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Determination of competition coefficients constitutes a 
vital part in the competition-based Lotka–Volterra-
type population dynamics models. Various models 
have been proposed for the same, some of which were 
instinctive formulations, while some others were  

derived from dynamical and equilibrium relations 
pertaining to population dynamics. In this work, a 
new instinctive formulation to determine the competi-
tion coefficient has been proposed based on various 
parameters that determine the intensity of interspecific 
competition like the availability of resources, relative 
importance of a particular resource for a species,  
energy expenditure per resource utilization, etc. 
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THE study of interspecific competition amongst species 
has been one of the most prevalent concerns in the field 
of ecology, since the conception of competition. Most of 
the early evidence was forged on the basis of observa-
tional cues and limited laboratory experimentation (that 
too under constrained circumstances), rather than on-the-
field studies1. This led to the questioning of the very 
principle of competition being a major force in popula-
tion dynamics, especially in the 1960s–80s, resulting in a 
surge of experiments to prove or disprove the idea. 
 Most of the attacks were invalidated, but not without 
the amendment of the original theory of competition1. 
Schoener1 reviewed about 164 experiments and discussed 
the results, which showed that interspecific competition 
occurred consistently in different habitat types and also at 
varied trophic levels as predicted by the theory. However, 
these experiments were designed to minimize the effect 
of predation, and thus did not account for the predatory 
effect. Later, Sih et al.2 and Gurevitch et al.3 analysed 
numerous experiments which had taken both predation 
and competition into account. This analysis demonstrated 
predation as a stronger effect, but nevertheless confirmed 
competition as a powerful factor in the interactions of 
multiple species2. Even today, numerous experiments4,5 
and simulations6 demonstrate the importance of inter-
specific and intraspecific competition in modelling the 
dynamics of populations and their evolution. 
 The equations for interspecific competition, as sug-
gested by Volterra7 and later expounded by Lotka and 
Gause8, which form the basis of our discussion, are of the 
general linear form (for n species) 
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where n is the total number of interacting species, Ni the 
population size of species i, Ki the carrying capacity of 
species i, ij the competition coefficient of species i due 
to species j and ri is the intrinsic growth rate of species i. 
Here, the competition coefficient is a key phenomenol-
ogical measure of the interspecific interaction and serves 
an important part in the modelling of actual dynamics. 
(Note that nonlinear forms of these models also exist.) 
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 The element of the n-species interaction models which 
forms the basis of this work is the competition coeffi-
cient, usually denoted by the symbol i j, signifying the 
competition between species i and j. It is defined as a 
measure of the extent to which an individual of a species 
influences the growth or stability of the population of a 
second species, through competition, compared to the in-
fluence of an individual of the latter9. There have been 
numerous models in the past to estimate the competition 
coefficient from laboratory data, field data, or other indi-
rect sources. Estimation of the coefficient ij is usually 
done by fitting the dynamic form of population equation 
to data from experiments8,10, using equilibrium states of 
resource–consumer versions of the Lotka–Volterra equa-
tions9,11–17 or using simulative techniques3. The problem 
that we will be dealing with here is to construct an alter-
nate model for determining the competition coefficient, 
and also to overcome some of the shortcomings of the 
earlier formulations, which have been described below. 
 MacArthur and Levins11 were the first to propose a 
mathematical formulation relating resource utilization 
spectra and competitive intensity, expressing the fact that 
competition coefficient could be calculated as a degree of 
