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We propose a solution for automatic co-registration of 
LISS-4 MX radiometrically conditioned multispectral 
images issue by considering an optimization problem 
in which mutual information-based approach is used. 
Co-registration of multispectral images from the same 
sensor may also be a tough problem to tackle, when 
the payload imaging geometry is complex. The multi-
spectral images acquired by ISRO Resourcesat-1/2 
LISS-4 MX class of sensors pose such problems and 
demand an automatic registration solution for system-
corrected product generation to cater to user needs. 
Optical remote sensing image registration is assisted 
by image geo-referencing or navigation information 
along with components such as feature detection, 
matching, correspondence, and resampling the input 
image to the reference geometry. Intensity-based 
methods employ an iterative registration framework, 
where similarity metric based image matching and 
correspondence is refined to find out optimum trans-
form parameters. We could successfully employ  
mutual information-based adaptive stochastic gradi-
ent descent optimization algorithm to do sub-pixel 
level satellite image registration tasks by a careful 
choice of parameters and models related to metric, 
transform, optimizer, and interpolator in a robust im-
age registration framework which is automatic for dif-
ferent terrain data. The performance is also compared 
to a recent scale invariant feature transform (SIFT)-
based registration method. 
 
Keywords: Image registration, LISS-4, mutual infor-
mation, optimization. 
 
LISS-4 MX, one of the sensors onboard Indian remote 
sensing satellite systems Resourcesat-1 & 2 launched in 
2003 and 2011 respectively, provides ~5 m data with 
three spectral bands. The earlier platform had LISS-4 MX 
swath restricted to 23 km, whereas the Resourcesat-2  
offers 70 km (ref. 1). This payload contains three detector 
configurations corresponding to three spectral bands 
placed in focal plane at different angles across and along 

the pitch axis of the spacecraft. LISS-4 camera also has 
off-nadir viewing capability by steering across-track  
direction within  26 deg. Individual band images are  
acquired with small, yet finite time gaps while the satel-
lite is driven by a pre-determined yaw profile. In addi-
tion, the odd-even pixels are placed in a staggered fashion 
by a small fixed offset in line direction. Satellite images 
are corrected for radiometric degradations mainly intro-
duced by detector response non-uniformities usually 
characterized before launch of the sensor, and the geo-
metric infidelities caused by knowledge uncertainties in 
the satellite position, attitude, terrain reliefs, etc. Multi-
spectral imaging sensor systems such as LISS-3 in the 
same platform assure onboard band-to-band registration 
(BBR) figures within  0.25 by design features. On the 
other hand LISS-4 MX design features (see Figure 1) do 
not ensure BBR accuracies within  0.25. Automated  
co-registration is one of the primary steps in ground  
data processing system for LISS-4 MX, irrespective of 
cloud or terrain conditions under which the images are 
acquired. 

Background and literature survey 

Resourcesat-1 LISS-4 MX co-registration complexity 
was initially reported by Moorthi et al.2, wherein the  
co-registration was tackled using an in-flight calibration 
procedure along with attitude refinement for Level-2  
corrections that generates geo-referenced data sets. The 
authors also discussed non-rigid image registration  
approach of using a thin plate spline model with dense 
matched points to achieve co-registration. Radhadevi et 
al.3 reported a method for automatic co-registration of 
multiple bands of the LISS-4 MX camera using image 
navigation model and complemented it with an image-
based matching technique to remove unaccounted mis-
registration residuals. They also indicated that in-flight 
geometric calibration was a pre-requisite for defining the 
direction and orientation of imaging ray originating from 
a pixel and projected on to the correct ground location. 
Various factors affecting the band-to-band registration 
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Figure 1. LISS-4 MX sensor schema and image colour composite before registration. 
 
