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Sequestration of carbon through forests is an impor-
tant aspect in global climate change mitigation.  
Assessment of carbon in forests using remote sensing 
and GIS tools is one of the most important aspects of 
rapid and verifiable methodologies. A number of stud-
ies have shown the utility of spectral (vegetation)  
indices like NDVI in the assessment of forest carbon. 
However, there are limitations to this approach. The 
mountainous topography and high biodiversity affect 
the spectral values in pixels in multiple ways. The pre-
sent article aims to test the validity of use of vegeta-
tion indices in high-biodiversity forests in mountains 
by modelling the ground based forest carbon meas-
urement with vegetation indices of NDVI, EVI, SAVI 
and MSAVI in a multi-sensor, multi-season data envi-
ronment with multiple regression methods like linear, 
power, logarithmic, polynomial and exponential. It is 
found that all the regressions have a poor coefficient 
of determination not even exceeding 0.2. It is con-
cluded that the remote sensing-based spectral vegeta-
tion indices alone cannot be a proxy for forest carbon 
calculators in high biodiversity mountain forests. 
 
Keywords: Biodiversity, forest carbon, mountain, remote 
sensing, vegetation indices. 
 
WITH the forests being increasingly seen as a significant 
tool against climate change due their ability to act as a 
global carbon sink, there is a need for rapid but verifiable 
methodologies to assess the climate mitigation potential 
of forests. There may be disagreement at times over the 
so-called clean technologies like nuclear power, but miti-
gation through forestry is universally the most acceptable 
method. The multi-functionality of forests extends far  
beyond just mitigation. It offers a number of other  
ecosystem services ranging from biodiversity to catch-
ment-area enrichment. 
 In the presence of chlorophyll, CO2 from the atmos-
phere and water gets converted to sugars by using energy 

from sunlight during the process of photosynthesis. The 
internal metabolism of the tree consumes about half the 
sugars and the remaining half is used for building of 
wood, roots and leaves. This constitutes the biomass  
of the tree. About half of this biomass is carbon content 
of the tree1. The sheer complexity of processes of carbon 
capture through photosynthesis by the trees and the geo-
graphical spread of forests on the land makes the assess-
ment of carbon captured by the forests quite challenging. 
The big geographical extent makes it almost economically 
impossible to survey the forests repetitively through the 
physical counting of trees and then assessing the carbon 
captured. Remote sensing offers a viable solution. Ac-
cording to the Food and Agricultural Organization (FAO) 
of the United Nations, there is need for forest inventory 
agencies and remote sensing agencies to work together so 
that up-scaling and validation of remote sensing products 
could be done2. In the past several studies have been done 
on modelling the spectral ratios like normalized differ-
ence vegetation index (NDVI), enhanced vegetation  
index (EVI) and soil adjusted vegetation index (SAVI), 
etc. to the forest carbon. However, in case of high biodi-
versity forests, the very mechanism of satellite remote 
sensing is expected to be encountered with challenges 
when it comes to carbon assessment, primarily because of 
contamination of pixels due to the capturing of reflec-
tance from different tree species and storing it as a uni-
form value in a single pixel. 
 This article examines the usefulness of optical remote 
sensing-based spectral vegetation indices from moderate-
resolution sensors in assessing the forest carbon in a high 
biodiversity mountain forest. For the purpose of evalua-
tion of the validity of relationship with spectral bands/ 
ratios, the biodiversity hotspot area in Eastern Himalaya, 
i.e. Sikkim, India has been selected. 

Objectives 

The reflectance from high diversity of species results in 
the contamination of remote sensing image pixels. The 
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mountainous terrain also induces its own distortions. This 
may have an influence on the relationship between the 
spectral values and biophysical parameters of forests. 
 The aim of the present study is to find out whether the 
correlation between the remote sensing image-derived 
‘vegetation indices’ and the biophysical parameter of 
‘forest carbon’ holds good for forests with high tree spe-
cies diversity in mountainous. If yes, what is the extent of 
such correlation? 