ecological overlap1. This coefficient was defined to be 
the competitive effect on the growth of species i of an  
individual of species j, divided by the same effect of an 
individual of species i. Mathematically 
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where pih in the most general sense indicates the relative 
resource utilization calculated as a fraction of the total 
use of all resources for competitor i, of the resource h by 
competitor i. 
 Several experiments demonstrated that low ecological 
overlap was linked with low competition, and vice 
versa18,19. Later it was found that pronounced ecological 
overlap need not show great competition but may result 
from interspecific tolerance, whereas low overlap may be 
caused from aggressive exclusion1,13,20, amid additional 
effects. Numerous ecologists have found eq. (2) above 
quite handy, regardless of these potential difficulties. 
 The form that MacArthur discusses mostly involves a 
method where he modifies the Lotka–Volterra prey–
predator system by adding some terms to change them 
into the form of resource–consumer interaction, and 
solves the equations for equilibrium conditions in order 
to estimate the value of i j which can be represented in 
the following form11,21 
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where aik is the consumption rate of resource k by com-
petitor i, bik the net energy per item of resource k that can 
be assimilated or used by an individual competitor i, Kk 
the carrying capacity of resource k in the absence of pre-
dation, rk the intrinsic growth rate of the resource k, and s 
is the total number of resources. This formulation  
assumes that consumers come across resource types in 
keeping with their proportions in the whole system (or 
assumes some other encounter process that aggregates to 
this situation)1. This assumption would be violated if the 
resource types are particular macro-habitats, especially 
where territorial competition is present1, however, the 
formulation is quite useful as other than this problem it 
takes care of other shortcomings of eq. (2). According to 
this formulation, the larger the consumption rate of  
species j with respect to species i, larger would be the 
value of i j. 
 Field data can be used in this expression in order to 
calculate ij, as suggested by MacArthur21 within the  
assumptions as mentioned above. Also, under some  
simplifying assumptions, i.e. the ratio bikKk/rk being equal 
for all k resources, eq. (3) can be simplified into eq. (2). 
 However, none of these takes into account the abun-
dance of the resource being used. Moreover, if the  
‘resource-use composition’ for different species, and the 
total resource magnitude in a given area are known, ij 
can still be computed, but not by replacing various  
parameters in eqs (2) and (3). Schoener9 suggested that if 
the ecological system is studied at equilibrium, then for 
an individual in species i, the quantity of items nik that it 
uses of the resource k, is a product of two quantities: 
‘per-unit-resource rate of consumption’ (aik) and the total 
magnitude of resource ˆ( ).kF  Then 
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where dik is the proportion of resource k used by species i 
in its diet, dik = nik/knik and frequency of resource in the 
environment ˆ ˆ/ .k k k kf F F   Now on substituting eq. (4) 
into eq. (3), we obtain a relation which no longer depends 
on ˆ ,k kF  the total number of items of all resources 
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These models of determining the value of i j are usually 
proposed so that its value can be calculated independently 
using field measurements. However, there are certain 
shortcomings associated with each of these models, in 
addition to the ones discussed above. 
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 The biggest problem with most of these models is the 
fact that they result in constant coefficients, which are ac-
tually far from reality, as the intensity of competition also 
depends on the size of the population at a given instant of 
time. The only factor that may result in ‘changing’ coef-
ficients in the above formulations is fk, which may result 
in a change in dik; but that is not usually incorporated. 
Some of the assumptions that underlie these models have 
been discussed by Abrams22, especially for the MacAr-
thur formulations and their derivatives, which he enlists 
as follows: 
 
