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Aiming at accurately identifying shearer cutting pat-
terns, this article proposes a new feature extraction 
method based on improved local mean decomposition 
(LMD) and multi-scale fuzzy entropy (MFE). The  
cubic trigonometric Hermite interpolation was used to 
calculate local mean and envelope estimate functions 
to improve LMD decomposition results and a sum of 
product functions was acquired. Furthermore, MFE, 
referring to the calculation of fuzzy entropy over a 
range of scales, was designed to measure the complex-
ity and self-similarity of vibration signals and extract 
the features from the decomposition results. Subse-
quently, the obtained feature vectors were fed into two 
classifiers of support vector machine and back propa-
gation neutral network to realize the cutting pattern 
recognition. The experimental results indicate the  
applicability and effectiveness of the methodology and 
demonstrate that the proposed algorithm could per-
form better in identifying different cutting categories 
of shearer. 
 
Keywords: Feature extraction, local mean decomposi-
tion, multi-scale fuzzy entropy, shearer cutting pattern. 
 
NOWADAYS, vibration signal analysis techniques are  
being widely used and are effective in the fields of fault 
diagnosis and pattern recognition1,2. Accurately identify-
ing the cutting patterns of a shearer can improve the effi-
ciency of coal mining, reduce wear on the machine 
components and prolong its life. Due to the close rela-
tionship between shearer rocker vibration and cutting 
conditions, it is feasible and reasonable to monitor the 
shearer condition and diagnose the cutting patterns on the 
basis of vibration signal analysis. 
 However, the vibration of shearer rocker usually dis-
plays strong nonlinear, non-Gaussian and non-stationary 
characteristics. Hence the state feature information can-
not be extracted accurately from the vibration signals 
only in the time or frequency domain. To extract the 

feature information, many signal analysis methods have 
been developed such as time-domain statistical features, 
short-time Fourier transformation, wavelet transform, 
Wigner–Ville distribution, and so on3–6. However, these 
traditional signal processing methods have their own 
drawbacks, especially the lack of self-adaptive feature7,8. 
 Unlike the above methods, empirical mode decomposi-
tion (EMD)9 and local mean decomposition (LMD)10 
have been applied in many fields11–17. EMD displays 
some defects of the end effect and mode mixing problems, 
etc. which limits its applications18,19. LMD can adaptively 
decompose a complicated multi-component signal into 
several product functions (PFs). However, there are still 
some shortcomings that need to be addressed, such as the 
distortion of decomposition results and lower conver-
gence speed. To overcome the defects of original LMD, 
many researchers have developed improved measures, 
such as cubic spline interpolation (CSI) method20,21, cubic 
Hermite interpolation (CHI) method22,23, rational Hermite 
interpolation (RHI) method24–28 and so on. However, these 
methods have their own drawbacks. In this article, an im-
proved LMD method based on the cubic trigonometric 
Hermite interpolation (CTHI) with shape parameters is 
proposed and the actual experiment data are used to ver-
ify the effectiveness of the CTHI–LMD method. 
 After the original vibration signals are decomposed, a 
major goal is to extract the features from the PF compo-
nents with more cutting pattern information. As a statisti-
cal measure method, approximate entropy (AppEn) and 
sample entropy (SamEn) have been proposed29,30, which 
can only reflect the information of time series in a single 
scale. Costa et al.31,32 developed a multi-scale entropy 
(MSE) method on the basis of SamEn, which has been 
used in fault diagnosis of rolling bearing33,34. For a 
shearer, the vibration signals of different cutting patterns 
possess diverse complexity in various timescales and the 
entropy values also differ from each other. Multi-scale 
fuzzy entropy (MFE) can evaluate the self-similarity of 
original data and provide uncertain and unsatisfactory 
analysis35–37. Hence, MFE is used as the feature extractor 
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to acquire the feature information from the decomposed 
PF components of the CTHI–LMD method. 
 Naturally, the extracted features are used to train a 
classifier to automatically recognize the categories of 
shearer cutting pattern. In the fields of fault detection and 
condition monitoring, there are many pattern recognition 
techniques based on artificial intelligence algorithms, 
such as artificial neural networks38, adaptive neuro-fuzzy 
inference system39, support vector machine (SVM)40, and 
so on. In this article, two classifiers of SVM and back 
propagation neutral network (BPNN) have been con-
structed based on the extracted feature vectors to auto-
matically identify the cutting patterns of the shearer, and 
experiments performed to verify the applicability and  
effectiveness of the proposed feature extraction method 
to the vibration signals of the shearer rocker. 