Material and methods 

Study site 

Sikkim is a mountainous state of India in the Eastern  
Himalaya extending approximately 114 km from north to 
south and 64 km from east to west, between 270046–
280748N lat. and 880058–885525E long. (Figure 
1). It encompasses a great altitudinal compression rang-
ing from 300 to 8585 m amsl. Sikkim is globally  
renowned for its biological diversity and is part of the 
Himalayan global biodiversity hotspot. The unique  
terrain, climate and biogeography of the state have  
resulted in the sustenance of varied eco-zones in close 
proximity. Sikkim has an area of 7096 sq. km. It covers 
 
 

 
 

Figure 1. Location of the study site, Sikkim. 

just 0.2% of the geographical area of India, but has 26% 
of the country’s total biodiversity. Species-wise, the state 
harbours over 5500 flowering plants, 557 orchids, 41 
rhododendrons, 16 conifers, 28 bamboos, 362 ferns and 
its allies, 9 tree ferns, 30 primulas, 11 oaks and 1022 me-
dicinal plants3. Forestry is the major land use in the state 
covering around 47.80% of the total geographical area4. 
Due to great altitudinal compression, the forests of Sik-
kim exhibit tremendous biological diversity. A summary 
of the forests of Sikkim is as follows. 

Tropical moist deciduous forests 

These types of forests are mainly confined to the foothill 
regions up to an elevation of 900 m with sal (Shorea ro-
busta) as the main species along with a few deciduous 
components. In some places, chir pine (Pinus roxburghii) 
is present with the sal forest. The common species are S. 
robusta, Tectona grandis, Alstonia scholaris, Bombax 
ceiba, Lagerstroemia parviflora and Terminalia myrio-
carpa. 

Tropical, subtropical dry evergreen and broad- 
leaved hill forests 

The main tree species are Macaranga denticulata, Schima 
wallichii, Eugenia sp., Castanopsis sp., Alnus nepalensis, 
Emblica officinalis, Mallotus philippensis, Adhatoda zey-
lancia, Beaumontia grandiflora and Bauhinia vahlii, etc. 

Montane moist temperate forests 

The vegetation gradually changes from subtropical to 
sub-temperate in the altitudinal range 1800–2400 m,  
beyond which the vegetation becomes that of distinct 
temperate forest. In this region the dominant species are 
Tsuga (hemlock), Acer, Michelia, Juglans, associated 
with Rosa, Rubus, Berberis and Viburnum. Typical tem-
perate forests like Quercus (oak), Acer, Populus, Larix 
and Abies densa dominate the region between 2400 and 
2700 m. 

Sub-alpine and dry temperate forests 

The tree species of Rhododendron are found predomi-
nantly mixed with a variety of species like Gaultheria, 
Euonymus, Viburnum, Juniperus, Lyonia, Pieris, Lyces-
teria, Lonicera, Rosa, Eurya, Symplocos and Rubus. 

Alpine forests 

Moist alpine forests: The vegetation in this zone mainly 
comprises typical alpine meadows where tree growth is 
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completely arrested. Quite a few stunted bushy growth 
species of Rhododendron mixed with tough clumps of 
Juniperus, Salix, Barberis, Rosa and Lonicera are com-
mon. 
 
Dry alpine: The vegetation is practically of scattered 
scrubs, often barren. Most of the species are of stunted 
thorny scrubs in nature. Some of the common species are 
Berberis, Juniperus and Salix. 

Methodology 

Study design and data collection 

For establishing the correlation between actual field-
based carbon and the image parameters, we laid the  
actual ground sample plots of 0.1 ha (31.61 m  31.61 m) 
during 2009–10. Sample plot size of 0.1 ha was selected 
as this is the standard which has been worked upon and 
adopted by the Forest Survey of India (FSI) for the whole 
of India. This size was also adopted with the aim of fu-
ture/past comparison of results with similar kinds of stud-
ies done in India. We measured girth at breast height 
(1.37 m) for tree species falling within the plot. On slopes 
the observations were taken from the elevated side. We 
planned a cluster of four such plots at every site so that 
the carbon values of the trees in these plots could be  
averaged in case there is a need to minimize locational 
registration errors of such plots in the image or to hierar-
chically model the values in a bigger pixel. For clustering 
these plots, we identified the grids of 250 m  250 m 
prior to field work. We did the first-level stratification  
of the site on the basis of NDVI values. The whole area 
of Sikkim was divided into seven strata based on NDVI 
map prepared on the basis of satellite imagery. The NDVI 
slices (ranges) considered for different strata had values 
0.1–0.2, 0, 2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6 and 0.6 to 
>0.7. Based on the extent of area covered by different 
NDVI ranges, the proportionate number of plots was ran-
domly selected in the areas with corresponding NDVI 
ranges. A total of 55 sites were selected based on the 
physical and financial constraints. The coordinates of the 
centre of the site were obtained from the map. To locate 
the site on the ground we used handheld global position-
ing system (GPS). We divided the site into four quadrates 
(NE, SE, SW and NW), and laid the four sample  
plots, about 75–90 m away from centre in each quadrat 
(Figure 2). 
 Sikkim has four districts, namely East Sikkim, West 
Sikkim, South Sikkim and North Sikkim. We selected 7 
sites in East Sikkim, 9 in South Sikkim, 10 in West Sik-
kim and 29 in North Sikkim, thus making 55 sites. Each 
site had a cluster of four plots. Figure 3 shows the distri-
bution of sites for plot clusters. In few sites some plots 
could not be laid due to inaccessibility. A total of 207 

