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In this study, a hybrid configuration of electromag-
netic metaheuristic algorithm (EM) with Pachycondyla 
apicalis (API) ant algorithm (inspired by the behav-
iour of real ant colony Pachycondyla apicalis) belong-
ing to ant colony optimization (ACO) called EMAPI 
algorithm is presented for remote sensing data classi-
fication. The traditional per-pixel classification method 
identifies the classes using spectral variance and  
ignores the spatial distribution of pixels. It requires 
training data to be normally distributed in the pixels 
corresponding to land use/land cover classes and cre-
ates a lot of confusion between classes within a remote 
sensed (RS) data. The proposed algorithm is an inte-
grated strategy structure to achieve advantages of 
global and local search ability of EM and API algo-
rithms respectively. The objective consists of improv-
ing overall accuracy of the classified results of RS 
data. This method can overcome intermixing with re-
gard to scrub land with cultivated areas and build-up 
land with palm groves. The proposed algorithm is 
tested on objective functions well used in the literature 
and EMAPI is used for supervised land cover classifi-
cation. Results of EMAPI algorithm over 6 classes 
showed an improvement of 8% in overall classification 
accuracy (OCA) for EM technique and improvement 
of 3% in OCA for API algorithm. 
 

Keywords: Ant colony optimization, API algorithm, 
electromagnetic metaheuristic, data classification, hybrid 
metaheuristic. 
 
IN recent years, remote sensing data classification has be-
come attractive due to its technical, economic and envi-
ronmental benefits. Basically this processing is difficult 
because regions of land cover features lead to confusion 
of two or more regions. Precisely, pixel values are as-
signed based on their reflectance of classes present in that 
area. Supervised, unsupervised and semi-supervised are 

the three popular learning techniques for land cover clas-
sification1–3. Numerous computational artificial intelli-
gence techniques have been used, e.g. fuzzy logic4, neural 
network5, support vector machine6 and K-means7. Meta-
heuristics have also been widely used for remote sensing 
data classification8,9, e.g. particle swarm10, ant colony 
techniques11–13, bee colony14, artificial immune system15 
and genetic algorithm16. 
 Generating a satisfactory classified image from the 
higher spectral, spatial and temporal resolution, and high-
dimensional (bands) data is one of the present-day chal-
lenges in RS data17,18. Hence, this study is aimed at  
developing a new classification technique to improve 
classification accuracy even when a subjective and objec-
tive numerical approach is adopted. 
 Several studies are based on stochastic and collective 
behaviour with a decentralized approach which signifi-
cantly improves the searching capability of optimization 
algorithm. Hybridizing local search technique with global 
optimization metaheuristics provides a reliable classifica-
tion approach for data with a mixture of vegetation, urban 
and semi-urban land cover and a large number of spec-
trally overlapping subclasses19–21. The purpose of global 
optimization technique is to maintain a scatter population 
to explore the whole area of interest. However, improving 
the accuracy of a solution by exploring its neighbourhood 
is dedicated to the local search algorithm22. The ultimate 
goal of hybrid method is to best exploit spectral, spatial 
signature of the data to avoid other inherent characteristic 
associated with it23. The present study develops a hybrid 
EM-ACO technique named EMAPI to classify remotely 
sensed data. 
 The present work aims to avoid the drawbacks of API 
algorithm15,24 and study performance of EM which is  
dependent on local search25. This way, EMAPI algorithm 
takes advantages of the local search for EM technique 
and the downhill (gradient descending) search behaviour 
of API algorithm.  
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Methodology 

Metaheuristics algorithms offer high quality solutions 
through global optimal solution by reducing CPU time15. 
 Today, utilization of metaheuristics algorithms has 
drawn great attention in several data processing fields due 
to reduction in computational time and global optimal so-
lutions19. The present study focuses on the concept of hy-
bridization, which is a good idea for optimization to 
increase the results of classification. 
 In this article, two metaheuristics are used: the first is an 
API algorithm and the second is an EM technique inspired 
by attraction–repulsion mechanism of charged particles. 

