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Maternal diabetes predisposes the growing foetus to 
non-communicable disease risk later in life. Studies 
show an increased risk of adiposity/obesity, type-2  
diabetes and higher blood pressure in offspring of  
diabetic mothers. Altered metabolic and neuroendo-
crine functions, and epigenetic modification of genes 
involved in these functions are some of the mecha-
nisms proposed for the offspring disease risk. Though 
optimal management of diabetes during pregnancy 
prevents its immediate complications, there is limited 
evidence on the influence of glycaemic control on long-
term effects in the offspring. Future focus should be 
on prevention of pregnancy diabetes through appro-
priate maternal and child health policies in vulnerable 
populations. 
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Introduction 

TYPE-2 diabetes (T2D), hypertension, heart disease and 
other non-communicable diseases (NCDs), once consid-
ered to be disorders of old age are increasingly prevalent 
among young and economically productive age groups in 
the world1. With a rise in obesity and glucose intolerance 
among women of reproductive ages, the incidence of ges-
tational diabetes mellitus (GDM) is also on the rise  
globally2. This is of particular concern because of its ad-
verse consequences for the mother and the offspring. It 
has been long known that severe diabetes in the mother 
during pregnancy increases foetal congenital anomalies, 
and neonatal morbidity and mortality due to the direct  
effects of glucose on the developing embryo. Advances in 
diabetic treatment over the past few decades have  
reduced these immediate adverse effects to a large extent. 
However, offspring effects of lesser degrees of maternal 
hyperglycaemia such as large-for-gestational age and as-
sociated perinatal complications continue to pose signifi-
cant public health problems. Recently, there has also been 
an increased focus on the long-term adverse associations 
of maternal diabetes on the offspring NCD risk. 

Maternal diabetes and foetal growth – fuel- 
mediated teratogenesis 

It is well-known that maternal nutritional status is an  
important determinant of foetal growth. Maternal under-
nourishment has been shown to be associated with  
impaired growth in utero resulting in reduced size at 
birth3. On the other end of the spectrum, an over nour-
ishment of the foetus associated with maternal obesity 
and diabetes usually leads to foetal overgrowth4. GDM, 
defined as ‘any degree of glucose intolerance with onset 
or first recognition during pregnancy’5, is the most pre-
valent form of diabetes during pregnancy, though an  
increasing proportion of women now have pre-existing 
type-1 diabetes (T1D) or T2D. Accelerated foetal growth 
is a common feature of diabetic pregnancies irrespective 
of the type of maternal diabetes. 
 Pregnancy is a diabetogenic condition. Gestational ste-
roid hormones and placental lactogen induce peripheral 
insulin resistance and enhance foetal nutrition by divert-
ing glucose, fatty acids and amino acids from maternal to 
foetal tissues6. Diabetes results when the pancreatic  
-cells fail to cope with the increased demands for  
insulin. Maternal diabetes creates an environment of fuel-
overload for the foetus, thus resulting in macrosomic and 
adipose phenotype described for newborns of diabetic 
mothers. 
 Jorgen Pedersen was one of the first to propose a  
mechanism underlying this enhanced foetal growth. In his 
classic ‘hyperglycaemia–hyperinsulinism’ hypothesis, he 
suggested that maternal hyperglycaemia results in foetal 
hyperglycaemia due to trans-placental transmission of 
glucose, and hence hypertrophy of foetal islet tissue and 
insulin hypersecretion7. He suggested that in diabetic 
pregnancies foetal weight and length increase directly by 
increased foetal glucose consumption as well as due to 
growth stimulating effects of foetal insulin. Subsequently, 
Norbert Frienkel8 modified Pederson’s hypothesis. He 
proposed that in diabetic pregnancies maternal fuels such 
as lipids and amino acids in addition to elevated glucose 
concentrations reach the foetus and stimulate the foetal 
pancreas and liver to secrete more insulin and insulin-like 
growth factors. As a result, foetal fuels are consumed 
more intensively leading to greater tissue anabolism and 
macrosomia. Freinkel postulated that this will have
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Figure 1. Fuel-mediated teratogenesis in diabetic pregnancies8. Transfer of excess of maternal ‘mixed 
fuels’ across placenta in diabetic pregnancies stimulates foetal hyperinsulinaemia. This results in greater 
tissue anabolism, neonatal macrosomia, and offspring adiposity and diabetes in later life. 