Improved local mean decomposition 

According to the literature on LMD, we can obtain the 
following decomposition result 
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where x(t) is the original signal, PFi(t) denotes the ith PF 
component, k the number of PFs and uk(t) is a residual 
signal after decomposition. 
 However, the original LMD method has many short-
comings. In this article, CTHI with shape parameters is 
introduced for LMD. 

Cubic trigonometric Hermite interpolation  
algorithm 

The basic function of CTHI can be constructed using 
trigonometric functions. 
 
Definition 1: For a given real number  and 0  t  1, 
the four functions 
 

 

2 3 3

2 3 3
1

2 3 3

2 3 3
1

( ) ,

( ) 1 ,
2( ) ( ),

2( ) ( ),

i

i

i

i

f t S S C

f t S S C

g t S S S C

g t C S S C

 

 

  


 






   


   

      


     


 

(2)

  

 
can be described as the basis functions of CTHI with  
parameter , where S = sin( t/2), C = cos( t/2). 
 After the calculations, the defined basic functions 
should satisfy the following conditions 
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It can be summarized that the basic functions of CTHI 
possess the same properties as CHI. By introducing the 
parameter , we can adjust the shape of the splines by 
setting different values for it, which can guarantee 
enough physical sense for the decomposed PFs. 

 
Definition 2: Given a partition of range [a, b]: a = x0 < 
x1 < x2 <  < xN = b and a discrete date (xi, yi, di), yi is 
the local maximum or minimum at time xi and di is the 
first-order derivative at time xi. Then the following  
formula can be obtained 
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where THi(x) is the cubic trigonometric Hermite interpo-
lation spline of each partition [xi, xi+1] in the range [a, b], 

1 , ( ) /i i i i ih x x t x x h     and fi (t), fi+1(t), gi(t) and 
gi+1(t) are the basic functions of CTHI. It can be proved 
easily that the CTHI splines are C1 continuous. 

Selection of optimum envelopes  

Using CTHI, the envelopes of LMD can be constructed 
reasonably well. According to the above analysis, the 
shapes of the envelopes will correspondingly change 
when the parameter  is set to different values, which can 
affect the decomposed PF components. On the basis of 
calculation time and accuracy, the range  is set as  
[–20, 20] in the present study28. In order to select opti-
mum envelop with proper , a novel evaluation criterion 
is proposed to implement the selection of optimum enve-
lopes in each rank. 
 Grey correlation degree (GCD) is a quantitative indica-
tor to describe the correlation between objects in the grey 
correlation analysis method. Therefore, the GCD is  
utilized as the evaluation criterion to select the optimum 
PF (OPF) component here, and the algorithm process is 
as follows. 
 Assume that the original signal x(t) = {x0(t), 
t = 1, 2, … , T} and the decomposed PF components  
with different  are denoted as 1PF ( ),i t  2PF ( ),..., PF ( ),p

i it t  
PF ( ) { ( ), 1, 2,..., ;j j

i it y t t T   1,2,..., },j p  where p is the 
width of range . The correlation coefficient  between 
x(t) and PF ( )j

i t  can be calculated as follows 
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where  is a constant and   (0, 1]. Here,  is set as 0.5. 
 The GCD (R) between x(t) and PF ( )j

i t  can be calcu-
lated using the mean of all correlation coefficients 
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The PF component with the biggest R can be selected as 
the optimum PF with the optimum envelopes in each sift-
ing process. 