1. There is competition for a number of resources among 

multiple consumer species and all the resources  
replenish in accordance to the logistic equation. 

2. The amount of resources that an individual consumes 
in a given time is a linear function of resource densi-
ties. 

3. Per capita growth rates of the consumer populations 
are linear functions of the extent of resources con-
sumed. 

4. Homogeneity is assumed for all consumers and  
resources, resulting in no genetic or size/age-specific 
variation in the utilization of resources. 

5. Population processes for the resource populations 
happen at rates much rapid than the processes in con-
sumer population. (This assumption is not explicit, 
but is taken in order to solve the differential equation 
of the resources at a steady state.) 

6. The consumers do not drive their resources to extinc-
tion. 

7. No lag exists in the consumer’s population response 
to resource densities. 

8. There is no interaction among the resources. 
 
These assumptions take the models away from most natural 
systems, whose implications are discussed by Abrams22. 
The biggest drawback of the MacArthur formulations  
remains that the coefficients are constant in time. Also, it 
assumes that populations are uniform and consume re-
sources in a given uniform environment; and that there is 
no age/size variation in consumption22,23. In addition, ex-
tinction of at least one of the resources is probable if 
there is an increase in the number of resources con-
sumed16. In the present formulation, some of these as-
sumptions are taken care of, at least to some extent. 
Discussions about the implications of these formulations 
will be done later in this work. 
 The present formulation is based on the same basic 
idea that an increased overlap of resource utilization 
spectra also results in high competition among the species 
concerned. But instead of measuring or even devising 
ways to measure the actual overlap, it focuses on the 
availability and importance of a given resource for a spe-
cies. The formulation has a few parameters that simplify 
the concept of competition, and are described below. 

 Interspecific Niche overlap (denoted by i j) – There 
will be competition between any two species, given that 
there is an overlap between their niche volume () in K-
dimensional space (given there are K resources), where 
each of the dimensions represents a niche parameter, i.e. 
a resource in this case. These parameters can be divided 
into two categories: the inconsumable parameters, which 
can be defined as the entities that do not get depleted on 
being used by one individual, like temperature, humidity, 
etc. and consumable parameters which get depleted on 
consumption like food, water, etc. In this model we work 
with only consumable parameters, assuming that the spe-
cies share a common habitat. 
 To avoid all the confusion regarding calculation of the 
volume, we consider each parameter/resource individu-
ally. The basic idea is that if a particular resource is being 
utilized by both the species, then it will play a role in the 
competition coefficient directly; otherwise, it will not. If 
there is a resource  which both species use, in other 
words (i  j)  0, then it will contribute to a sum-
mand in the calculation of ij. So, we can define 
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Energy efficiency (ik): This is defined in the following 
way 
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where g

ik   is the energy gained due to an item of the 
resource type k, s

ik   the energy required for searching 
an item of the resource type k, and a

ik   is the  
energy required for catching and processing the same. 
 s

ik   can be calculated by first finding the average 
time required for an individual of species i to search for 
an item of resource type k, and then multiplying it with 
the average energy spent per unit time. 
 a

ik   maybe calculated by finding the energy spent in 
catching, handling and assimilating the resource, which 
can be found using a similar procedure as for .s

ik   
 Resources like water, land, etc. from which energy 
cannot be assimilated are assumed to be abundant enough 
so as to not influence the competition coefficient. 
 The aforesaid energy usage rates that are used to calcu-
late s

ik   and ,a
ik   can be inferred using accelerometer 

techniques24. The field metabolic rates have been previ-
ously calculated using labelled (heavy) water method for 
multiple species25,26. These studies calculated the average 
daily usage of energy for the organisms. With the current 
techniques involving accelerometer, movement paths,  
energy spent per unit time, rate of energy gain for a given 
prey type, and assimilation efficiency can be calculated 
for various situations27–29. 
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 The energy required to find and catch a prey can vary 
from situation to situation. In the calculation of s

ik   we 
utilize the energy used per time unit by the animal to 
prey. This energy usage will depend exceedingly on cir-
cumstance, and hence cannot be assigned a certain value. 
Thus, in this model we intend to use estimates obtained 
as explained above rather than specific values. While  
implementing these values to run the model, the actual of 
ik could be picked randomly from a normal distribution 
with its mean as the value we estimated for ik each time 
it is required. 
 
Resource usage coefficient (Aik): To incorporate how 
important a given resource is for an individual, the  
resource usage coefficient is used as a parameter, which 
is defined as 
 

 Aik = .ik

ill
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The resource usage coefficient also gives us a brief idea 
about the diet of the individual. On finding the value of 
Aik/qAiq = ik/qAiq where all the q resources are die-
tary, we can find the proportion of resource in the diet. 
From this we can estimate its average diet composition 
and vice versa. 
 If a resource is too scarce, its  value decreases consid-
erably and thus its importance decreases even though it 
may be quite profitable. So, not only the energy content 
of the resource but also its availability for use would also 
be important. 
 In this model we have considered that the animals will 
consume resources proportional to their energy efficien-
cies. The rationale behind this is the greedy algorithm. 
The more a resource is energy-efficient, the more it 
should be consumed by the animals. This begs the ques-
tion: why do the animals not opt for the most energy effi-
cient resource only? 
 If all the animals would opt for the most energy-
efficient resource, the competition for it would be large, 
and it would start to dwindle. Moreover, consuming only 
the most energy-efficient resource would imply more 
search time for the animals, as the resource would be 
spread out in a wide area. Whereas if the animal were to 
divide its energy requirements among several resources it 
would make for a lower search area thus reducing the  
energy spent for searching. 
 