 
 
long-lasting effects on the structure and metabolic func-
tions of the foetus, and may cause obesity and diabetes in 
later life; this he termed ‘fuel-mediated teratogenesis’  
(Figure 1). 

Long-term effects of maternal diabetes – 
epidemiological evidence 

The developmental origins of health and disease  
(DOHaD) hypothesis proposes that impaired nutrition 
during foetal development increases an individual’s sus-
ceptibility to NCDs in later life9. This phenomenon is 
thought to reflect permanent effects of unbalanced foetal 
nutrition on structural and physiological systems (pro-
gramming). This association was initially described by 
David Barker and colleagues for the foetal growth retar-
dation presumably caused by exposure to intrauterine  
undernutrition10. They showed among UK adults that the 
prevalence of impaired glucose tolerance, T2D and coro-
nary heart disease was highest in individuals with lowest 
birth weights. Recent evidence indicates that foetal over-
nutrition as in the case of maternal diabetes also pro-
grammes an individual to subsequent NCD development. 
The higher disease risk in offspring of diabetic mothers 
(ODM) underlies the U-shaped association between birth 
weight and T2D observed in some populations11,12. 
 It has been well-recognized that maternal diabetes is a 
predictor of offspring diabetes later in life. Several stud-
ies have now demonstrated that ODM exhibit early  

obesity and develop glucose intolerance in adult life.  
Majority of these studies have been conducted among the 
Pima Indians of America, who are predisposed to high 
rates of T2D. Pima Indian studies showed that as early as 
between 5 and 19 years of age, ODM had higher rates of 
obesity than offspring of either non-diabetic or pre-
diabetic mothers (mothers who developed diabetes after 
delivery), and had higher glucose concentrations13,14.  
By 20–24 years of age, 45% of ODM had developed  
diabetes, and over 70% had diabetes by 25–34 years of 
age15. These associations were independent of birth 
weight. Recent Pima Indian studies have also reported the 
development of other NCD risk factors such as higher 
blood pressure and impaired renal function in ODM16. 
The Pima Indian studies convincingly demonstrated that 
offspring associations were mainly due the intrauterine 
hyperglycaemic environment rather than genes or shared 
environment by showing that risks were considerably 
higher in ODM than offspring of diabetic fathers or pre-
diabetic mothers14. Similarly, among siblings, those born 
after the diagnosis of mothers’ diabetes were at a greater 
risk than their siblings born before17. 
 Subsequently, several studies have examined the long-
term effects of maternal diabetes in settings with lower 
incidence of the disease. They confirmed that the Pima 
Indian findings were applicable to other populations also. 
Silverman et al.18,19 studied anthropometric characteris-
tics and glucose and insulin metabolism in the US chil-
dren born to mothers with GDM or pre-GDM. They 
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found higher obesity in ODM compared to control off-
spring by 6–8 years of age18, and higher incidence of glu-
cose intolerance by adolescence (19.3% vs 2.5% in 
controls)19. In another study from the US, Vohr et al.20 
proposed that size at birth was an important determinant 
for the development of obesity in ODM. They observed 
that large-for-gestational age ODM were likely to have 
higher body mass index (BMI), waist circumference and 
skinfold measurements between 4 and 7 years of age than 
large-for-gestational age controls or appropriate-for-
gestational age ODM and controls. However, birth size 
was not a determinant of obesity in ODM in other stud-
ies. Majority of the above studies were conducted among 
children and adolescents, and therefore examined the in-
termediate risk factors for NCD development in ODM. 
Clausen et al.21,22 examined the prevalence of glucose in-
tolerance and metabolic syndrome in adults (18–27 years) 
born to mothers with mild GDM or T1D, and compared 
them with a background reference population with low 
diabetes susceptibility. They found that the prevalence of 
diabetes/pre-diabetes (21% and 11% respectively) and 
metabolic syndrome (24% and 14% respectively) was 
significantly higher in offspring of GDM or type-1 dia-
betic mothers than the reference population (4% and 6% 
respectively). Several cohort studies from different ethnic 
populations have now shown that offspring exposed to 
maternal diabetes exhibit higher rates of obesity, im-
paired glucose–insulin metabolism, metabolic syndrome 
and higher blood pressure23–25. Maternal diabetes has also 
been implicated in adverse psychological outcomes in the 
offspring, including lower psychomotor development and 
cognitive function26. Some researchers have also sug-
gested a link between exposure to maternal diabetes and 
the development of schizophrenia27. 
 Some studies have shown that variations within the 
normal range of maternal glucose alter foetal growth and 
increase the subsequent risk of obesity. Farmer et al.28 
had observed that fasting glucose concentrations of non-
diabetic mothers increased all the neonatal measurements, 
particularly skinfolds. A continuous exposure even to a 
small excess of maternal glucose has been thought to in-
duce chronic insulin stimulation and increase growth of 
insulin-sensitive adipose tissue and islet cells in the  
foetus. The Pune Maternal Nutrition Study (PMNS) of 
India also showed a continuous association between  
glucose concentrations in normoglycaemic pregnant 
women and neonatal birth weight and mid-upper arm and 
abdominal circumferences29. In Pima Indians, maternal 
2 h glucose concentrations in the non-diabetic range were 
positively associated with relative weight of the offspring 
at 5–9 and 10–14 years of age, though it was not apparent 
at later ages30. The multinational Hyperglycaemia and 
Adverse Pregnancy Outcomes (HAPO) study showed in a 
large group of non-diabetic pregnant women that there 
was a graded positive association between maternal  
glycaemia and neonatal adiposity31. However, there  