Design implementation of CTHI–LMD 

An improved local mean decomposition (LMD) method 
based on cubic trigonometric Hermite interpolation 
(CTHI) is proposed here: 
 (1) Identify all the local extrema ni of the original sig-
nal x(t) and generate the upper envelope Eu(t) and lower 
envelope El(t) using the CTHI algorithm. For different 
values of the shape controlling parameter , the corre-
sponding upper and lower envelopes can be denoted as 

1 2( ), ( ),..., ( )p
u u uE t E t E t  and 1 2( ), ( ),..., ( ).p

l l lE t E t E t  
 (2) Calculate mi(t) and ai(t) using Eu(t) and El(t), de-
noted as 1 2( ), ( ),..., ( )p

i i im t m t m t  and 1 2( ), ( ),..., ( )p
i i ia t a t a t  

respectively 
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 (3) According to the decomposition steps of LMD,  
we can obtain p PFs with different values of : 

1 2PF ( ), PF ( ),...,PF ( ).p
i i it t t  The optimum PF (OPFi(t)) 

should be selected from the p PFs based on the GCD cri-
terion. 
 (4) The residual ( ) ( ) OPF ( )i iu t x t t   is then taken as 
the original signal and the above procedures are repeated 
until ui(t) is a constant or monotonic. Considering the ortho-
gonality of each PF component, the orthogonality criterion 
(OC) is used in the proposed CTHI–LMD method to over-
come the drawback of PF criteria. OC can be defined as  
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where mik(t) is the local mean function of the ith PF com-
ponent at sifting iteration step n. 
 Using OC as the PF criteria cannot only guarantee the 
orthogonality of PF components, but also reduce the  
iteration number and duration of the decomposition proc-
ess. Figure 1 depicts a flowchart of the proposed CTHI–
LMD method. 

Feature extraction based on multi-scale fuzzy  
entropy 

Fuzzy entropy 

As an improvement of AppEn and SamEn41, fuzzy entropy 
(FuzEn) employs a fuzzy function, such as exponential  
 

 
 
Figure 1. Flowchart of the improved local mean decomposition 
method. 
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function ( / )e
nd r  to measure the similarity, which can 

avert the drawbacks of AppEn and SamEn. The specific 
steps of FuzEn are described as follows. 
 
 (1) For a given time series {u(i), 1  i  N}, where N is 
the length, the m-dimensional vector can be constructed 
as  
 
 0{ ( ), ( 1),..., ( 1)} ( ),m

iX u i u i u i m u i      

   1, 2,..., 1,i N m    (9)  
 
where u0(i) is the mean of the m elements, calculated as  
 

 
1

0
0

1( ) ( ).
m

j
u i u i j

m





   (10)  

 
 (2) The maximum distance between m

iX  and m
jX  is 

defined as m
ijd  

 
 0 0

(0, 1)
max {[ ( ) ( )] [ ( ) ( )]},m

ij k m
d u i k u i u j k u j

 
       

  1,2,..., .i j N   (11)  
 
 (3) The similarity degree m

ijD  of m
iX  and m
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calculated as follows 
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where n and r denote the gradient and width of the border 
respectively. 
 (4) The following formulas can be defined as 
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 (5) The fuzzy entropy can be calculated as follows 
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Usually N is finite, FuzEn(m, n, r) can be expressed as 
follows 
 
 1FuzEn( , , ) ( , ) ln ( , ).m mm n r n r n r     (15)  

Multi-scale fuzzy entropy 

In analogy to MSE, the calculation method of MFE 
mainly includes two procedures, summarized as given  
below. 
 (1) The coarse-grained vectors of original time series 
are constructed as follows 
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where the scale factor  = 1, 2,… . 
 (2) FuzEn of each coarse-grained time series can be 
calculated using eqs (9)–(15) and then plotted as the 
function of scale factor for MFE analysis. 
 The parameters of MFE can be selected as follows: 
m = 2, r = 0.1 ~ 0.25*SD (SD is the standard deviation 
the original time series), r = 0.15*SD, n = 2, max = 15. 

