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This article is a review of combinatorial optimization 
in science and engineering applications. Combinato-
rial optimization has found wide applicability in most 
of our day-to-day affairs, ranging from industrial, 
academic, logistic to manufacturing applications, etc. 
This study introduces the concepts of optimization 
identifying the different types of optimization in the 
literature, before focusing on discrete optimization 
methods. Moreover, much emphasis is placed on the 
application areas, examples and the development of 
mathematical models in combinatorial optimization. 
The study concludes by highlighting the merits and 
demerits of combinatorial optimization models and 
recommends further studies on the development of 
more efficient and user-friendly combinatorial opti-
mization methods. 
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THERE is hardly any field today – ranging from medicine, 
pharmacy, science, engineering to business – that does 
not require optimization. It is at the heart of decision-
making in manufacturing and industrial sectors, and is a 
veritable tool in the analysis of physical systems1. Simply 
put, optimization is concerned with discovering the best 
solution among several feasible ones. In mathematical 
terms, optimization deals with the search of the optimal 
object among several objects, especially in situations 
where a complete feasible search is impossible2. The  
domain of optimization is usually in situations where the 
feasible solutions could be discrete or continuous with a 
definite optimal solution. Whether in continuous or  
discrete optimization, the overall goal is to minimize or 
maximize a function. In other words, optimization is the 
economics of science and engineering with the aim of 
minimizing costs and maximizing profit, time usage or 
industrial procedures3. 
 Several optimization categories have been identified  
in the literature. Some of these are combinatorial  
optimization4, complementarity problems5, constrained 
optimization6, unconstrained optimization7, continuous 
optimization8, discrete optimization9, global optimiza-
tion10, integer linear programming11, linear programming 

(LP)12, network optimization13, non-differentiable opti-
mization nonlinear equations14, optimization under uncer-
tainty15, quadratically constrained quadratic programming 
(QCQP)16, quadratic programming (QP)17, semidefinite 
programming (SDP)18, semi-infinite programming 
(SIP)19, stochastic linear programming20, second-order 
cone programming (SOCP)21, stochastic programming22, 
nonlinear programming23, nonlinear least-squares prob-
lems24, mixed integer nonlinear programming (MINLP)25, 
bound constrained optimization26, mathematical programs 
with equilibrium constraints (MPEC)27, multi-objective 
optimization28 and derivative-free optimization29. Here, 
we shall group all these methods into two broad catego-
ries, namely continuous and discrete optimization. 
 Continuous optimization minimizes or maximizes a 
function using continuous real numbers that accept value 
points from an integer set to another and that include 
negative values, decimals and fractions10. That is, con-
tinuous optimization accepts numerical values that can 
appear in the real world as well as in the abstract mathe-
matical world. Some experts believe continuous optimi-
zation is more accurate and more complex than discrete 
optimization30. However, many others argue to the con-
trary31. 
 Discrete optimization, on the other hand, refers to a 
subclass of optimization that is concerned with the use of 
integers instead of fractions or decimals, to execute mini-
mization or maximization of functions. Discrete optimi-
zation can be further subdivided into combinatorial 
optimization and integer programming (IP)32. Since the 
focus of this article is on combinatorial optimization, we 
shall elaborate on these two classes of discrete optimiza-
tion.  

Integer programming 

An IP problem basically refers to mathematical optimiza-
tion programs where all variables are integers. However, 
there are special cases where fractions or decimals could 
form part of the constraints. Usually such cases are tech-
nically referred to as mixed integer programming (MIP). 
In most settings, IP refers to ILP, since in most of the for-
mulations of IP both the objective function and the con-
straints are linear33. That is not to mention that nonlinear 
integers do not exist34. Here we will concentrate on LIP 
problems.  
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 An IP takes a form similar to the following 
 
 Maximize CTj, 
 
 Subject to Bj  d, 
 
 where j  0, j  n. (1) 
 
