The objective function can be expressed as the quadratic 
form to minimize eq. (1)30 
 

 
1

2 2

0
ˆ ˆ2 { ( ) ( )} { ( ) ( )} ,

T

t
J h Y t y t k N t n t




     (1) 

 
subject to the state equation 
 
 1( ) ( ) ( ); 0, 1, ..., ,Y t N t D t t t     (2) 

 
 1( ) ( ) ( ) ( ) ( ); 1,..., 1,Y t N t D t t Y t t t T        (3) 
 
and positive constraint 
 
 ( ) 0; 0, 1,..., 1,N t t T    (4) 

 
with initial condition 0(0) ,Y y  where Y(t) = Y(t + 1) – 
Y(t) is called the difference operator. 

Optimality conditions and solution of the model 

Inventory goal level and production goal rate must satisfy 
the state equations, i.e. eqs (2) and (3). Thus the produc-
tion goal rate is given by 
 
 1ˆ( ) ( );  0,1,..., ,n t D t t t   (5) 

 
 1ˆ ˆ( ) ( ) ( ) ( );   1,..., 1,n t D t t y t t t T      (6) 
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The Lagrangian function is 
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2
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L h Y t y t k N t n t


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      

 

  
1

0
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t
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t N t D t Y t Y t


       

 

  
1

1

1
( 1)[ ( ) ( ) ( ) ( ) ( 1) ( )]

T
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t N t D t t Y t Y t Y t 



 

        

 

  
1

0
( ) ( ).

T

t
Z t N t




  (7) 

 
The Hamiltonian function is defined as 
 

 2 21 ˆ ˆ( ) [ { ( ) ( )} { ( ) ( )} ]
2

H t h Y t y t k N t n t      

 
     1( 1)[ ( ) ( )]; 0,1..., ,t N t D t t t     (8) 
 

 2 21 ˆ ˆ( ) [ { ( ) ( )} { ( ) ( )} ]
2

H t h Y t y t k N t n t      

 
    ( 1)[ ( ) ( ) ( ) ( )];t N t D t t Y t      
 
    1 1,..., 1.t t T    (9) 
 
By using eqs (8) and (9), we can write eq. (7) as follows 
 

 
1

0
{ ( ) ( 1)( ( 1) ( ))}

T

t
L H t t Y t Y t




    

1

0
( ) ( ),

T

t
Z t N t




  

 (10) 
 
where Z(t) is the Lagrange multiplier, which satisfies the 
complementary slackness conditions 
 
 ( ) 0;   ( ) ( ) 0.Z t Z t N t   (11) 
 
From eqs (4) and (11), we get 
 
 Z(t) = 0. (12) 
 
Equations (4), (8) and (9) are concave in N(t). Thus eqs 
(8), (9) and (11) are the necessary and sufficient condi-
tions for maximizing the Hamiltonian problem. 
 Now, differentiating eq. (10) with respect to Y(t)  
yields 
 
 1ˆ( ) { ( ) ( )}; 0,..., ,t h Y t y t t t     (13) 
 
 1ˆ( ) { ( ) ( )} ( 1) ( ); 1,..., 1.t h Y t y t t t t t T           
 (14) 

To get the terminal boundary conditions, we differentiate 
eq. (10) with respect to X(T) 
 

 ( ) 0 ( ) 0.
( )

L T T
X T

 


    


 (15) 

 
To get the production rate, we differentiate eq. (10) with 
respect to N(t) 
 

 1ˆ( ) ( ) ( 1);  0,1,..., 1.N t n t t t T
k
      (16) 

 
Substituting eqs (5) and (16) into eq. (2) yields 
 

 1
1( ) ( 1); 0,1,..., .Y t t t t
k
     (17) 

 
Substituting eqs (6) and (16) into eq. (3) yields 
 

 1
1ˆ( ) ( ){ ( ) ( )} ( 1); 1,..., 1.Y t t Y t y t t t t T
k

           

 (18) 
 
From eqs (13), (14), (17) and (18) we obtain the follow-
ing system of difference equations 
 

 1
1( ) ( 1); 0,1,..., ,Y t t t t
k
     

 

 1ˆ( ) ( ){ ( ) ( )} ( 1);Y t t Y t y t t
k

        

 
     1 1,..., 1,t t T    (19) 
 
 1ˆ( ) { ( ) ( )};  1,..., ,t h Y t y t t t     
 
 ˆ( ) { ( ) ( )} ( 1) ( );t h Y t y t t t        
 
    1 1,..., 1.t t T     
 
This boundary value problem can be solved numerically 
using Microsoft Excel with initial condition Y(0) = y0 and 
the terminal condition (T) = 0 (ref. 30). 