plots were laid. The total trees measured were 1088 in 
East Sikkim, 1526 in South Sikkim, 9321 in West Sikkim 
and 6063 in North Sikkim. Due to massive manpower re-
quirements, manual rechecking of the plots in the diffi-
cult mountainous terrain was not possible. As a first-level  
 

 
 

Figure 2. Layout of sample plots. 
 

 
 

Figure 3. Location of plot clusters. 
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check on the data, we converted all the GPS locations of 
plots to kml file format and overlaid them on Google 
Earth. This helped in visualizing the locations of the 
plots. Some of the plots which seemed to be totally far 
away from other plots of the cluster were not taken into 
consideration for further calculations. This could have 
been due to incorrect GPS recording. Also, we did not 
take into account data from some plots due to certain  
issues with them, or the presence of some abnormally big 
tree in the plot which had the potential to disturb the  
expected most probable relationship. Finally, we used  
data from 44 sites spread over 171 plots. 

Estimation of plot biomass and carbon 

We processed the ground data thus collected for estimat-
ing biomass and carbon. We considered only the above-
ground tree biomass for carbon estimation of the trees. 
This included the components of woody biomass and leaf 
biomass of all trees (i.e. all diameter classes). For biomass 
calculation, the trees were grouped into two classes – one 
with diameter 10 cm and above, and the other with dia-
meter below 10 cm. The woody volume of trees for each 
sample plot was calculated using site-specific volume eq-
uations developed by FSI. This volume equation provides 
volume of main stem measured up to 10 cm diameter and 
volume of all branches having diameter 5 cm or more. 
Biomass was obtained by multiplying wood volume with 
specific gravity. For above-ground biomass of branches 
and foliage of trees having dbh  10 cm and above-
ground biomass of trees having dbh < 10 cm, specially 
developed biomass equations were used5. The carbon 
content in the tree was obtained by multiplying the bio-
mass with percentage carbon content of the species. The 
data of specific gravity and percentage carbon content for 
the trees were obtained from the literature. The data were 
processed in a specially prepared software package which 
took into account different species of trees, species-
specific volume equation, above-ground biomass of 
branches and foliage of trees and data on specific gravity 
and percentage carbon content of most of the tree species 
from the literature. For a few species percentage carbon 
content was ascertained by experimentation and for oth-
ers the average of all other species was used in the pack-
age. The field data collection was mostly in local names 
of the species. These local names were then converted to 
botanical names. Wherever the species could not be iden-
tified, the general volume equation was used. 
 Since the satellite imageries are two-dimensional and 
represent the areas on slopes of the mountains on a pro-
jected horizontal surface, the corresponding area on the 
imagery was equivalent to the plot area measured on the 
surface of slope multiplied by the tangent of the slope 
angle. Accordingly, the carbon density (tonnes of carbon 
per hectare) in the imagery was corrected. The carbon 

density represented in the imagery is more than the  
carbon density on the actual sloping area of the plot. We 
performed the slope correction of carbon thus obtained on 
the sloping surface by projecting it on the horizontal  
surface based on the slope of the area. This was basically 
obtained by dividing the carbon density as on the plot by 
the tangent of the angle of the slope. 

Spectral ratios 

The study site of Sikkim is completely mountainous  
terrain. This gives rise to the varying illumination condi-
tions for different slopes. Similar vegetation may have 
different digital number (DN) values on different slopes 
depending upon the illumination conditions or the slope 
being in sunlit area or shadow area. However, this can be 
compensated by use of spectral ratios. At the same time, 
the spectral ratios are useful in capturing the material-
specific (like vegetation) variations in reflectance over 
different bands. It basically involves the mathematical di-
vision of a pixel in one band by the corresponding pixel 
in other band. Studies6–8 have shown that the relationship 
between the energy reflected in the red and infrared (IR) 
bands is dependent on the amount of vegetation present 
on the ground. Depending upon the leaf area index, mor-
phologies of leaves and leaf angle distribution, very little 
near-infrared (NIR) radiation is absorbed and therefore 
most of the NIR radiation is scattered through reflectance 
and transmittance. Consequently, the contrast between 
the responses in red and NIR bands becomes a sensitive 
measure of the amount of vegetation9. Vegetation ratios 
in red and IR bands are a good measure of vegetation  
activity. The advantage of ratioing is that these ratios en-
hance the vegetation signal from the spectral responses. 
Some of the vegetation ratios used in the present article 
are as follows10. 