was no association between maternal glycaemia and  
children’s adiposity at two years of age at one study  
centre in Belfast, UK32. The HAPO study further aims  
to explore associations of maternal glucose with long-
term offspring disease risks in the absence of maternal  
diabetes. 
 There is now a renewed focus towards non-glucose-
centric mechanisms of foetal programming, as originally 
suggested by Frienkel. In particular, maternal lipids have 
been thought to play an equally important role as glucose 
in foetal growth33. Pregnancy is associated with increased 
circulating lipids in humans, which intensify during obe-
sity or GDM. Studies show that, as with GDM, obesity in 
the pregnant mother also potentially exposes the foetus to 
‘fuel-mediated teratogenesis’25,34,35. These effects have 
been thought to be mainly driven by circulating triglyc-
erides and free fatty acids. Catalano et al.34 showed that 
maternal obesity increases neonatal adiposity. The PMNS 
in India showed that the circulating lipids predict  
increased neonatal weight even in undernourished moth-
ers29. These observations emphasize the need to explore 
the role of non-glucose fuels in foetal programming,  
especially in the light of findings in the offspring of  
normoglycaemic mothers. 

Long-term programming effects of maternal  
glycaemia – evidence from India 

There has been an escalating prevalence of T2D in India, 
with nearly 125 million people expected to develop this 
condition by 2040 (ref. 36). People of Indian origin de-
velop diabetes at relatively younger ages compared to 
their western counterparts, and at lower levels of BMI 
threshold of obesity37. Programming by maternal under-
nutrition may be one of the factors driving the NCD epi-
demic in the country. Specifically, cohort studies in Pune 
and Mysore have shown that micronutrient imbalances 
are common among pregnant Indian women, and have 
proposed that intrauterine micronutrient deficiencies pro-
gramme structural and functional aberrations and lead to 
higher disease risk in the offspring38–40. On the other 
hand, young women in India are also becoming increas-
ingly adipose owing to rapid urbanization, resulting in 
high insulin resistance and glucose intolerance during 
pregnancy. The incidence of GDM is increasing among 
urban women, with an estimated prevalence of ~15% in 
urban populations41. More alarmingly, the Mysore Par-
thenon Study showed that micronutrient deficiencies and 
GDM may co-exist in the same women, thereby exposing 
their growing foetuses to multiple programming path-
ways42. Notwithstanding this, the long-term effect of  
maternal diabetes on offspring NCD risks has been little 
studied in India. 
 The initial evidence for a potential programming effect  
of maternal hyperglycaemia in India came from a birth  
cohort study at Holdsworth Memorial Hospital in  
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Mysore43. This study showed that adult men and women 
with T2D were more likely to be shorter and fatter  
(higher ponderal index) at birth and were born to women 
with higher weight and pelvic diameters. The researchers 
of this study suggested that these adults might have born 
to mothers with glucose intolerance. They hypothesized 
that widespread foetal growth retardation in India predis-
poses individuals to insulin resistance, and leads to glucose 
intolerance in pregnant women if exposed to obesogenic 
environments that accompany urbanization. Thus, mater-
nal under nutrition results in diabetes in the next genera-
tion, and in case of female offspring, this results in GDM 
thus perpetuating the risk cycle. 
 Subsequently, the Mysore Parthenon Study, a purpose-
designed prospective birth cohort study was established 
to examine the life-course predictors of NCDs, including 