Theoretical solution 

Benhadid et al.21 and Emamverdi et al.22 have used the 
sweep method to solve the boundary value problem. Here 
we propose a new method to solve eq. (19) as follows. 
 From eq. (19), we have 
 

 1ˆ( ) ( ){ ( ) ( )} ( 1); 0,..., 1,Y t t Y t y t t t T
k

           

  (20) 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 112, NO. 9, 10 MAY 2017 1858 

 ˆ( ) { ( ) ( )} ( 1) ( ); 0,..., 1.t h Y t y t t t t T          (21) 
 
For t = 0, we get 
 

 1ˆ(1) (0) (0){ (0) } (1),Y Y Y y
k

      

 

 1 ˆ(1) {1 (0)} (0) (1) (0) ,Y Y y
k

       (22) 

 

 1 ˆ(1) (0) (0) .
1 (0) 1 (0) 1 (0)

h hY y 
  

  
  

 (23) 

 
Substituting eq. (23) into eq. (22) yields 
 

 (1) {1 (0)} (0) (0)
{1 (0)}

hY Y Y
k




  


 

 

   1 ˆ ˆ(0) (0) ,
{1 (0)} {1 (0)}

h y y
k k

 
 

  
 

 

 
 0 0 0 ˆ(1) (0) (0) {1 } ,Y a Y b a y     (24) 
 
where 
 

 0 {1 (0)} ,
{1 (0)}

ha
k




  


 

 

 0
1 .

{1 (0)}
b

k 



 (25) 

 
Equation (23) becomes 
 
 0 0 0 ˆ(1) (0) (0) ,e Y c e y     (26) 
 
where 
 

 0 0
1; .

1 (0) 1 (0)
he c
 

 
 

 (27) 

 
For t = 1, we get 
 

 1 ˆ(2) {1 (1)} (1) (2) (1) ,Y Y y
k

       (28) 

 

 1 ˆ(2) (1) (1) .
1 (1) 1 (1) 1 (1)

h hY y 
  

  
  

 (29) 

 
Substituting eq. (27) into eq. (29), we get 
 
 1 1 1 ˆ(2) (1) (1) .e Y c e y     (30) 

Substituting eq. (29) into eq. (28) yields 
 

 (2) {1 (1)} (1) (1)
{1 (1)}

hY Y Y
k




  


 

 

    1 ˆ ˆ(1) (1) .
{1 (1)} {1 (1)}

h y y
k k

 
 

  
 

 (31) 

 
Substituting eq. (25) into eq. (31), we get 
 

 1 1 1 ˆ(2) (1) (1) {1 } .Y a Y b a y     (32) 
 
Substituting eqs (24) and (26) into eq. (32) to get Y(2) 
and with respect to Y(0) and (0) yields 
 
 0 1 0 1 0 1(2) {( ) ( )} (0) {( )* **Y a a e b Y b a    
 
    0 1 0 1( )} (0) [{(1 ) }**c b a a    
 
    0 1 1 ˆ( ) (1 )] .*e b a y    (33) 
 
We can write eq. (33) as 
 
 ˆ(2) (1) (0) (1) (0) (1) .Y A Y B N y    (34) 
 
where 
 
 0 1 0 1(1) ( ) ( ),* *A a a e b    
 
 0 1 0 1(1) ( ) ( ),* *B b a c b   
 
 0 1 0 1 1(1) {(1 ) } ( ) (1 ).**N a a e b a      (35) 
 
Substituting eqs (24) and (26) into eq. (30) yields 
 
 0 1 0 1(2) {( ) ( )} (0)* *a e e c Y    
 
    0 1 0 1{( ) ( )} (0)* *b e c c    
 
    0 1 0 1 1 ˆ[{(1 ) } ( ) ] .* *a e e c e y     (36) 
 
We can write eq. (36) as 
 
 ˆ(2) (1) (0) (1) (0) (1) ,E Y C E y     (37) 
 
where 
 
 0 1 0 1(1) ( ) ( ),* *E a e e c   
 
 0 1 0 1(1) ( ) ( ).* *C b e c c   (38) 
 
For t = 2, we get 
 

 1 ˆ(3) {1 (2)} (2) (3) (2) ,Y Y y
k

       (39) 
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 1 ˆ(3) (2) (2) .
1 (2) 1 (2) 1 (2)

h hY y 
  

  
  