Experimental validation 

Collection of vibration signals 

Figure 2 shows a self-designed experimental system for 
shearer cutting coal. The coal seam was composed of 
three parts: f = 2, f = 3 and coal seam with some gangues 
( f is the Protodikonov’s hardness coefficient). Thus, the 
shearer mainly displayed four cutting patterns, including 
the idling pattern, and three kinds of coal seams, which 
could be represented by the symbols of F1, F2, F3 and F4 
respectively. We collected 240 data samples with 60 data 
samples under each cutting pattern to verify the proposed 
algorithm; each sample contained 5000 data. Figure 3 
shows vibration acceleration signals under the four cut-
ting patterns. 

Comparative analysis of different decomposed  
methods 

In order to verify the effectiveness of the CTHI–LMD 
method, three other methods, i.e. original LMD, CHI–
LMD and RHI–LMD were employed to decompose the 
vibration signals. The following four indicators of ortho-
gonal index (OI), energy difference (ED), number of  
iterations for obtaining each PF component and consum-
ing time were used to evaluate the decomposition per-
formance in detail as follows 
 
 (1) The orthogonal index can be calculated as 
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Figure 2. The self-designed experimental system for shearer cutting coal. 
 
 

 
 
Figure 3. The vibration acceleration signals of each shearer cutting 
pattern. 
 
 
where NPF and N denote the number of PF components 
and length of the signal respectively.  
 (2) The energy difference can be calculated as 
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 (3) The number of iterations for each PF: In the LMD 
theory, there is no consistent mathematical model to de-
fine the best envelope and smaller iteration time of each 
PF will shorten the decomposition time and improve cal-
culation efficiency. 
 (4) Consuming time: For different decomposition 
methods, the consuming time should be taken into con-
sideration.  

 In the simulation experiment, the vibration signal of 
shearer cutting pattern F4 was selected as the analysis ob-
ject and was decomposed into a sum of PF components 
(OPF components for CTHI–LMD) based on the four 
methods respectively. Figures 4–7 show the correspond-
ing decomposition results. It should be noted that since 
the front PF or OPF components contain the maximum 
pattern information, here we have plotted only the first 
four PF or OPF components due to lack of space. 
 It is clear from Figures 4 to 7 that some difference ex-
ists in the PF or OPF components derived from the four 
methods. This is because different ways are adopted to 
calculate the local mean value function and envelope es-
timation function. At the same time, different iterative 
termination conditions are also used in the four methods. 
In order to directly show the decomposition performance 
of the four methods, a future comparison was carried out. 
The four evaluating indicators were employed to quantify 
the decomposition performance, and Table 1 provides the 
results of the comparison. 
 From Table 1, the following conclusions can be drawn. 
First, the OI value of CTHI–LMD (0.0643) is smaller than 
that of RHI–LMD (0.0954), CHI–LMD (0.1246) and LMD 
(0.1708), which indicates the proposed decomposition 
method possesses better orthogonality property. Secondly, 
CTHI–LMD has a smaller energy difference than the other 
three methods. This indicates that the energy value of 
CTHI–LMD decomposition results closer to the energy of 
the original signal. Meanwhile, the iteration number of the 
first four OPFs obtained by CTHI–LMD (7, 6, 7, 5)  
is smaller than that of PFs obtained by other three methods, 
which demonstrates that the envelopes of LMD gene- 
rated by the CTHI algorithm are superior. Lastly, CTHI–
LMD will consume more time (18.7516 sec) than RHI–
LMD (14.7567 sec), CHI–LMD (11.4128 sec) and LMD 
(10.5764 sec). In general, the proposed decomposition 
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method is demonstrated to be more suitable for vibration 
signals of the shearer rocker. 

Multi-scale fuzzy entropy analysis for vibration  
signals 

The MFE method was utilized to extract features from the 
original signals and the first components (OPF1) under 
15 scales for four cutting patterns. Figures 8 and 9 illus-
trate the MFE curves of the original signals and OPF1 
components over 15 scales of the cutting data under four 
cutting conditions. 
 As seen from Figures 8 and 9, it is not easy to identify 
the four cutting patterns just from the MFE curves, espe-
cially the two cutting conditions of F2 and F3. In Figure 
8, obviously, the cutting pattern F2 cannot be separated 
from the cutting pattern F3 based on the corresponding 
MFE curves. In addition, the FuzEn values of the shearer 
with idling pattern are distinctly larger than others when 
 
 

 
 
Figure 4. LMD decomposition results of the vibration signal of 
shearer rocker with cutting pattern F4. 
 