 
such as detector placement, platform tilt angle, spacecraft 
velocity effect and feature elevation effects were listed. 
There was another effort by Pillala et al.4 developing a 
feature-based registration scheme compensating for re-
sidual band-to-band mis-registration after a geometric 
model update using ground control points. They used mu-
tual information as a similarity measure in place of cross-
correlation and a least square procedure to build final 
transform. Each one of the earlier methods had resolved 
the varying levels of complexities in the LISS-4 MX 
band-to-band registration issue at geo-referencing stage 
alone. They also did not attempt the band-to-band regis-
tration at radiometrically conditioned data stage that in-
cluded a correction step accounting for staggered 
placement of detectors in the focal plane and photo-
response non-uniformity correction across detectors. 
Similar co-registration problems existed in other remote 
sensing data systems developed for multispectral thermal 
imager (MTI) and multi-angle imaging spectroradiometer 
(MISR)3. 
 The current work focuses on automatically co-
registering LISS-4 MX three-band data corrected only for 
radiometric errors, so that we have the advantage of  
handling single geometry across bands right through geo-
referencing. It will reduce complexities further down in 
the processing chain, if co-registration is achieved before 
geo-referencing step in which systematic errors are re-
moved and resampled for regular ground sample distance. 
To be co-registered, remotely sensed images need to be 
warped and resampled onto some common reference sys-
tem in a geometric sense. One particular way is to fix one 
of the band images as the reference or fixed or master 
image and to register the other image as moving or input 
image. Reference image in our task is the band-3 (B3)  
data of LISS-4 MX. This corresponds to visible red chan-
nel, which is also the middle of the triad of the channels, 
with the other two channels such as band-2 (B2) being 
green and band-4 (B4) being near infra-red, all of them 
imaged at times of order 1 to 2 second differences. Co-
registration of radiometrically conditioned band is some-

what complex due to uncorrected geometric distortions, 
varying pixel to pixel within the image. Satellite images 
pose unique challenges for registration with issues like 
cloud pixels, noise in the images, systematic errors, non-
uniform responses, terrain-induced distortions, etc. Few 
advantages of having an automatic band-to-band registra-
tion model at radiometric correction level are: (a) fully 
automated georeferencing workflow irrespective of input 
scene considerations; and (b) independent of the orbit, at-
titude parameters and terrain effects which cause errors 
pixel to pixel level in image registration. In addition, the 
automatic procedure should be able to handle some 
amount of cloud presence say up to 50%. 
 Two major categories of image registration methods 
are known as feature based or intensity-based methods 
and they are used in a variety of problems such as band-
to-band registration, multisensor, multiview and multi-
temporal data sets. Feature-based methods have a pre-
processing step of collecting a number of features 
uniformly throughout the image regions (point or line or 
corner points or sub-images) for which the correspon-
dence is established. Intensity-based methods directly use 
images (their joint histograms) without any preprocessing 
steps and hence the images can be engaged in registration  
immediately after acquisition. 
 Methods based on different combinations of the com-
ponents used for image registration namely, a feature 
space, a search space, a search strategy and a similarity 
metric are employed for practical purposes5. A survey of 
scientific literature on image registration specifically for 
remote sensing is provided by Fonseca and Manjunath6. 
Previous surveys of the general image registration litera-
ture include Brown5 and Zitova and Flusser7. These stu-
dies focused mainly on feature-based image registration 
methods, different methods for collecting features and 
employing cross-correlation for matching features. Sur-
veys limited to medical image registration, with specific 
focus on mutual information, include Maintz and Vier-
gever8 and Pluim et al.9. In contrast to feature-based  
approach, intensity-based approaches rely on information 
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content in the joint histogram of images and the robust-
ness is brought about by employing smarter optimization 
methods, metrics and transformations. Mutual informa-
tion (MI) and intensity-based registration was first intro-
duced in the medical imaging domain by Maes et al.10 
and Viola and Wells11. Readers are referred to studies by 
Thévenaz and Unser12 and the review of MI-based  
methods in medical imaging by Pluim et al.9 for under-
standing the evolution of this approach. Despite its wide 
use in medical imaging and good potential for multimo-
dal fusion, MI-based methods are yet to be used exten-
sively in remote sensing applications. Nevertheless, 
research-oriented articles have demonstrated results on 
limited image sets13. One very important difference to be 
noticed is that there are many optimization methods used 
in medical image registration tasks compared to remote 
sensing image registration methods. Though gradient  
descent methods are used in both disciplines, adaptive 
gradient descent methods where the step size is automati-
cally estimated is not found to be reported much in litera-
ture for remote sensing images. We present here a 
particular adaptive stochastic gradient descent optimiza-
tion method used in LISS-4 MX co-registration task 
based on mutual information and its gradient. 