maternal GDM44. The Parthenon study showed that, as 
expected, neonates of GDM mothers were heavier, longer 
and more adipose than control babies (offspring of non-
GDM mother and non-diabetic father)45. There was a 
clustering of cardiovascular risk markers, including adi-
posity, higher glucose and insulin concentrations, insulin 
resistance (based on homeostasis model assessment for 
insulin resistance; HOMA-IR) and blood pressure in 
ODM during childhood and adolescence (Figure 2)45–47. 
The difference in subcutaneous adiposity between ODM 
and offspring of non-diabetic mothers continued to  
increase as the children aged (Figure 3). The Parthenon 
Study showed for the first time that maternal diabetes 
programmes neuroendocrine stress responses in the off-
spring, suggesting that this may be one of the pathways 
for their greater cardiovascular risk47. Even in the off-
spring of non-diabetic parents, both maternal and paternal 
insulin concentrations were positively associated with 
offspring adiposity and insulin resistance45. Thus in India, 
widespread maternal under nutrition with specific micronu-
trient deficiencies as well as high rates of gestational hy-
perglycaemia may programme offspring cardiometabolic 
disease risk, suggesting a dual teratogenesis48. This may 
add substantially to the country’s diabetes epidemic. 
 
 
 

 
 

Figure 2. Mean body mass index, systolic blood pressure and  
HOMA-IR in the Mysore Parthenon Study offspring at 9.5 years  
(source: Krishnaveni et al.46). HOMA-IR, Homeostasis model assess-
ment for insulin resistance. Dark grey bars: Offspring of diabetic moth-
ers; open bars, Offspring of diabetic fathers; and light grey bars,  
control offspring. 

Mechanistic explorations – animal model studies 

The long-term programming of offspring cardiometabolic 
risk by maternal diabetes has been attributed to several 
mechanisms. Hyperinsulinaemia, secondary to early islet 
cell activation in the foetus has been proposed as an  
important factor underlying these associations. Aerts et 
al.49 induced diabetes mimicking GDM in pregnant rats 
by injecting streptozotocin, and showed that altered fuel 
transfer to foetuses resulted in early islet hyperplasia, -
cell degranulation and depletion of insulin stores due to 
constant hyperglycaemia. Though -cells appeared to re-
cover post-natally, when challenged with glucose infu-
sion, the endocrine pancreas failed to cope with the 
demand rendering the offspring hyperglycaemic. Differ-
ent mechanisms were related to glucose intolerance in 
these rat offspring depending on the severity of maternal 
hyperglycaemia. Mild maternal diabetes was associated 
with foetal hyperinsulinaemia, and increased anabolism re-
sulting in a deficient -cell response in the adult offspring. 
Whereas severe maternal diabetes resulted in extreme hy-
perglycaemia, disorganized -cell function and perinatal 
hypoinsulinaemia in the offspring. These offspring exhi-
bited peripheral insulin resistance as adults. These studies 
showed that the diabetogenic tendency was passed onto 
subsequent generations mimicking genetic inheritance50. 
 Perinatal hyperinsulinaemia has also been thought to 
have programming implications for neuroendocrine sys-
tems in the offspring. Animal studies suggest that hyper-
insulinaemia during foetal development permanently 
alters the hypothalamic structure and function, thus pro-
gramming the neurobehavioural pattern. Plagemann  
et al.51 showed in rats that hyperinsulinaemia during crit-
ical periods of foetal development alters the expression 
and release of the neurotransmitter ‘neuropeptide Y’ in 
the hypothalamic centres that regulate appetite and body 
weight. The offspring rats tended to be hyperphagic,  
obese and hyperinsulinaemic. Leptin is an important 
 