 (40) 

 
Substituting eq. (27) into eq. (40), we get 
 
 2 2 2 ˆ(3) (1) (1) .e Y c e y     (41) 
 
Substituting eq. (40) into eq. (39) yields 
 

 (3) {1 (2)} (2) (2)
{1 (2)}

hY Y Y
k




  


 

 

    1 ˆ ˆ(2) (2) .
{1 (2)} {1 (2)}

h y y
k k

 
 

  
 

 (42) 

 
Substituting eq. (25) into eq. (42), we get 
 
 2 2 2 ˆ(3) (2) (2) {1 } .Y a Y b a y     (43) 
 

Substituting eqs (33) and (36) into eq. (43) to get Y(3) 
with respect to Y(0) and (0) yields 
 

 0 1 2 0 1 2(3) {( ) ( )* * * *Y a a a e b a   
 

    0 1 2 0 1 2( ) ( )} (0)* ** *a e b e c b Y   
 

    0 1 2 0 1 2{( ) ( )* * * *b a a c b a   
 
    0 1 2 0 1 2( ) ( )} (0)* * **b e b c c b    
 
    0 1 2 0 1 2[{(1 ) } ( )* ** *a a a e b a    
 
    1 2 0 1 2{(1 ) } {(1 ) }** *a a a e b     
 
    0 1 2 1 2 2 ˆ( ) ( ) (1 )] .* * *e c b e b a y     (44) 
 
We can write eq. (44) as 
 
 ˆ(3) (2) (0) (2) (0) (2) ,Y A Y B N y    (45) 
 
where 
 
 0 1 2 0 1 2(2) ( ) ( )* ** *A a a a e b a   
 
    0 1 2 0 1 2( ) ( ),** **a e b e c b   
 
 0 1 2 0 1 2(2) ( ) ( )* * * *B b a a c b a   
 
    0 1 2 0 1 2( ) ( ),* * * *b e b c c b   (46) 
 
 0 1 2 0 1 2(2) {(1 ) } ( )* * **N a a a e b a    
 
    1 2 0 1 2{(1 ) } {(1 ) }* * *a a a e b     
 
    0 1 2 1 2 2( ) ( ) (1 ).* * *e c b e b a     

Substituting eqs (33) and (36) into eq. (41) yields 
 
 0 1 2 0 1 2(3) {( ) ( )** **a a e e b e    
 
    0 1 2 0 1 2( ) ( )} (0)** * *a e c e c c Y   
 
    0 1 2 0 1 2{( ) ( )* * **b a e c b e   
 
    0 1 2 0 1 2( ) ( )} (0)* * * *b e c c c c    
 
    0 1 2[{(1 ) }* *a a e  0 1 2 1 2( ) {(1 ) }* **e b e a e    
 
    0 1 2 0 1 2{(1 ) } ( )* * **a e c e c c    
 
    1 2 2 ˆ( ) ] .*e c e y   (47) 
 
We can write eq. (47) as  
 
 ˆ(3) (2) (0) (2) (0) (2) ,E Y C E y     (48) 
 
where 
 
 0 1 2 0 1 2(2) ( ) ( )** * *E a a e e b e   
 
    0 1 2 0 1 2( ) ( ),* * **a e c e c c   
  (49) 
 0 1 2 0 1 2(2) ( ) ( )** * *C b a e c b e   
 
    0 1 2 0 1 2( ) ( ).* * * *b e c c c c   
 
From eqs (37) and (48), we can write 
 
 ˆ(4) (3) (0) (3) (0) (3) .E Y C E y     (50) 
 
In general 
 
 ˆ( ) ( 1) (0) ( 1) (0) ( 1) .T E T Y C T E T y        (51) 
 
From eqs (26), (36) and (47), we can find E(3) and C(3) 
by making a network, where nodes represent values and 
arrows represent multiplication sign. 
 
 

 
 

Figure 1. The network of E(3). 
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Figure 2. The network of E(T – 1). 
 

 For E(3), the network is given by: c3, e3: the starting 
nodes; a0, e0: the ending nodes; a and e: connect with  
a and b; b and c: connect with c and e, where e3  a2 
means e3*a2 (Figure 1). 
 There are eight values from eight paths; the total of 
these values represents E(3). 
 In general, the network of E(T – 1) is shown in Figure 2. 
 For C(3), the network is similar to the network of E(3); 
only the ending nodes are b0 and c0. i.e. 
 