Intensity-based image registration method 

In the registration of pairs of images, one of the images is 
called the moving or floating or input image fB which is 
transformed to confirm geometrically with the other  
image, the fixed or reference image fA. The quality of 
alignment is defined by a cost function, subjected to a 
transform T. Intensity-based image registration is usually 
treated as a nonlinear optimization problem. Define the 
fixed image ( ):     ,A

D
Af x R R    the moving image, 

( ):     ,B
D

Bf x R R    and a parameterized coordinate 
transformation (   ,, ):   P

A BT x R     where   RP 
represents the vector of transformation parameters. The 
following minimization problem is considered 
 
  ˆ argmin ( ,      ).A BC f f T    (1) 
 
In eq. (1), ( ,      )A BC f f T  is the cost function that measures 
the similarity of the fixed image and the deformed mov-
ing image chosen from a multi resolution pyramid. The 
solution ̂  is the parameter vector that minimizes that 
cost function. An optimization technique employed to 
find optimal transform parameters by maximizing the 
chosen similarity measure criteria, provides a robust  
image registration framework14,15. 
 In this paper we describe a particular choice of inten-
sity-based image registration that makes use of the  
following components in an iterative framework. The  
major components described here are: (a) MI as the simi-
larity metric; (b) combining transformations (affine and 

Bspline) to take care of global as well as local deforma-
tions; and (c) adaptive stochastic gradient descent 
(ASGD) optimization using MI as cost function. 
 There are additional components such as multiresolu-
tion pyramids, sample selection and interpolation needed 
to complete the image registration task. It is also essential 
to remember that many optimization methods such as 
gradient descent, and simultaneous perturbation use first-
order derivatives or their approximation in comparison to 
Newton methods where second-order derivatives or their 
approximations of the cost function are used. Subsequent 
sections bring out details on the individual components 
mentioned and the complete scheme is depicted later in 
the article. 

Mutual information metric 

MI has been known for some time to be effective for the 
registration of mono modal, as well as multimodal images 
in medical applications. In general, the correlation-based 
similarity metric provides reliable registration when the 
relationship between intensities of the two images to be 
matched is linear, but mutual information is theoretically 
more robust to complex variations between the intensities 
of image pairs, such as those that can occur between pairs 
of multimodal images10. 
 Under rotation or translation, mutual information 
proved to produce sharper peaks than the most popular 
image matching metric cross correlation, and MI pro-
duces consistently sharper peaks at the correct registra-
tion values than correlation because it is less sensitive to 
noise, which is important for obtaining sub-pixel registra-
tion accuracy13. Moreover, sharper peaks are also pro-
duced at the lowest resolution of the images in the 
resolution pyramids. This indicates that MI can produce 
more accurate results than correlation in a multi-
resolution registration scheme. 
 The cost function chosen here is the negative of mutual 
information I(A, B) between two random variables A and 
B and is defined as 
 
 ( , ) ( , )A BC f f T I A B    

     ,
,

( , )
 ( , ) log .

( ) ( )
A B

A B
A Ba b

p a b
p a b

p a p b
   (2) 

 
It measures the distance between the joint probability 
density function (PDF) pA,B of the random variables A and 
B and the case associated with complete independence  
of A and B yielding pB(a) and pB(b) as pA = bpA,B and 
pB = apA,B, implying that mutual information is zero if 
and only if the two random variables are independent. It 
is stated that MI is a measure of the statistical depend-
ence between two datasets indicating the amount of  
information that random variable A contains about random 
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variable B, and vice versa. Implementation issues which 
influence the accuracy of the registration results include 
estimation of the PDFs, interpolation methods for the 
PDFs and/or the images, and the choice of optimization 
methods. Also, the use of a multiresolution approach to 
increase speed and robustness needs to be considered12. 
 The joint probability distribution, given a geometric 
transformation T, is estimated by first computing a two-
dimensional frequency histogram h( f, m, ) of the grey 
value combinations ( fA(x), fB(T(x))) for every grid point x 
of the floating image fB that falls inside the region of 
overlap of the two images. Joint histogram is represented 
as a continuous function using Bspline based parzen  
windowing techniques16. 
 The joint histogram is defined in terms of two Bspline 
window functions (), which act as membership func-
tions with f and m being the gray values from fixed and 
moving images 
 