API algorithm 

The API Pachycondyla apicalis (API) ant algorithm26 dif-
fers in terms of search strategy from the basic of ACO, 
where API memorizes and navigates the routes instead of 
using only chemical substances called pheromones. 
 API algorithm was inspired by the behaviour of real 
ant colony called Pachycondyla apicalis, which lives in 
the Mexican tropical forest near the Guatemalan border. 
The biological aspect of this colony was studied by Fres-
neau27,28. The classes were discovered and classified  
using an approach similar to the collective process of 
seeking food by ants. API algorithm obtains a set of rules 
in the training set through a sequential process which  
iteratively finds the best classes which cover most pixels 
in the training sample.  
 Given below are different steps of the API algorithm. 
 Step 1: Nest sampled randomly in the search space 

 Depending on the brightness value of each class 
the remote sensed data has been noted with differ-
ent classes. 

 Ants sampled randomly around the nest 
 For each ant  
  Creating haunting sites 

 Starting from class 1 to class n, API ant adds 
nodes to the classes to classify the data according 
to the chemical substance obtained at each node.  

 New classes are identified in its neighbourhood 
and exploit the other classes in its predefined train-
ing site. 

  Exploring haunting sites 
 if the class identified was unsuccessful, then it ex-

ploits the previously assigned class again.  
 Erase sites: when the data are misclassified con-

secutive number of times, unsuccessful contents 
are erased from the memory of ants. 

 

 Step 2: If (f (best ant) < f (nest)) then the nest moves to 
best ant’s location. 

 If all the pixels are correctly classified, dataset has 
been erased from memory and waits for the new 
dataset. 

 Until condition criterion is reached. 
Return (nest position) 

 If all the classes are classified correctly remove the 
training sample which has been finally covered by 
the ant. 

EM algorithm 

Electromagnetic metaheuristic is a global optimization 
algorithm inspired by attraction and repulsion of electri-
cal charges. This algorithm was proposed by Birbil and 
Fang25 for complex optimization problems with bounded 
variables. 
 This metaheuristic has been used for several problems. 
For example: solving the maximum betweenness29, the 
unicost set covering problem30 and the nurse scheduling 
problem31. The general scheme of EM algorithm is shown 
in Figure 1. 
 The first procedure in the algorithm named Initialize() 
is used to sample m particles from the search space. As a 
result, initializing in EM algorithm using k-means algo-
rithm helps choose training samples by addressing differ-
ent initial centres to find the best solution. If there is a 
mismatch with training and testing data, the classification 
will lead to incorrect results. 
 The purpose of the second procedure (named Local-
Search( )) is to allocate the local search information to 
each particle in the population. Initial centres for each 
class are gathered from the density function of various 
points from the first principal component (PC) which are 
set to ((–0.68, –0.37); (0.09, 2.08); (0.26, 0.92); (2.23,  
–0.32); (3.18, –0.66); (3.48, –0.55)). 
 In this study, we used a simple local search as used in 
earlier25. The third procedure named CalcForce() is dedi-
cated to calculate the total force (Fi) exerted on each  
 
 

 
 

Figure 1. EM flowchart. 
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particle i (eq. (2)). To enhance and compress the pixel 
values, a low and high resolution image is processed us-
ing logarithmic transformation to satisfy the maximum 
likelihood classifier which supports Gaussian distribution 
process. As a result, it is used to classify the classes cor-
rectly. 
 The charge of each particle (qi) is required to calculate 
Fi (eq. (2)). The charge qi (eq. (1)) of particle i can be 
calculated as follows 
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The last procedure MovePart() permits to move the parti-
cle i in the direction of the force exerted on it (eq. (3)) 
 
 / || || .i i i ix x F F    (3) 
 
Figure 2 presents the base principle of EM algorithm. For 
more details about EM algorithm readers could refer to 
Birbil and Fang25. 

EMAPI algorithm 

The proposed EMAPI metaheuristic is mainly the API al-
gorithm used in local search step of EM technique to 
solve global continuous optimization problems of moder-
ate and large dimensional datasets. Hybridization, entitled 
EMAPI, keeps the ‘downhill’ search ability of API, to 
avoid trapping of local minimum sectors by using the 
concept of diversity given by the EM metaheuristic. The 
proposed algorithm can reduce time and can provide an 
appropriate solution compared to other algorithms, due to 
distributed work load among them which is spectrally 
homogeneous and spectrally overlapping. The best solu-
tions are identified by API algorithm when added with  
 
 

 
 

Figure 2. Principle of particles moving. 