Normalized difference vegetation index (NDVI) 

NDVI is calculated by dividing the difference between 
near infrared and red (R) values by the sum of R and NIR 
values 
 

 NIR RNDVI .
NIR R





 

 
Values of NDVI range from –1 to +1. 

Soil adjusted vegetation index (SAVI) 

SAVI uses the R and NIR values for ratioing. Here a soil 
brightness correction factor (L) is applied. L has been  
defined as 0.5 to accommodate most land-cover types 
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 NIR RSAVI (1 ).
NIR R L

L      
 

Enhanced vegetation index (EVI) 

EVI has the ability to decouple the canopy background 
signal and reduce the atmosphere influences. It has  
improved sensitivity over high biomass regions11 
 

 NIR REVI ,
NIR 1*R 2*C C B L




  
 

 
where L is the canopy adjustment factor, C the coeffi-
cients for atmospheric resistance and B represents values 
from the blue band. 

Modified soil adjusted vegetation index (MSAVI) 

MSAVI also uses the R and NIR values for ratioing but to 
reduce the soil effects on reflectance from the vegetation 
to its maximum, an inductive function is applied. 
 MSAVI is calculated as follows 
 

2MSAVI (2* NIR 1 ((2* NIR 1) 8*(NIR R)))/2.       

Image acquisition 

We downloaded the moderate resolution imaging spectro-
radiometer (MODIS) surface reflectance-derived products 
of vegetation indices for January 2009, March 2009,  
November 2009, April 2009 and December 2010. 
 For Landsat, data availability for the relevant period 
was from that of Landsat 7, but all were Landsat 7 
ETM + SLC-off data when the scan line corrector (SLC) 
had failed. These products have data gaps. Landsat 7 
ETM + SLC-off inputs acquired after 31 May 2003 are 
not gap-filled in spectral indices production. We down-
loaded only one image of March 2009, but it was not of 
much use due to data gaps in the form of strips. For 
Landsat, we used the Landsat8 data of November 2013 
even though there is a gap of four years. We presumed 
that the vegetation indices may have changed from 2009 
to 2013, but the empirical relationship, if any, between 
the vegetation indices and biomass would not have 
changed significantly. 
 Since the pixel size of Landsat (~30 m  30 m) was 
almost close to the size of the individual sample plot 
(0.1 ha), we used the single corresponding sample plot 
for studying the relationship of carbon in the plot to the 
vegetation indices of the Landsat pixel. We calculated per 
pixel carbon by multiplying the pixel area (ha) with car-
bon density (tonnes/ha). We obtained the carbon density 
for the pixel by dividing the carbon in the respective 
sample plot by the area of the sample plot. 

 We used handheld global positioning system (GPS) for 
recording the locations of the plots. There could be the 
possibility of poor registration of GPS location of sample 
plot with the corresponding pixel. To minimize the error 
on this account, we took the usable cluster of ground 
plots falling in the MODIS pixel (250m_16_days_ 
composite_day_of_the_year), and averaged the carbon 
value for the area of MODIS pixel. We established the 
correlations between vegetation indices and forest car-
bon. We obtained the quality of pixels by extracting the 
quality at the respective locations from the MODIS 
250m_16_days_VI_Quality file. We obtained the pixel 
reliability by extracting the reliability codes at the respec-
tive locations from the MOD13Q1.A2010337.250m_16_ 
days_pixel_reliability file. We only used pixels with good 
reliability (code 0 pertaining to reliability category ‘Good’, 
where data can be used with confidence, and code 1 per-
taining to reliability category ‘Marginal’ where data are 
useful, but referring to other QA information is advised). 