 ( ) ( , )1( , , ) ,
i

A i B i

A B A Bx V

f f x m f x
h f m


  

   

    
    

   


 
 (3) 
 
where A, B are the window scaling factors, V the overlap 
region between images and  is the transform parameters. 
The joint probability is now expressed as 
 
 ˆ( , , ) ( ) ( , , ),P f m h f m     (4) 
 
where 
 

 

,

1( ) .

( , , )
f m

h f m

 




 
 
 
 


 (5) 

 
Using a cubic Bspline Parzen window for the fixed image 
fA and the transformation independence of ˆ ( )AP f  and 
substituting  in eq. (4), the joint PDF can be expressed 
as 
 

 ˆ( , , )
A B

P f m 


 
  

 

   3 0( ( ( ; ) ( )
,

i

B i A i

B Ax V

m f T x f f x
 

 

    
    

   
  (6) 

 
where  n correspond to nth order Bspline function. Now 
the mutual information is restated as 
 

 
 

 

   

1 1

, ,
  log

ˆ( )ˆ( , , )
(

.ˆ ˆ( ))

f mL L

Bf m A

f m
I

f m

PP f m
P P




 


 
 
 
 

  (7) 

In eq. (7) Lf and Lm are discrete sets of intensities associ-
ated with fixed and moving images and we have used 128 
bins for the present exercises. Because the marginal PDF 
of the fixed image A has no influence on the derivative, a 
simple zero-order Bspline (nearest neighbour interpola-
tion) is used to estimate PDF (ref. 16). Variation of MI 
value as a function of known translation between two im-
ages used in these exercises is depicted in Figure 2 which 
has a minimum in (0, 0) in x and y axes. The smooth sur-
face shown in Figure 2 represents the search space in and 
around the optimal transform, which happens to be null 
translation in this case as this plot was generated for a 
single image reproduced as fixed and moving images 
with deliberately shifting them in x and y directions. 
 Bspline functions are a family of functions with several 
useful properties, detailed description and their numerical 
computation are given by Unser17. The sum of a Bspline 
function for all integral distances from a real value is one 
in addition to the portion of unity constraint. This means 
that no renormalization is required when histogramming. 
The nth order Bsplines are the convolution of any set of 
Bsplines whose order sums to n. The derivative of nth or-
der Bspline is a function of two (n – 1)th order Bsplines. 
As mentioned earlier, the derivative of cost function re-
quired to set up the optimization mechanics for gradient 
descent type is given in eq. (8). 
 

 
1 1

ˆ ˆ( , , ) ( , , )log .
( )

f mL L

Bi if m

I P f m P f m
P m

 
  

  
      
  (8) 

 
The derivative of the cost function usually involves com-
putation of the spatial derivative of the moving image: 
fB/x which can also be estimated through Bspline  
image model, and the derivative of the transformation to  
 
 

 
 

Figure 2. MI metric surface computed for a set of registered images 
with deliberate translations in x and y directions. 
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Figure 3. Deformation field portrayed are combined (left most), only affine (middle) and affine field subtracted from 
combine modelled by Bspline (right most) for the LISS-4 MX data acquired on 3 November 2011. 

 
 
its parameters: T/ called as Jacobian. Further any  
image can be modelled with Bspline as 
 
  ( )   ( ) ( ),

i

n
i i

x v

f x c x x x


   (9) 

 
where xi are the control points, c(xi) the coefficient vector 
and  is the set of all control points within the compact 
support of the Bspline at position vector x. This image 
model is used to estimate image gradients, and facilitates 
interpolation of intensities17. 