EM local search pool which follows the iterative process 
proportional to their fitness and distributes the workload 
among all workers and provides optimal solution to the 
classified results. During the search, the best fit in API is 
identified through fitness proportional scheme and 
through pheromones evaporation. 
 First, the proposed algorithm selects an individual par-
ticle for initializing the population to encode the food 
source for classification. In EMAPI, algorithm variables 
are represented using string values, where each particle is 
optimized using fitness values of API algorithm. Sec-
ondly, API algorithm is used as local search step. Later 
the charges of each particle (eq. (1)) are computed to  
obtain the total force (eq. (2)) exerted on each one. After 
evaluating the total force, each particle is moved to a new 
position on the search space (eq. (3)). These precedent 
steps are repeated until a predefined number of iterations 
is reached. The structure of the proposed hybrid EM-API 
algorithm is shown in Figure 3. 
 For EM algorithm, parameters are initialized using k-
means algorithm, where the number of iterations and time 
can be reduced for the obtained estimated parameters 
compared to API algorithm for each set of iterations 
which can provide increased log-likelihood until a local 
maximum is reached. 

Local search step using API algorithm 

Generation of new nest (exploration): It identifies new 
classes to avoid mixed pixels in the data. 
 
 

 
 

Figure 3. EMAPI flowchart. 
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Exploitation 

Intensification search is based on the density function of 
the first principal components (FPC). For each ant, 
classes are assigned based on the behaviour of FPC. If the 
identified classes in its memory are less than a training 
sample, then it identifies new classes in its neighbour-
hood and exploits the other classes in its predefined train-
ing site; else if the class identified was unsuccessful; then 
explore the misclassified class; else explore the selected 
class which probabilistically matches in ant memory; end; 
end.  
 Erase sites: If the predefined classes are misclassified 
within 3 to 4 iterations, ant erases all the classes from its 
memory content.  

Information sharing 

To calculate the force, two ants share/exchange their 
class information depending on fitness values that are 
stored in the memory of the ant which can enhance or 
compress the pixel values to lower and higher intensity 
value. The EM technique shares information and distrib-
utes classes using the parameters of maximum likelihood 
estimator to avoid incomplete observations through Cal-
cforce( ).  

Move the particles  

If the condition for nest movements is satisfied, go to 
classified result; else, go to the step intensification; end. 

Best particle 

All the pixels are classified correctly, STOP. 
 A lot of condition criteria could be used to stop an op-
timization algorithm, for example: (a) iterations are pre-
defined, (b) successive number of iterations spent without 
improving the best particle, (c) a predefined maximum 
number of function evaluations. In this article, the first 
and the third criteria are used. 

Training sample selection 

To yield acceptable classification results, the training 
data or training sample (TS) must be both representative 
and complete in respect of the LU/LC of interest. The TS, 
in classification, allows analysts to tie known characteris-
tics of LU/LC on the ground with reflectance values from 
a satellite image. The sample size is also a major issue in 
TS, since it is a function of image resolution and spectral 
characteristics of the classification of interest. For exam-
ple, in this study a multi-spectral image of LISS-IV of 
5.8 m spatial resolution over approximately 300 acres of 

land would contain 418,984 (image size: 664  631) pix-
els over the same land-area and scene. Even for such a 
small study area, a sample of just 0.5% of the total pixels 
would comprise training pixels or instances as huge as 
2,094 and 4,925 per image band respectively, for the two 
images mentioned in the example. Practically, access to 
various portions of the study area is also quite difficult 
due to the complexity of terrain, security restrictions, cost 
and other constraints involved therein. Therefore, the size 
of the training data set needs to be kept small but must be 
large enough to accurately characterize and represent the 
LU/LC classes. Hence, the sample size is a major issue of 
debate in remote sensing, and has led to the following 
two arguments as observed in the literature. In this study 
a theoretical lower limit of (n + 1) pixels is kept for con-
sidering in a training set, where n is the number of spec-
tral bands. However, minimum 10 n to 100 n pixels 
should be selected for the necessary estimation to show 
an improvement in the training set. But due to statistical 
validity and practicality, if the size of pixels or the num-
ber of classes is more than 6, then at least 75 to 100 sam-
ples should be taken per class. Although the rule of 
thumb of having 75 to 100 samples per class is just an 
empirical approach, it should be favoured in practice to 
make sure that the statistical analysis and calculation of 
kappa are valid in RS data classification. 
 Figure 4 depicts the convergence of accuracy with 
training samples and validation sites. When the number 
of training samples per class is minimum, it is obvious 
that it is less convergent. The convergence is better as the 
training samples per class increase. The relationship 
changes when minimum training sample per class is 20 
by achieving an overall classification accuracy of 80%. A 
total of 5 min was taken to classify the data using EMAPI 
algorithm.  