Data analysis – regression of field plot data against  
vegetation indices 

In case of Landsat images, we obtained the following 
30 m Landsat surface reflectance-derived spectral indices 
products: NDVI, EVI, SAVI and MSAVI. 
 We calculated the carbon in one pixel by multiplying 
the unit pixel area (i.e. 0.09 ha) with the carbon density 
(tonnes/ha). We had already obtained the carbon density 
for the pixel by mathematically dividing the carbon in the 
respective sample plot by the area of the sample plot 
(0.1 ha). 
 We extracted values of all the above vegetation indices 
at the respective GPS locations in ArcGIS 10.3. We tabu-
lated these locations against the carbon values of the re-
spective pixels and regressed them with exponential, linear, 
logarithmic, polynomial and power regression types. 
 In case of MODIS images, we used MOD13Q1 (16-day 
250 m) VI product, which is generated using the daily 
MODIS Level-2G (L2G) surface reflectance. We used 
two indices, NDVI and EVI. Here too, we calculated the 
carbon in one pixel by multiplying the unit pixel area of 
MODIS with the carbon density (tonnes/ha). Carbon  
density for the pixel was obtained by dividing the carbon 
in the respective sample plot by the area of the sample 
plot. We filtered these locations in the second stage  
by the quality and reliability. We then tabulated filtered 
locations against the carbon values of the respective pix-
els and regressed with exponential, linear, logarithmic, 
polynomial and power regression types. 

Results and discussion 

Saturation of signals at high biomass is a well-known and 
well-documented phenomenon12–14. However, in the  
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present study additional issues were observed. The scatter 
plots between vegetation indices and forest carbon 
showed not only the saturation of signal at high carbon 
values, but also lacked any significant trend even at lower 
carbon values. This leaves the vegetation indices with  
limited applicability in forest carbon assessment in high 
biodiversity mountain forests. The scatter plots have been 
drawn for all the combinations of sensor, vegetation  
indices and regression types. Among these, only some 
representative scatter plots are given here (Figures 4–6). 
It can be observed from these scatter plots that it is diffi-
cult to observe any significant correlation between any 
type of vegetation index and forest carbon in high biodi-
versity mountains. 
 The study was aimed at exploring the applicability of 
vegetation indices as the main variable in forest carbon 
assessment. In order to examine the possibility of correla-
tion of forest carbon solely with vegetation indices across 
the complete spectrum, a whole range of sample plots 
 
 

 
 

Figure 4. Regression of SAVI with pixel carbon. 
 
 

 
 

Figure 5. Regression of NDVI with pixel carbon. 
 
 

 
 

Figure 6. Regression of EVI with pixel carbon. 

(data points) representing both low and high carbon  
values, different forest types, multiple density classes and 
different altitudinal ranges was taken into account for  
regression between vegetation indices and carbon values. 
In other words, the only independent variable considered 
in the study was vegetation index, and it was presumed 
that the all other factors which might affect the forest 
carbon will be subsumed in the vegetation index. The  
selective range of other variables (like forest density and 
altitudes) was not considered to exclude the possibility of 
any chance correlation, when the regression is performed 
in the limited regression environment within a limited 
range of altitude or forest type. 
 Several studies have shown that NDVI could be a good 
predictor of forest carbon at low forest carbon values15,16. 
Contrary to this conclusion, Table 1 shows the result of 
regression from the study area in the form of coefficient 
of determination (R2). It is evident from the table that 
very high number of species contained in a single pixel 
and different mix of species in different pixels in moun-
tainous terrain contaminate the pixel to an extent that 
renders it unusable for calibrating vegetation indices with 
biomass or carbon. 
 This pixel contamination could have occurred as the  
relationship between the spectral response measured by 
the sensor and forest carbon (biomass) is dependent on 
the optical properties of forests like canopy geometry and 
leaf spectral properties17. These parameters are directly 
affected by biodiversity. At the same time the relation-
ship between spectral response measured by the sensor 
and forest carbon (biomass) is also dependent on system 
factors such as topography, sun elevation, haze, wind 
speed and orientation and inclination of the view axis  
between the surface and the sensor which are directly  
affected by the terrain17. 
 In an area with a diverse mix of species where there is 
high biodiversity within a single patch and also the mix 
of species changes in the different patches (i.e. a high 
Shannon index coupled with low Sorenson’s coefficient), 
any inference on carbon drawn on the basis of just the 
vegetation indices will not be credible, at least with these 
moderate-resolution optical sensors like MODIS and 
Landsat; therefore remote sensing-based spectral vegeta-
tion indices alone cannot be the proxy for carbon calcula-
tors in such high biodiversity forests. 
 It is apparent that the high biodiversity-induced  
spectral response could be one of the prime disrupters in 
achieving a coherent relationship between vegetation  
indices and forest carbon. If the spectral response itself 
could capture the types and patterns of biodiversity, the 
biodiversity-induced pixel contamination could be offset 
by some algorithm, or alternatively, the level of pixel 
contamination could also be another variable along with 
vegetation indices for assessment of forest carbon. This is 
possible if the species diversity could be integrated in 
spectral response during remote sensing. However, the 
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Table 1. Regression of vegetation indices with pixel carbon 