 0
3 0 3 0

0
(3) { }*

bC e a c a
a

 
     

 
 

 

    0
3 0 3 0

0
{ } ,*

ce e c e
e

 
     

 
 (52) 

 
where e3  a0: all paths that start from e3 end in a0. 
 By applying the condition (T) = 0, we can find (0), 
(1) and y(1) from eqs (51), (23) and (22) respectively. 

Formulation of the linear programming model 

The objective function can be written as 
 

 
1

ˆ ˆMin { (0)} { ( ) }
T

t
J h y Y h Y t y


     

 

     
0

ˆ ˆ{ ( ) ( )}; (0),
T

t
k N t n t y Y


    

  (53) 

1
ˆ ˆMin { (0) } { ( )}

T

t
J h Y y h y Y t


     

 

    
0

ˆ ˆ{ ( ) ( )};  (0).
T

t
k N t n t y Y


    

 
Inventory level constraints are 
 
 1( 1) ( ) ( ) ( ) 0; 0,1,..., ,Y t Y t N t D t t t       (54) 

 ( 1) ( ) ( ) {1 ( )} ( ) 0;Y t N t D t t Y t       
 
  1 1,..., 1.t t T    (55) 
 
Inventory goal level constraints are 
 
 ˆ 50 0,y    (56) 
 

 
ˆ ˆ( ) 0;  1, 2,..., ; (0),

ˆ ˆ( ) 0;  1, 2,..., ; (0).
Y t y t T y Y
y Y t t T y Y

   
   

 (57) 

 
The initial inventory level constraint is 
 
 Y(0) = 0. (58) 
 
Equations (56) and (58) assume that Y(0) = 0 and ˆ 50.y   
 Production goal rate constraints are 
 
 1ˆ( ) ( ) 0; 0,1,..., ,n t D t t t    (59) 
 
 1ˆ ˆ( ) ( ) ( ) 0; 1,..., 1.n t D t t y t t T       (60) 
 
Production rate constraints are 
 

 
ˆ( ) ( ) 0;   0,1,..., 1

( ) 0; 0,1,..., 1).
N t n t t T
N t t T

   
  

 (61) 

 
Deterioration constraint is 
 
 1( ) 0.05 0;  1,..., 1.t t t t T       (62) 
 
Demand constraint is 
 

 ( ) 150 5 0;  0,1,..., 1.D t t t T      (63) 

Numerical solution 

Consider an inventory system with the following para-
meter values in proper units: ŷ  = 50 items; y0 = 0 items; 
T = 6 months; t1 = 2 months; k = US$ 30; h = US$ 20; 
D(t) = 150 + 5t 
 

 
0; 0, 1,2,

( )
0.05 ; 3, 4, 5, 6.

t
t

t t



  

 

Solution of the optimal control model 

Using the goal seek function in Microsoft Excel, we find 
the solution of the system eq. (19). 
 The simulation results (Figure 3) show that the optimal 
inventory level is converging to its goal level, as desired. 
In the first two months there is no deterioration in 
inventory, then it increases over time. Figure 4 shows that 
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the optimal production rate, with an increasing demand, 
converges to its goal over time. 
 We solve eq. (19) using the present method as follows. 
 From eq. (51), we have 
 

ˆ(6) (5) (0) (5) (0) (5) .E Y C E y     
 
The network of E(5) is shown in Figure 5. 
 
 (5) 1655.105 549.032 2204.137.E     
 
From eq. (52), we have 
 

 0
5 0 5 0

0
(5) { }*

bC e a c a
a

 
     

 
 

 

    0
5 0 5 0

0
{ } ,*

ce e c e
e

 
     

 
 

 

 0.033333(5) 1655.105* 1.666667
C    

 
 

 

    1549.032 60.554.* 20
   
 

 

 
 

 
 

Figure 3. The inventory level according to the optimal control model. 
 
 

 
 

Figure 4. Production rate according to the optimal control model. 

By applying the condition (T) = 9, we can find (0) as 
 
 0 2204.137 0 609.554 (0) 2204.137 50,* **     
 
 (0) 1819.985.   
 
From eqs (6), (16), (22) and (23), we can find the inven-
tory level and production rate. 
 The results in Table 1 are similar to those found using 
Microsoft Excel. Therefore, the present method is efficient 
to find a solution to the boundary value problem. 
 
 

 
 

Figure 5. The network of E(5). 
 
 

 
 

Figure 6. The inventory level according to the linear programming 
model. 