Data used, study area and accuracy assessment  

IRS-P6 LISS-IV satellite data captured on 26 December 
2014 (path: 104, row: 028; 5.8 m spatial resolution)  
 

 
 
Figure 4. Behaviour of test sample and training sample error as a 
model complexity is varied. Red colour shows a training set and blue 
colour shows a testing data set. 
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Figure 5. Arsikere study area. 
 
 
consisting of three multispectral (MS) bands recorded at 
green (0.52 to 0.59 m), red (0.62 to 0.68 m) and infra-
red (0.77 to 0.86 m) wavelengths, were used in this 
study. The area chosen for our work is semi-urban region 
of Arsikere with geographical co-ordinates between 
131601.99N to 131938.54N and 761436.14E to 
761838.67E with elevation of 0.0 m AMSL as shown in 
Figure 5.  

Accuracy assessment 

The two most commonly adopted accuracy assessment 
measures are the overall classification accuracy (OCA) 
and the kappa statistics computed from the error matrix. 
To avoid the bias from class to class accuracy in test data, 
it is important to consider the individual class accuracies 
under the producer’s and user’s accuracies where column 
represents reference data and row indicates classification 
generated from the RS data. 
 
Overall classification accuracy: It is obtained by dividing 
the summed up values of row and column diagonally of 
the error matrix by the total number of classified pixels of 
the reference points in the error matrix. 
 

 OCA = 
1

/ .
k

ii
i

n n

  (4) 

 
Producer’s accuracy: Producer’s accuracy (PA) is ob-
tained by dividing the total number of correctly classified 
pixels in a category (on the major diagonal) by the total 
number of pixels of that category as derived from the ref-
erence data (the column total). PA can be computed by 
 

 PA = 
1

.
k

ij ij
k

n n

   (5) 

 Error of omission = 100% – PA. 
 
User’s accuracy: User’s accuracy (UA) can be obtained 
by dividing the total number of correctly classified pixels 
in a category (on the major diagonal) by the total number 
of pixels that are classified in that category (the row  
total). The user’s accuracy can be computed by 
 

 UA = 
1

.
k

ii ij
i

n n

   (6) 

 
Kappa statistic: The Kappa statistic is a measure of the 
difference between actual agreement between reference 
data and an automated classifier, and the chance agree-
ment between the reference data and a random classifier  
 

 Kappa = 2

1 1 1

.
k k k
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i i i

n n n n n n n   
  

     (7) 

Results and discussion  

The objective of the behavioural study is to investigate 
the response of EM, API and hybrid EMAPI algorithm on 
remotely sensed data and selection of classes which are 
dominated over a semi-urban area. API, EM and hybrid 
EMAPI classifications were accomplished using 
MATLAB software and validations were accomplished in 
Environmental Vegetation Index (ENVI) image process-
ing software.  
 Figure 6 a–c shows visual comparison of hybrid algo-
rithm, API and EM procedure for the 2014 year data. EM 
shows a misclassification in urban area and wasteland, 
whereas API algorithm distinguishes both the classes bet-
ter. The classification results for API, EMAPI and EM 
are given in Tables 1–3 respectively.  
 An OCA of 83.97% was obtained in EMAPI, and 
80.56% in API algorithm, where as in EM procedure 
OCA was found to be 72.97% for same number of train-
ing pixels.  
 

 For class 1(built-up land) the performance of EMAPI 
algorithm is far better in comparison with EM (PA: 
7.22% and UA: 12.72%) and API shows results closer 
to the proposed method.  

 For class 2 (cultivated area) EMAPI algorithm shows 
an improvement of 6.22% in PA and 8.45% in UA 
when compared to EM algorithm but for API algo-
rithm there is an improvement in PA of 2.51% and 
UA of 0.62%.  