Estimated resource requirement ( ) :i jk  This is the esti-
mated amount of resource of type k required by the cur-
rent population of both species i and j combined. To 
begin with, we find  i jk  using field data of the estimated 
current population sizes of both the species, i.e. we use Ni 
and Nj and the periodic resource requirements, i.e. ik  
and jk. Then we calculate 

i jk  as 
i jk  = 

Niik + Njjk. This value of  i jk  is then used in the dis-
crete Lotka–Voltera model (described later in the text) to 
predict values of Ni and Nj for the following year. With 
these values of Ni and Nj,  i jk  is determined again and 
updated in the model to predict subsequent population 
values. 
 
Estimated total resource quantity ( ) :k  This is the  
total amount of resource of type k found in a given area 
where the population dynamics is being studied at that 
time. It can be estimated either using large-scale field 
data collection or by small-scale sampling followed by 
estimation. 
 
Periodic resource requirement (k): This is the total 
amount of resource of type k required by species i in a 
specific period of time. This factor is not the same as the 
aik used in the literature11,16,21, because when the logistic 
model is applied to MacArthur and similar formulations, 
we consider the consumption rate of a resource k by spe-
cies i to be linearly related to the resource density of  
resource k, whereas ik is the total requirement of the  
resource k by species i irrespective of the resource den-
sity (if and only if   ).k i jk   
 Many field studies have found the dietary composition 
of various organisms from which the value of ik can be 
calculated30,31. 
The expression for ij using various parameters discussed 
above can be written in the following general form 
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Equation (9) states that for a particular resource , if 
(i  j) = 0, then there is no competition between  
species i and j for that particular resource making that 
summand, i.e. 
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is zero. On the other hand, if (i  j)  0 for , then 
the summand is not zero; in fact 
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The term Aik states the importance of the resource k, for 
the existence of species i in a given environment with  
respect to its dietary composition, i.e. resource require-
ments. This is vital because a resource important for the 
species in general might be scarce in some environments 
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and consequently, if other equivalent resources are avail-
able, its significance reduces considerably. It is essential 
to note that this term is a function of time as it also incor-
porates the seasonal variation of abundance as well as the 
temporal variation of a resource due to external con-
straints. 
 The next term  / ki jk   in eq. (9) describes the inten-
sity of competition by directly incorporating the informa-
tion about scarcity. When  i jk  is much less than  ,k  the 
level of competition reduces and the dynamics changes to 
something similar to the exponential form of growth. It is 
to be noted that the expression for i j is also valid for  
intraspecific competition (ii), which also tends to zero 
when  / kiik   tends to zero, resulting in the exponential 
growth expression. 
 The final term /jk ik   in eq. (9) describes the ratio of 
requirement of resource of type k. This term incorporates 
the interspecific interaction in particular, describing the 
need for the resource by the other species given that all 
other parameters are equivalent. 
 A question which may arise is that if one of the  
resources dwindles toward extinction, will the system of 
equations fail? However, this is also taken care of by the 
factors that precede the resource availability coefficient 
in the formulation. Suppose one particular resource, say 
, dwindles and its quantity goes to zero, i.e. the term 
   goes to 0. The question is what happens to the sum-
mand containing  ; in other words, what happens to 
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Ecologically speaking, this term should go to zero as the 
contribution from that resource should disappear.  
Observe that as    goes to zero, Ai will go to zero. This 
is because the dietary contribution of  will also go to 
zero (ij is 1). For as long as   ,i j    the third term, 
i.e.  ( / )i j    is less than 1, and the fourth term, i.e. 
( / )j i   is a constant. When  /i j   , then the values 
of j  and i  will change. This is true since, if the parti-
cular source is dwindling, the consumption rate will de-
crease for the species, as it will try to recompense from 
other food sources. The critical point before this starts to 
happen will be when  