 
 

 
 

Figure 7. The production rate, according to the linear programming 
model. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 112, NO. 9, 10 MAY 2017 1862 

Table 1. Solution of the production–inventory system 

 Time (month) 
 

Model variables 0 1 2 3 4 5 6 
 

Y 0.0 27.3 39.6 44.8 47.7 48.9 49.2 
n̂  150 155 160 172.5 180 187.5  
N 177.3 167.2 165.3 174.6 180.7 187.5  

ŷ  0 0 0 7.5 10 12.5 15 
 1819.985 819.985 366.642 157.728 63.488 22.019 0.000 

 
 

Table 2. Solution of the linear programming model. 

 Time (month) 
 

Model variables 0 1 2 3 4 5 6 
 

Y 0.0  50  50 50  50 50 50 
n̂  150 155 160 172.5 180 187.5  
N 200 155 160 172.5 180 187.5  

ŷ  0 0  0 7.5  10 12.5 15 

 
 
The production rate decreases in the first two months and 
then increases over time to compensate the deterioration 
in inventory. 

Solution of the linear programming model 

Using the MatLab software (version 8.5), we obtain the 
following results. 
 The simulation results (Figure 6) show the optimal 
inventory level up to its goal level from the beginning of 
planning period. Figure 7 shows the optimal production 
rate, with an increasing demand, up to its goal. 
 The following can be deduced from Tables 1 and 2: 
 
1. Optimality realized at the end of the planning period, 

according to the optimal control model. 
2. Optimality realized at the beginning of the planning 

period, according to the linear programming model. 
3. There is similarity in the deterioration in the two 

models. 

Conclusion and recommendations 

In this study, we have developed two models of produc-
tion–inventory system – optimal control and linear pro-
gramming – to achieve the administration goals in 
inventory level and hedge demand. 
 The results are similar to those reported using Micro-
soft Excel, proving the efficiency of the method in solv-
ing boundary value problems. Moreover optimality was 
achieved at the end of the planning period in the case of 
the optimal control model, while in the case of the linear 
programming model, it was achieved at the beginning of 
the planning period. Therefore, optimal control model 

was found suitable in case of the administration is 
planned to the inventory level at the end of the planning 
period, while maintaining the inventory level from the 
beginning to the end of planning period was achieved by 
linear programming. Economically, these models were 
found to be efficient for inventory control, with deterio-
rating items. This study could be extended to include the 
stochastic demand or holding cost as a function with and 
without shortage. 
 
 

1. Khanra, S. and Chaudhuri, K., A production-inventory model for a 
deteriorating item with shortage and time-dependent demand.  
Yugoslav J. Opera. Res., 2011, 21(1), 29–45. 

2. Begum, R., Sahu, S. K. and Sahoo, R. R., An inventory model for 
deteriorating items with quadratic demand and partial backlog-
ging. British J. Appl. Sci. Technol., 2012, 2(2), 112–131. 

3. Jhaveri, C. A., Inventory system for deteriorating item with time 
dependent holding cost in declining market with partial backlog-
ging. In Proceedings of the International Conference on Technol-
ogy and Business Management. Dubai, AUE, 2013. 

4. Karmakar, B. and Choudhury, K. D., Inventory models with ramp-
type demand for deteriorating items with partial backlogging and 
time-varying holding cost. Yugoslav J. Opera. Res., 2014, 24(2), 
249–266. 

5. Roy, A., An inventory model for deteriorating items with price 
dependent demand and time varying holding cost. Adv. Mod. Opt., 
2008, 10(1), 25–37. 

6. Bansal, K. K., Inventory model for deteriorating items with the ef-
fect of inflation. Int. J. Appl. Innov. Eng. Manage., 2013, 2(5), 
143–150. 

7. Gite, S., An EOQ model for deteriorating items with quadratic 
time dependent demand rate under permissible delay in payment. 
Tc, 2013, 3(3), 2–2. 

8. Sharma, V. and Chaudhary, R., An inventory model for deteriorat-
ing items with Weibull deterioration with time dependent demand 
and shortages. Res. J. Manage. Sci., 2013, 2(3), 28–30. 

9. Mishra, S. S. and Singh, P. K., A computational approach to EOQ 
model with power-form stock-dependent demand and cubic dete-
rioration. Am. J. Opera. Res., 2011, 1(1), 5–13. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 112, NO. 9, 10 MAY 2017 1863 

10. Misra, U. K., Sahu, S. K., Bhaula, B. and Raju, L. K., An inven-
tory model for weibull deteriorating items with permissible delay 
in payments under inflation. Int. J. Res. Rev. Appl. Sci., 2011, 
6(1), 10–17. 