Compose transform 

It is known that translations, rotations, global scaling and 
local deformations are often necessary to align the  
images. Satellite images are acquired in a perspective 
projection, a slant view may be produced as input image, 
which varies in scale and other geometric errors pixel to 
pixel. These errors can be systematic or random. The  
systematic errors correspond to the known (to an order of 
accuracy) geometry of orbit, attitude, focal plane detector 
geometry and terrain effects. If the terrain information is 
not available as a reference data, the terrain-induced dis-

tortions cannot be modelled systematically. LISS-4 MX 
tilted data acquisitions can have terrain-related distortions 
introduced differently in each band data because of the 
time differences in imaging. Added to this error, other 
uncertainties also manifest as random errors which can be 
modelled only with the use of reference data. These  
errors can also be typed as global and local errors. The 
global errors can be modelled with single transformation 
but the local errors need location based model inputs at a 
scale corresponding to data itself. 
 Rigid and affine transformations are a good choice for 
modelling global errors and Bspline-based models are 
used to model local distortions considered as free-form 
deformations (FFD)18. A complete transformation model 
is to combine a global transformation with an additional 
local transformation to take care of distortions present in 
only radiometrically conditioned images. This kind of 
concatenated transforms can be employed to every image 
registration task, providing scope to model both global 
and local distortions19. 
 Figure 3 depicts the modelled geometric deformation 
between LISS-4 MX B3 and B2 data, in which the  
extreme left is the total deformation field, next is just the 
affine field and the right is the Bspline filed characterized 
by the registration algorithm discussed here. The uniform 
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fields are modelled by affine transform and the rest (non-
uniform varying and amorphous) is modelled by a 
Bspline field. We employed an affine transform first and 
then a Bspline transform as a complete model to take care 
of global and local distortions18. 

Stochastic gradient descent optimization 

We used Klein’s algorithm for ASGD optimizer14, to  
co-register LISS-4 multispectral data. To solve eq. (1), an 
iterative optimization procedure was employed. In every 
iteration k, the current transformation parameters k are 
updated by taking a step in the search direction dk 
 
 1       ,   0, 1, 2, , ,k k k kp d k K       (10) 
 
with pk a scalar that determines the step size. A wide 
range of optimization methods can be formulated in this 
way, each having different definitions of pk and dk. A 
common choice for the search direction is the derivative 
of the cost function C/ evaluated at the current posi-
tion k. In this case, eq. (2) boils down to a gradient  
descent method. The stochastic gradient descent (SGD) 
method uses the following iterative scheme 
 
 1           ,  0, 1, 2, , ,k k k kg k K        (11) 
 
      ,( )  k k kg g     (12) 
 
where  kg  denotes an approximation of the true derivative 

/g C     at k and k is the approximation error. The 
distribution of g,  kg  and k are independently determined 
from the selected set of samples. N instances of n are 
generated around 0, and the exact cost function deriva-
tive g, the approximated derivative ,kg  and the approxi-
mation error    ( )k k kgg     are computed for each of 
n. The scalar gain factor pk = –k, the step size for 
ASGD, is determined by a predefined decaying function 
of the iteration number k. The Klein scheme for ASGD 
was originally proposed by Plakhov and Pedro Cruz20 in 
the following way 
 
 ( ) /( ) ,k kt a k A       (13) 
 

 1 1sigmoid( ),T
k k k kt t g g      (14) 

 

 MAX MIN
MIN /

MAX MIN
( ) .

1 ( / )e x
f f

f x f
f f 


 


  (15) 

 
Setting values for a, A and  is an important exercise for 
the use of ASGD for image registration. With user speci-
fied constants (a > 0), (A  1) and (0 <   1), a choice of 
( = 1) gives a theoretically optimum rate of convergence 