i j    . If    further de-
creases, then  i j  will adjust itself by means of chang-
ing values of j  and i , so that   .i j     Thus, the 
term  /i j    will remain close to 1. Hence the total 
summand, i.e. the product of all these terms will go to 0, 
as Ai goes to 0, and all the other terms have finite 
bounds. 
 In most other previous formulations (and the most sim-
plified form of the equations), ii has been taken to be 1. 
However, this is only for the equilibrated case. So, to 
keep the equations consistent with previous formulations 

at least using this common point of reference, we have at 
equilibrium the value of ii to be 1. From our formulation 
for one resource, say , we have 
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Here, ii = 1, as a single resource is being used by spe-
cies i. Ai = 1, as we consider a single resource. / 1i i     
(obviously as the terms cancel out).  ii i iN    as here 
we consider a single population of species i. 
 Hence at equilibrium  ii i iK    this is the carrying 
capacity of the species multiplied by its consumption 
rate, which is nothing but    at equilibrium. This can be 
thought of as the point where the ecosystem has just 
enough resources of type  so that it can sustain a popula-
tion of species i when it has reached its maximum popu-
lation value. 
 Hence the term  ( )ii     is also 1. Thus at equilib-
rium 

 ii ii  Ai



 1.ii i

i

 

 

  
       







 (11) 

The question arises, why is  k  used instead of Kk and rk 
(which were used in the previous formulations)? We are 
interested in the total amount of resource present in terms 
of biomass per resource, rather than the carrying capacity 
of the same. Since we are using the discrete Lotka–
Voltera model, our aim is to observe and incorporate in 
our formulation the total available amount of a particular 
resource to be used by the two competing species. While 
Kk and rk give us an estimate of resource availability, we 
are more concerned with the actual available resource. 
Hence we use the field/satellite data for the amount of 
available resource per resource. Moreover, Kk and rk are 
difficult to measure empirically compared to direct 
field/satellite observations of the resource quantity. 
 It has to be noted that the coefficient for given time-
point can be estimated here using the parameters, which 
in turn can be estimated using the values of populations 
at the previous time-point. This can be repeated a few 
times in order to get a good bound on the value of the  
coefficient at the time-point. 
 The ultimate aim of this study is to estimate the popu-
lation size of a species after some time-period. We 
achieve this using the Lotka–Voltera equation; but to do 
so we need to estimate the coefficient ii. From our 
model, for which we need to estimate the following at a 
given time point say t: 
 
  k  for every resource. This factor is time-dependant. 
 Ni and Nj, i.e. population sizes of both the species. 

These are also time-dependent. 
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 ik  and jk  for every resource. These factors are 
time-independent (this is of course an assumption, but 
one we believe to be quite reasonable, as the mini-
mum required amount of food needed for an individ-
ual of a given species is almost a time invariant), for 
as long as   .k i jk   However, complications arise 
because of variation in food habits due to altering 
food densities, especially in the region   .k i jk   

 ,g
ik   s

ik   and a
ik   for every resource. Again, we 

assume that these are time-independent quantities. 
 