11. Kundu, S. and Chakrabarti, T., An EOQ model for deteriorating 
items with fuzzy demand and fuzzy partial backlogging. IOSR J. 
Math., 2012, 2(3), 13–20. 

12. Singh, T. and Sahu, S. K., An inventory model for deteriorating 
items with different constant demand rates. Af. J. Math. Comp. 
Sci. Res., 2012, 5(9), 158–168. 

13. Sharma, A. K., Sharma, M. and Ramani, N., An inventory model 
with weibull distribution deteriorating item power pattern demand 
with shortage and time dependent holding cost. Am. J. Appl. Math. 
Math. Sci., 2012, 1(1-2), 17–22. 

14. Patel, S. S. and Patel, R., An inventory model for weibull deterio-
rating items with linear demand, shortages under permissible  
delay in payments and inflation. Int. J. Math. Stat. Inven., 2013, 
1(1), 22–30. 

15. Kumar, S. and Rajput, U. S., An EOQ model for weibull deterio-
rating items with price dependent demand. IOSR J. Math., 2013, 
6(6), 63–68. 

16. Zhao, L., An inventory model under trapezoidal-type demand, 
Weibull-distributed deterioration and partial backlogging. J. Appl. 
Math., 2014, 1–10. 

17. Rao, S. V., Rao, K. S. and Subbaiah, K. V., Production inventory 
model for deteriorating items with on-hand inventory and time  
dependent demand. Jordan J. Mech. Indust. Eng., 2010, 4(6), 739–
756. 

18. Kawale, S. and Bansode, P., An EPQ model using weibull deterio-
ration for deterioration item with time varying holding cost. Int. J. 
Sci., Eng. Tech. Res., 2012, 1(4), 29–33. 

19. Pal, S., Mahapatra, G. S. and Samanta, G. P., A production inven-
tory model for deteriorating item with ramp type demand allowing 
inflation and shortages under fuzziness. Econ. Model., 2015, 46, 
334–345. 

20. Das, B. C., Das, B. and Mondal, S. K, An integrated production 
inventory model under interactive fuzzy credit period for deterio-
rating item with several markets. Appl. Soft Comput., 2015, 28, 
453–465. 

21. Benhadid, Y., Tadj, L. and Bounkhel, M., Optimal control of pro-
duction inventory systems with deteriorating items and dynamic 
costs. Appl. Math. E-Notes, 2008, 8, 194–202. 

22. Emamverdi, G. A., Karimi, M. S. and Shafiee, M., Application of 
optimal control theory to adjust the production rate of deteriorat-
ing inventory system (Case study: Dineh Iran Co.). Middle-East J. 
Sci. Res., 2011, 10(4), 526–531. 

23. Zanoni, S. and Zavanella, L., Model and analysis of integrated 
production–inventory system: the case of steel production. Inter. 
J. Prod. Econ., 2005, 93, 197–205. 

24. Moengin, P. and Fitriana, R., Model of integrated production-
inventory-distribution system: the case of billet steel manufactur-
ing. In Proceedings of the World Congress on Engineering,  
London, UK, 2015, vol. II. 

25. Lee, A. H. and Kang, H. Y., A mixed 0–1 integer programming 
for inventory model: a case study of TFT-LCD manufacturing 
company in Taiwan. Kybernetes, 2008, 37(1), 66–82. 

26. Kefeli, A., Uzsoy, R., Fathi, Y. and Kay, M., Using a mathemati-
cal programming model to examine the marginal price of capaci-
tated resources. Int. J. Prod. Econ., 2011, 131(1), 383–391. 

27. Grimmett, D., Multi-period production planning with inventory, 
interest rate, and backorder considerations. IRJGBD, 2012, 1(1), 
1–8. 

28. Veselovska, L., A linear programming model of integrating flexi-
bility measures into production processes with cost minimization. 
J. Small Bus. Entrepren. Dev., 2014, 2(1), 67–82. 

29. Talapatra, S., Saha, M. and Islam, M. A., Aggregate planning 
problem solving using linear programming method. Am. Acad. 
Scholar. Res. J., 2015, 7(1), 20–28. 

30. Sethi, S. P. and Thompson, G. L., Optimal Control Theory Appli-
cation to Management Science and Economics, Springer, USA, 
2000, 2nd edn. 

 
 
 
Received 7 August 2016; revised accepted 6 December 2016 
 
 
doi: 10.18520/cs/v112/i09/1855-1863 

 

 
 
 