 
 

Figure 3. The Mysore Parthenon Study: mean subscapular skinfold 
thickness in offspring of diabetic mothers and control offspring from 
birth to 15 years of age. 
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hormone that regulates energy balance through its action 
on arcuate nucleus of the hypothalamus. Hyperinsulinae-
mia may induce leptin resistance and alter the leptin/ 
insulin feedback system affecting the appetite regulation 
by the hypothalamus52. 
 Some researchers also suggest the involvement of other 
mechanistic pathways, including oxidative stress, foetal 
dyslipedaemia and inflammation in the long-term pro-
gramming for offspring NCD risks53. It has been shown 
in animal and human studies that maternal hyperglycae-
mia increases oxidative stress, and induces low-grade in-
flammation in the foetal cells53. These conditions result in 
impaired vascular development, endothelial dysfunction 
and aberrations in the neuroendocrine development and 
functioning. 
 Currently, there is a growing body of evidence suggest-
ing that intrauterine exposure to hyperglycaemia induces 
epigenetic changes in several genes involved in metabolic 
functions. Epigenetic changes are heritable changes in 
gene expression without altering DNA sequence. Ruchat 
et al.54 observed dysregulated DNA methylation levels in 
the obesity candidate genes LEP (leptin gene) and 
ADIPOQ (adiponectin gene) in placentae of diabetic 
pregnancies compared to the non-diabetic group. Mater-
nal diabetes has also been shown to be associated with  
altered methylation levels for glucocorticoid receptor 
gene (NR3C1) in placenta and cord blood55. Intrauterine 
hyperglycaemia has been thought to trigger epigenetic 
changes in a number of gene pathways involved in energy 
metabolism and endocrine functions, and this has been 
proposed as a causal mechanism for NCD programming 
in the offspring56. 

Conclusion 

In the backdrop of a global rise in the prevalence of obe-
sity and glucose intolerance in pregnant women, maternal 
diabetes is all set to become a major public health prob-
lem, especially in emerging countries such as India. 
There is now strong evidence indicating that maternal 
hyperglycaemia creates a perturbed intrauterine environ-
ment and programmes the growing foetus for the risk of 
NCDs in later life. A meticulous glycaemic control has 
been shown to reduce the immediate effects of GDM on 
the foetus, including a reduced incidence of macro-
somia57. The role of diabetes management in preventing 
the long-term NCD outcomes in the offspring is not 
known. There is some observational evidence to support 
that the offspring of untreated diabetic mothers are at a 
greater risk of obesity during childhood58. However, a re-
cent randomized control trial of the treatment of mild 
GDM showed no reduction in offspring BMI at 4–5 years 
in the intervention group, though the treatment reduced 
the incidence of macrosomia59. This warrants further 
studies in this field. There is also an immediate need to 
shift the focus on ODM to recommend policies to incor-

porate the follow-up of ODM in maternal and child health 
practices. More importantly, devising measures to prevent 
the development of GDM through life-course approach is 
imperative to break the cycle of intergenerational trans-
mission of NCDs in vulnerable populations. 
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