 Coefficient of determination (R2) regression method 
   Vegetation 
Season/date Sensor index/band Exponential Linear  Log Polynomial Power 
 

1 January 2009 MODIS EVI 0.0073 0.0128 0.0175 0.0238 0.0071 
  NDVI 0.1519 0.1446 0.1269 0.1736 0.1294 
 

22 March 2009 MODIS EVI 0.1649 0.133 0.1273 0.1338 0.1551 
  NDVI 0.0187 0.0056 0.0168 0.0482 0.0351 
 

7 April 2009 MODIS EVI 0.0223 2.00E-06 0.0008 0.0172 0.0246 
  NDVI 0.1156 0.0372 0.0463 0.0545 0.1495 
 

15 April 2009 MODIS EVI 0.1743 0.0581 0.0329 0.1029 0.113 
  NDVI 0.002 7.00E-05 0.0021 0.1047 0.00002 
 

9 November 2009 MODIS EVI 0.0073 0.0128 0.0175 0.0238 0.0071 
  NDVI 0.1519 0.1446 0.1269 0.1736 0.1294 
 

3 December 10 MODIS EVI 0.0675 0.0023 0.0083 0.0364 0.0941 
  NDVI 0.2701 0.1426 0.1387 0.1426 0.2587 
 

20 November 13 Landsat 8  EVI 0.084 0.0093 0.02 0.0382 0.0998 
  NDVI 0.0857 0.0247 0.0088 0.0415 0.0214 
  SAVI 0.0832 0.0108 0.0178 0.0309 0.0776 
  MSAVI 0.0772 0.0079 0.0183 0.0183 0.0878 
 

6 March 2009 Landsat 7 EVI 0.0154 0.01 0.0413 0.0248 0.0792 
  NDVI 0.0565 0.0435 0.0526 0.085 0.0785 
  SAVI 0.0245 0.0163 0.0471 0.0543 0.0796 
  MSAVI 0.0216 0.0143 0.0469 0.0472 0.0803 

 
 
estimation of relationships between the spectral values 
and species distributions is useful for a limited purpose 
and subject to substantial errors18,19. Therefore, with the 
current state of knowledge, the removal of pixel contami-
nation due to biodiversity or the integration of species  
diversity in vegetation index cannot be reliably done. 
 Data synergy or fusion, i.e. the mechanism whereby 
discrete types of data are used together to achieve a better 
understanding than is possible with each individually20, 
may not be of much use in this case, where primary data 
of remote sensing pixel are contaminated. However, this 
should not be taken to indicate that moderate resolution 
optical remote sensing has no utility in high biodiversity 
mountainous areas for carbon assessment. Given the 
physical and financial resources involved in surveying, 
remote sensing is the only answer. While using a suite of 
other available methods in flat terrains with low biodiver-
sity, products like Landsat-8 seem best suited for broader 
spatial-scale forest carbon products, while airborne lidar 
can be used for estimating fine-scale above-ground forest 
carbon mapping with low uncertainty21. Vegetation in-
dex-based calibrations of carbon in high biodiversity 
mountain forests will be subject to large errors. This calls 
for alternatives like using remote sensing for forest den-
sity mapping and for classifying the various types in 
combination with other tools and data. Carbon density 
(i.e. carbon in tonnes per hectare) of different typical for-
est type–density combination classes can be estimated. 
Based on the area (ha) in these classes and the carbon 

density therein, the carbon content in a particular forest 
can be calculated. Remote sensing is one of the best tools 
for preliminary stratification on a broader scale. Stratifi-
cation can improve the predictive accuracy22, where some 
acceptable correlation between remote sensing-derived 
parameter and forest carbon can be obtained. Simultane-
ously there can be other pathways to arrive at the desired 
result. They can also include various other forms of re-
mote sensing, like lidar, hyperspectral and microwave 
remote sensing, either as standalone or in combination 
depending upon their usability, availability and accuracy. 
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