when k  . The choice of value for a is much more 
critical, as the convergence of the process accelerates or 
slows down depending on whether it is large or small. 
The value for a should be independent of the choice of 
the cost function and it should be related to the resolution 
of the images in registration process, so that a meaningful 
choice of value is made. Another parameter  is intro-
duced as a user setting allowing a range of values (say a 
typical value  = 1 pixel), being the maximum  
allowed displacement per iteration of the deterministic 
gradient descent process to compute the stepsize parame-
ter a. Estimates a, fMIN and  are done only once before 
the actual optimization starts, with defaultchoice of val-
ues  = 1, A = 20, fMAX = 1 no of iterations, etc. Value for 
A can also be set as one tenth of the number of iterations – 
in our case it is 1000 iterations. The manual setting of step 
size can thus be avoided and satisfactory results obtained. 
If the gradients in two consecutive steps point in the same 
direction, the inner product will be made positive, which 
leads to a larger step size and therefore the time is re-
duced. The whole procedure is called an adaptive SGD 
optimizer, a detailed description of which can be found in 
Klein et al.14. Image pyramids can be used to create a  
sequence of reduced resolution images from the input  
image. In general, this coarse-to-fine hierarchical strategy 
applies to the usual registration methods, but it starts with 
the fixed and moving images on a coarse resolution16. 
The algorithmic steps for complete registration set-up  
using MI and ASGD can be summarized as below and  
depicted in Figure 4. 
 
(1) Set-up registration choices, no. of resolution pyra-

mids, no. of iterations, metric, transform choice, no. 
of samples for the estimation of metric. 

(2) Initialize transform using known or null transform. 
(3) Generate distributions through selection of samples 

for estimating MI and its gradient using the PDF and 
transform parameters. 

(4) Compute step-size and execute the transform update 
rule according to ASGD. 

(5) Check for the condition of exhausting the maximum 
number of resolution level, maximum number of  
iterations employed. 

(5) Repeat the loop from step number 3. 

Performance of ASGD 

LISS-4 MX scenes are of 12,000  12,000 size covering 
70 km  70 km on the ground, and they may consist of 
heterogeneous features with different levels of details. 
Full size images are taken for multiresolution registration 
exercises with affine and Bspline transformations, and the 
performance of the procedure is discussed in the next sec-
tion. However, to see the clear behaviour of ASGD me-
chanics, a sub-image of size 1024  1024 pixels was used 
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Figure 4. LISS-4 MX multiresolution co-registration scheme using MI and ASGD optimizer. 
 
 

 
 

Figure 5. LISS-4 MX B3 sub image (left) and B2 and B3 checker display before (middle) and after (right) registration by only translation. 
 

 
(Figure 5) with band 3 as reference, band 2 as image to 
be registered, with only translation as the transform  
model and with an initial translation of (15.0, 0.0). The 
final translation between these two images is estimated 
by the procedure as (21.29, 2.13). The initial translation 
was set by manual procedure and multi-resolution pyra-
mid was not used for this sub-image registration case. 
Figure 5 shows the checker board displays to appreciate 
the registration achieved by investigating the continuity 
of linear features. Cost function (negative value of MI), 
its derivative and the step size values are computed in 
every iteration to drive the optimization. The step size 
(slowly decaying function) is automatically estimated  
using (a) the maximum allowed displacement per itera-
tion as user input (default value is unity), and (b) first de-
rivative of cost function as shown in Figure 6. The 
translation parameters estimation converges between 20 
and 50 iterations for this specific case (Figure 7). Without 
multiresolution pyramids, the role of the initial transform 
is important to start with as the procedure works very 

well only in the neighbourhood of the exact solution. By 
employing multiresolution pyramids, the capture radius 
increases to some more extent, and the procedure will 
find the initial transform also to a reasonable level. With 
multiresolution set-up, the final translation estimated is 
(21.21 2.17), which is close to the single resolution with 
an initial transform setting manually (Table 1). Figure 8 
shows the image pyramid and the x-shift estimated  
at every resolution refined at each level, and the same can 
also be seen from Table 1. Transform parameters  
estimated at coarse resolution can be multiplied by the 
resolution factor to arrive at the full resolution transform 
parameters as shown in the last column of Table 1.  
The multiresolution approach is more suitable for auto-
matic registration as there will be no initial transform 
needed to be set-up. Multiresolution approach is more  
robust as the coarser resolution images are smoothed  
versions enabling steady convergence of the procedure 
without getting stuck up at local minima due to reduced 
noise levels. 
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Figure 6. Mutual information, its derivative and step size during the registration process. 
 
 

 
 

Figure 7. Translation in x and y found in ASGD process. 
 