So, we use the discrete Lotka–Volterra model and the 
values mentioned above to calculate ij and hence obtain 
Ni for the time-step T = t + 1, and similarly obtain Nj  for 
time T = t + 1. 
 Then from field data we can update the values of  k  
for time, T = t + 1, and use Ni, Nj and  i jk  (calculated 
using Ni, Nj for time t + 1 and the constants ik  and ik ) 
for time, T = t + 1 to calculate i j for time = t + 1. Iterat-
ing this procedure gives us a good estimate of the popula-
tion growth of both the species over a given period of 
time. Reducing the time-period of iteration will further 
better the estimate of the population size after a given 
time. 
 A typical usage of this model would be in the case of 
modelling populations in the grasslands. In this case, it is 
easier to predict the vegetation cover and distribution 
based on abiotic cues23, rather than to find the popula-
tions directly. Another such example is the phytoplankton 
density in oceans, where the total resource is easily pre-
dictable32. In many cases, the value of resource availabi-
lity has been tabulated over a long period of time, 
obtained using satellites and fitted into a predictive 
model33. 
 In addition, as pointed out by Schoener34, some models 
formulated different from Lotka–Volterra systems favour 
more coexistence9,35,36 by ensuring the fact that rarer a 
given species more the individuals of a second species 
are needed to decrease the equilibrium population of the 
rarer species by a fixed amount. This dynamics also  
depends on the resource requirement and the actual avail-
ability. The coefficient determination as discussed in this 
work, displays a little of the property mentioned above. 
This was not present in previous formulations of coeffi-
cient determination. 
 There are a fewer assumptions inherent in this formula-
tion, compared to those discussed by Abrams22. These 
pose some restrictions to the formulations, but still it 
would be applicable in most of exploitative competition 
cases, but not in direct predator–prey interactions. When 
one compares the shortcomings of the previous formula-
tions which could be rectified using the present model, 
we can summarize the outcome as follows. 
 1. The parameter  k  in the present formulation may be 
represented by real-time field data, or can also be mod-
elled using the logistic equation. The older formulations 

use the parameters K and r so as to model the logistic 
growth of resources, while the present formulation uses 
the total available resource data (from field) as a parame-
ter in the model. Due to the use of real-time data taken  
after every time-interval, we can take into account the 
fluctuations of the availability of the resources due to  
environmental changes. This cannot be done when para-
meters K and r are being used. Thus, it corrects the short-
coming of the exclusive use of logistic equations for the 
computation. 
 2. The individual resource consumption parameter in 
the present formulation, i.e. ik , as mentioned previously 
is independent of the total resource densities and thus 
solves the problem associated with the previous formula-
tions (which assumed that the amount of resources that an 
individual consumes in a given time is a linear function 
of resource densities). 
 3. Here we model the competition coefficient for the 
non-consumer–resource-type Lotka–Volterra equations, 
where we use the parameter r which is half the average 
reproductive rate per individual (because a pair of indi-
viduals is responsible for the reproduction and hence  
taking r as the full reproductive rate would mean to 
wrongly double count), and hence avoid the case of using 
the prey–predator-type model and its assumption that per 
capita growth rates of the consumer populations are linear 
functions of the extent of resources consumed. 
 4. Also, the assumption in the older formulations that 
the consumers do not drive their resources to extinction 
has been taken care of specifically. 
 5. In the present formulation, we can model the genetic 
and age variability using the distribution of these various 
groups in the population in the previous iteration of the 
population calculation to evaluate a weighted value of 
different parameters like ik ,  ,i jk  etc. 
 6. The assumption that there is no interaction among 
the resources does not exist in the present formulation as 
the direct field values of resource populations are taken at 
different time-points which enable the modelling of  
resource interactions indirectly, without explicitly calcu-
lating them. 
 Furthermore, eq. (9) can also describe the competition 
with a species, where different age groups can be consid-
ered as sub-divisions of the species. This property of eq. 
(9) can therefore be used to model the intraspecific  
dynamics of a species in a more realistic way. A direct 
comparison with other models might prove to be really 
difficult because some of the major parameters differ in 
the formulations. 
 The expression for ij as described in eq. (9) may 
prove to be demanding for calculation, but the parameter 
estimation may be improved in order to achieve better 
computation. Even though there are quite a few parame-
ters, their computation may not actually be as difficult,  
if we incorporate the fact that we would calculate  
them from the field data. The whole process might be  
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resource-intensive (for data collection), but it would give 
a better view of the competition coefficient without hav-
ing been computationally intensive. Equation (9) models 
many aspects of intraspecific competition, along with the 
resource availability parameters, and thus gives a repre-
sentative value for the competition coefficient ij, which 
varies both temporally and spatially as is represented in 
most natural systems. Thus, improving upon such an ex-
pression might prove to be useful in accurately modelling 
the population dynamics in natural conditions. 
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