 

 
 
Figure 5. Cubic Hermite interpolation based LMD decomposition re-
sults of the vibration signal of shearer rocker with cutting pattern F4. 

the scale factor   3, which indicates that the vibration 
signals of idling pattern are more complex than those of 
shearer cutting different coal seams. Meanwhile, the 
shearer with cutting pattern F4 has larger FuzEn values 
than the other two cutting patterns (F2 and F3). 

Application to shearer cutting pattern recognition 

A classifier based on SVM was applied for classification 
of the four categories. The pattern features extracted by 
MFE of OPF1 over 15 scales were used to construct the 
feature vector, and then train and test the SVM classifier. 
However, not all FuzEn values in 15 scales have a close 
relationship to the cutting patterns and a large dimension 
of input vector for SVM would consume more time and 
decrease the classification accuracy rate. In order to re-
fine the extracted features, the Laplacian score (LS) algo-
rithm42 was employed to rank the FuzEn values over 
different scales according to their importance. Based on  
 

 
 
Figure 6. Rational Hermite interpolation based LMD decomposition 
results of the vibration signal of shearer rocker with cutting pattern F4. 
 
 

 
 
Figure 7. CTHI–LMD decomposition results of the vibration signal 
of shearer rocker with cutting pattern F4. 
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Table 1. Comparison between LMD, CHI–LMD, RHI–LMD and CTHI–LMD methods using four evaluating indicators 

 Number of iterations 
  Energy     Consuming 
Method Orthogonal index difference (%) PF1 PF2 PF3 PF4 time (sec) 
 

LMD 0.1708 9.25 16 14 12 12 10.5764 
CHI–LMD 0.1246 6.77 13  9 11 10 11.4128 
RHI–LMD 0.0954 3.04  9  6 10  8 14.7467 
CTHI–LMD 0.0643 2.74  7  6  7  5 18.7516 

 
 

 
 

Figure 8. Multi-scale fuzzy entropy (MFE) over 15 scales of original signals. 
 
 

 
 

Figure 9. MFE over 15 scales of optimal components decomposed from the CTHI–LMD method. 
 
 

 
 
Figure 10. Classification results of support vector machine with the 
proposed method. 

the procedures described in Li et al.15, the LS of each fea-
ture could be calculated easily and then ranked as follows 
 

10 5 15 11 7 13 6 14

12 8 9 3 1 4 2

LS LS LS LS LS LS LS LS
LS LS LS LS LS LS LS .

      

      
 

 
It should be noted that the features with smaller LS val-
ues contain more important information. Thus the first 
five features in the front ( = 10, 5, 15, 11, 7) with the 
most important information were chosen as feature vec-
tors for the SVM model. In addition, 20 samples with  
different cutting conditions, randomly selected from the 
dataset, were used to train the SVM. The residual 160 
samples were used to test its recognition performance and 
the class labels of the four cutting patterns were marked 
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Figure 11. Classification results of SVM with different methods. a, SVM without preprocessing by the decomposition methods. b, SVM with 
RHI–LMD and MFE. c, SVM with CHI–LMD and MFE. d, SVM with LMD and MFE. 
 

 
as 1–4. Furthermore, the genetic algorithm (GA) was util-
ized to optimize the parameters of SVM. Finally, the 
classification results of the proposed method were plotted 
(Figure 10). It is clear from Figure 10 that no sample was 
misclassified in the training and testing phase, and the 
overall recognition accuracy reached 100%. The results  
indicate that SVM with the proposed method displayed 
perfect classification performance and was suitable for 
the recognition of shearer cutting pattern. 
 In order to verify the necessity of preprocessing vibra-
tion signals by decomposition methods, the MFE values 
of the original signals (Figure 8) were used to construct 
the feature vectors. Using the same simulation settings 
mentioned above, the classification results were plotted 
(Figure 11 a). It can be observed from Figure 11 a that 
the overall classification accuracy is 97.92%, which is 
lower than that of SVM. The reason is that the interfer-
ence noise in vibration signals affected the recognition 
results of SVM, which could be retrained by the use of 
CTHI–LMD. The results demonstrate the necessity to de-
compose the vibration signals before extracting pattern 
characteristics. 