 

Table 1. Translation estimated through 4 level image pyramid 

Resolution factor, Image size Initial transform Estimated transform over Final transform 
pyramid level (scans, samples) (x shift, y shift) the initial transform for full resolution 
 

(8, 0) (128, 128) (0.0, 0.0) (2.68, 0.25) (21.40, 1.98) 
(4, 1) (256, 256) (2.68, 0.25) (0.01, 0.02) (21.42, 2.00) 
(2, 2) (512, 512) ( 5.3, 0.54) (–0.06, 0.00) (21.12, 2.71) 
(1, 3) (1024, 1024) (10.62, 1.05) (–0.02, 0.07) (21.21, 2.17) 

 
 
 Performance of ASGD was satisfactory in these exer-
cises with LISS-4 images shown in Figure 9 and listed in 
Table 2. Typical problems encountered in satellite im-
ages, such as cloud pixels, water bodies, etc. are tackled 
by random sampler choice and the number of spatial 
samples per iteration near to the 10% to 20% of the total 
population. In every iteration a fresh set of image samples 
were taken to estimate the cost function. 

LISS-4 MX co-registration exercises and results 

The performance of the described approach was tested on 
the listed LISS-4 MX full scenes and the results are 
shown in Table 2. The data sets are drawn from terrains 
typed by urban, undulating and vegetation features with 
varying degree of cloud pixel occurrence. A combined 
transform of affine and Bspline was employed to achieve 

registration to take care of global and local deformations. 
Many measures were taken (both automatic and manual) 
to evaluate the accuracy of the registration. As mentioned 
earlier, B3 was chosen as the reference data to be regis-
tered with the input bands being B2 or B4 from LISS-4 
MX multispectral data set. Measuring the performance of 
the registration exercise is a critical step, wherein a 
global estimate (average position residual in both image 
axes) is desired generally. The performance can be meas-
ured automatically in terms of estimation of transforma-
tions that relate both the images, using only translations, 
or affine relation or complete deformation field. Such  
estimate can be done using the same procedure used for 
image registration itself. However, this step is subjected 
to manual scrutiny to make sure the claim made is true. 
Remote sensing users adopt a practice to identify control 
points in both the images after registration and compute 
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Figure 8. x-shift estimated every resolution image pyramid progressively in (b) to (e) for the image pyramid shown in (a). 
 
 

 
 

Figure 9. LISS-4 MX data sets (1–5) used in the co-registration exercises with map locations. 
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Table 2. LISS-4 MX co-registration performance evaluation 

 Performance measurement 
 

 Before registration Intensity-based SIFT-based 
  Path/row 
Date of imaging sub-scene Parameter B2-B3 B4-B3 B2-B3 B4-B3 B2-B3 B4-B3 
 

15/06/12 878191 91/47A X shift 20.184  –13.364  0.005 0.010 0.008 0.072 
  Y shift 0.669 –1.528  –0.001 0.026 –0.019 0.035 
  RMSE 20.239 –13.577 0.46 0.47 0.982 0.882 
 

17/10/11 4101 105/57A X shift 19.851 –13.095 –0.009 –0.005 0.022 0.008 
  Y shift 2.097 2.264 0.000 0.030 –0.003 0.206 
  RMSE 19.683 –14.200 0.27 0.27 0.763 0.703 
 

03/11/11 1161  94/46D X shift 19.609 –12.986 0.001 0.004 –0.142 0.043 
  Y shift 8.346  –6.788  –0.005  –0.006 –0.248 0.260 
  RMSE 19.503 –13.220 0.59 0.55 1.305 1.02 
 

08/11/11 8191 95/62B X shift 19.667 –10.337 –0.016 0.016 –0.075 0.226 
  Y shift 0.235  –1.244 0.018  –1.239 0.062 0.389 
  RMSE 21.453 –12.166 0.457 0.465 0.268 1.04 
 

30/05/122671 107/58C X shift 21.144 –13.980 –0.005 0.000 0.152 –0.275 
  Y shift 7.808 –7.536 0.003  –0.018 0.110 –0.003 
  RMSE 20.352 –14.483 0.46 0.53 0.859 1.022 