 For class 3 (water bodies) EMAPI algorithm shows an 
improvement of 7.14% in PA for EM algorithm, but 
there was a marginal improvement of 3.57% in PA 
and 25.72% in UA over API procedure.  
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Figure 6. Classified multi-spectral image using (a) EM algorithm, (b) API algorithm, (c) EMAPI algorithm. 
 

Table 1. Confusion matrix and conditional kappa values for the 6 classes using API 

Classes 1 2 3 4 5 6 Row total UA (%) 
 

1 141 1  2 8 1 153 92.15 
2 2 152   4  158 96.20 
3 1  26 1 6 1 35 74.28 
4  2  170 20  192 88.54 
5  3 2 5 198  208 95.19 
6  1  11 3 30 45 66.66 
Column total 144 159 28 189 239 32 791  
PA (%) 95.83 93.08 92.85 84.65 82.84 84.37  OCA 80.56 
kappa 0.904 0.93 0.746 0.816 0.791 0.821   

1, Built-up land, 2, Cultivated area, 3, Water bodies, 4, Coconut plantation, 5, Shrub land, 6, Palm plantation. 
 

 
Table 2. Confusion matrix and conditional kappa values for the 6 classes using EMAPI 

Classes 1 2 3 4 5 6 Row total UA (%) 
 

1 140   2 10 2 153 91.50 
2 2 148  3 1  154 96.10 
3   27    27 100 
4 2 4  170 11  187 90.90 
5  2 1 12 214 3 239 89.53 
6  5  2 1 27 35 77.14 
Column total 144 159 28 189 239 32 791  
PA (%) 97.22 95.59 96.42 92.89 89.53 94.75  OCA 83.97 
Kappa 0.891 0.904 0.861 0.820 0.797 0.796   
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Table 3. Confusion matrix and conditional kappa values for the 6 classes using EM 

Classes 1 2 3 4 5 6 Row total UA (%) 
 

1 130  1 23 10 1 165 78.78 
2  142 1 16 3  162 87.65 
3   25    25 100 
4 4 5  130 92 3 234 55.55 
5 10 9 1 18 131 1 170 77.05 
6  3  2 3s 27 35 75.14 
Column total 144 159 28 189 239 32 791  
PA (%) 90.27 89.30 89.28 68.78 54.81 83.31  OCA 72.97 
Kappa 0.899 0.934 0.96 0.542 0.532 0.724   

 
 

 For class 4 (coconut plantation), EMAPI algorithm 
exhibits an improvement of 24.11% in PA and 
35.35% in UA over EM procedure whereas there is an 
improvement of 8.24% in PA and 2.36% in UA over 
API procedure.  

 For class 5 (shurb land), the EMAPI algorithm shows 
an improvement of 34.72% in PA and 12.48% in UA 
over EM, whereas API algorithm produced a marginal 
improvement of 6.69% in PA and 5.60% in UA.  

 For class 6 (palm plantation), EMAPI algorithm 
shows an improvement in PA of 11.44% and UA 2% 
when compared to EM algorithm and EMAPI per-
forms better than API with a difference of 10.38% PA 
and 10.48% UA for class 6. 

Conclusion 

This study has proposed EMAPI hybrid algorithm for re-
mote sensing image classification of semi-urban area near 
Arsikere district, which often displays a fragmented, het-
erogeneous land cover features on LISS-IV data of 5.8 m 
spatial resolution for 6 land cover classes which arise 
from absent or ineffective local planning. Electromag-
netic metaheuristic algorithm is implemented in local 
search stage to improve the performance of API algo-
rithm. The results obtained on test functions show that 
EM technique helps API algorithm to not only efficiently 
perform local exploration, but also effectively reach op-
timal or near optimal solution. The comparison results 
(results of the first problem) with other optimization 
techniques (EM, API, EMAPI) show that there is a scope 
of research in hybridization to solve complex optimiza-
tion problems. The improvement of 83.97% in OCA was 
shown in EMAPI algorithm when compared with API 
(80.56%) and EM (72.97%) for the 2014 year data. 
 Compared to API and EM algorithm, EMAPI shows 
better classification results for the semi-urban region of 
the study area with improvement in water bodies, coconut 
plantation, shrub land and palm plantation. 
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