 To further validate the superiority of CTHI–LMD in 
the recognition of shearer cutting pattern, the other three 
decomposition methods, i.e. RHI–LMD, CHI–LMD and 
LMD were used to preprocess the vibration signals and 
the pattern features of the first PF component were  
extracted by the MFE method. Then the feature vectors 
were also constructed by the LS method for a SVM clas-
sifier to recognize the various cutting patterns of the 
shearer. The simulation settings were the same as men-
tioned above. Figure 11 b–d shows the classification re-
sults of SVM with different preprocessing methods after 
the training and testing phase. It can be clearly observed 
from the figures that two, three and four samples are mis-
classified into the wrong pattern degrees through SVM 
with RHI–LMD, CHI–LMD and LMD methods respec-
tively, and the corresponding recognition accuracies are 
99.17%, 98.75% and 98.33%, which are obviously lower 
than that of SVM with the proposed method. The results 
provide compelling evidence that CTHI–LMD can  
acquire the optimal component with much more pattern 
information, generating higher classification accuracy 
than the other decomposition methods. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 112, NO. 11, 10 JUNE 2017 2251 

Table 2. Classification results of back propagation neutral network with different preprocessing methods 

Preprocessing method MFE (%) LMD and MFE (%) CHI–LMD and MFE RHI–LMD and MFE (%) CTHI–LMD and MFE (%) 
 

Training sample 98.75 98.75 100 100 100 
Testing sample 96.88 97.5 97.5 98.75 100 
Overall accuracy 97.5 97.92 98.33 99.16 100 

MFE, Multi-scale fuzzy entropy. 
 
 
 In order to illustrate the universality of the proposed 
feature extraction method, another common classifier, 
BPNN was also employed to recognize the shearer cut-
ting patterns. The number of training and testing samples 
remained the same as those of the SVM model and GA 
was also used to optimize the parameters of BPNN to 
achieve better classification ability. The classification re-
sults of BPNN with different preprocessing methods are 
listed in Table 2 after simulations. 
 As seen from Table 2, BPNN with the proposed 
method could perfectly recognize the cutting patterns and 
the overall recognition accuracy reached 100%, which is 
obviously higher than RHI–LMD and MFE (99.16%), 
CHI–LMD and MFE (98.33%), LMD and MFE (97.92%) 
and single MFE (97.5%). The simulation results indicate 
that the proposed feature extraction method of CTHI–
LMD and MFE is well-suited and effective in represent-
ing the characteristic information of shearer cutting  
patterns. 

Conclusion 

This study proposed a new feature extraction method 
based on improved LMD and MFE for the recognition of 
shearer cutting pattern. The CTHI algorithm is employed 
to construct the envelopes of LMD reasonably well and a 
sum of PF components can be obtained with different  
values in each rank. Then, the optimal component is  
selected from the PF components in each sifting process 
according to the size of grey correlation. Furthermore, 
MFE is introduced to analyse the complexity of OPF 
components and the obtained feature vectors are taken as 
inputs of the SVM and BPNN classifiers. Finally, the 
simulation results indicate that the proposed approach 
possesses superior performance in representing the char-
acteristic information of shearer cutting patterns and is 
applicable to identify the shearer cutting patterns. 
 According to the results of this study, we can conclude 
that the proposed method can be used for shearer cutting 
pattern recognition for vibration signal processing. How-
ever, there are some limitations, such as incomplete  
acquisition of signals in other parts of the shearer. As a 
major emphasis of future work, more useful vibration 
signals will be acquired from other key parts of the 
shearer and some efficient data fusion algorithms will be 
investigated. 
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