 
 

 
 

Figure 10. Residual plots for registered, only affine and combined 
affine and Bspline transform cases as titled for 105/57 A scene. 
 
 
root mean square error (RMSE) of the residuals which 
amounts to 2D shifts at known feature points with the 
outliers removed before estimating the final accuracy. 
The proposed registration procedure was again used to 
estimate a translation between the registered images for  
automatic evaluation and these translation parameters  
(X shift, Y shift) are the global indicators of the band-to-
band registration residuals. As we can see from Table 2, 
after registration, the significance in the translations es-
timated is in second or third decimal places, which means 
superb registration has been achieved between B2 to B3 

and B4 to B3 bands data. It is sufficient to show transla-
tion errors up to two or three decimal places to appreciate 
the registration accuracy. RMSE measurements sensitiv-
ity is poor because, they were calculated using landmark 
or feature point identifications and refined with image 
correlations (accuracy up to 0.1 pixels) also show error 
less than 0.5 pixels with the proposed procedure. For 
comparison, we have also performed registration using a 
state-of-art scale invariant feature transform (SIFT) tech-
nique21 to collect robust features along with affine trans-
form for registration and its RMSE measures are 
tabulated in the last column of Table 2. In SIFT-based 
case, the overall RMSE errors are larger and in some 
cases even the residual translations are larger compared 
to the proposed intensity based registration results. 
 In further understanding the intensity-based registra-
tion results, the residual plots (Figure 10) also help us to 
visually see the results using control points used in the 
performance measure RMSE. The plots show residuals 
for unregistered pair, registered using only affine trans-
formation and the combined case (affine plus the Bspline 
models) throughout the image length. The combined case 
shows the residuals are very well found within 0.5 pix-
els with a trend line along zero axis. 
 Checker board displays created with reference and in-
put image blocks are very useful to check the registration 
performance visually (Figure 11). In Figure 11, in each 
row, the first three columns of images are the checker 
board display generated without registration and the next 
three columns of images are with registration. The first 
and fourth columns of checker board displays depict 
checker board subimages of B2 to B3 before and after 
registration exercises, similarly second and fifth columns 
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Figure 11. LISS-4 MX co-registration performance in checker board display (B2 and B4 w.r.t. B3) and color composites before (first 3 
columns) and after registration (next 3 columns) for a selected portion of data sets in Table 2 row-wise. 

 
 
of checker board display depict B4 to B3 data and the 
third and sixth columns display the colour composite  
using B4, B3 and B2 before and after registration. It is 
noticeable that after performing image registration the 
geometric confirmation is better with every terrain in 
consideration. The colour composites of the LISS-4 MX 
multispectral band data show the magnitude of co-
registration errors manifested as colour artifacts through-
out the images and more pronounced in feature bounda-
ries. The registered image portions display the obvious 
radiometric fidelity compared to the unregistered cases 
where a fringe of colours that disturbs the interpretation 
of the features is seen. Each row in Figure 11 belongs to 
different data sets shown in Figure 9 and Table 2, where 
water bodies (second row), ocean-land boundaries (fourth 
row), undulating terrain (third row), and urban features 
(fifth row) were used to demonstrate the quality of the 
registration. 

Conclusion 

Registered multispectral remote sensing datasets are con-
sidered as bare minimum requirement for subsequent im-
age analysis, irrespective of play of complex acquisition 
geometry and uncertainties in the camera geometry mod-
els and ancillary information. Satellite data supplying 
agencies struggle with such problems on a day-to-day  
basis and mainly rely on feature-based image registration 
tools. We could successfully employ mutual information 
based ASGD method to do sub-pixel level LISS-4 MX 
co-registration tasks by a careful choice of parameters 
and models related to metric, transform, optimizer, and  
interpolator in a rigorous and robust image registration 
framework which is automatic. This approach is even tol-
erant to a certain level of cloud presence in the images. 
The approach described here is not exclusive for satellite 
multispectral images corrected for radiometric errors 
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alone. The authors have tested the performance of this 
approach for a variety of satellite image registration 
tasks, irrespective of its input level of correction, and 
such results are pending to be reported. 
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