The ILP equivalent of eq. (1) will take the form 
 
 Maximize CTj, 
 
 Subject to Bj + s = d, 
 
 s   0, j  n. (2) 
 
where C and d are vectors and B is an integer matrix. 
 The frequent use of IP is due basically to its wide ap-
plicability in real-life situations, where most decisions are 
discrete in terms of a yes or no, true or false, move or 
stop, etc. Hence IP is sometimes called binary program-
ming (BP), because it usually assumes 0–1 decision vari-
ables35. Let us consider a practical example on budgeting. 
A company has four building projects in four different 
locations requiring different capital investment and finan-
cial returns on investment with statistics as available in 
Table 1. Let us assume we are required to determine the 
project to embark upon to maximize profit with the avail-
able finances. 
 From Table 1, the objective to maximize is 
 
 0.2x1 + 0.3x2 + 0.4x3 + 0.5x4. (3) 
 
This being a decision problem requires binary variables 
(0, 1) to represent the final decision. So we define the  
financial constraints representing the projects by x thus 
 
 0.5x1 + 1.0x2 + 1.5x3 + 2.1x4  3.1 (first year), (4) 
 
 0.3x1 + 0.6x2 + 1.5x3 + 1.7x4  2.3 (second year), (5) 
 
 0.2x1 + 0.5x2 + 0.3x3 + 0.8x4  1.4 (third year), (6) 
 
 xk = 0 or 1, k  = 1,… , 4. (7) 
 
Here we assume that whenever the decision is not to exe-
cute any project xk, k is 0; otherwise it is 1.  

Combinatorial optimization 

Combinatorial optimization which deals with problems 
on discrete structures such as mastoids and graphs is con-
cerned with finding the best option among a set of  
options. In mathematics, artificial intelligence, operations 
research, algorithm theory and software engineering, 

combinatorial optimization deals with finding the optimal 
solution out of a set of discrete feasible solutions, espe-
cially in situations where an exhaustive search is not pos-
sible. It is safe to say, therefore, that combinatorial 
optimization problems refer to such problem instances 
where the feasible solutions are defined with combina-
torics concepts (e.g. combinations, permutations, sequen-
ces, sets and subsets), or graph theory concepts such as 
nodes, arcs, paths cycles, etc. that occur between two  
discrete values rather than on the smoothness of the 
graph36. Generally, therefore, the graph of continuous  
optimization is smoother due to the concrete and fixed 
nature of the discrete values in discrete optimization 
which hinders smooth transitions from one value to the 
other.  

Areas of application of combinatorial optimization 

Combinatorial optimization has wide applicability in our 
everyday life, especially in proffering solutions to prob-
lems in science and engineering. Some of the problems 
that can be solved using combinatorial optimization in-
clude: 
 
 A manufacturing firm producing high-quality goods 

that are in demand in different parts of a large coun-
try, will need to find the optimal route to service its 
customers in a way to minimize time and costs in such 
distribution service taking into cognizance the trans-
portation models available, transportation costs, 
transportation network, haulage capacity constraints, 
available human resources, customer conveniences, 
applicable taxes, etc. This is a clear graph theory 
problem that requires combinatorial optimization. 

 An industrial establishment having a goal to maximize 
its profit, bearing in mind the possible production 
costs, human resources, equipment and raw materials 
availability and demand–forecast constraints. This is 
another case where multi-objective combinatorial  
optimization is required to achieve the company’s 
goals. 

 
 

Table 1. Financial investment 

  Capital requirements (US$ m) 
  Year 

 

Project  Return (US$ m)  1  2  3 
 

1  0.2  0.5  0.3  0.2 
2  0.3  1.0  0.6  0.5 
3  0.4  1.5  1.5  0.3 
4  0.5  2.1  1.7  0.8 

Total capital available (US$ m)  3.1  2.3  1.4 

Note. All capital requirements and returns are quoted in millions of US 
dollars. The returns are calculated after three years of investment. 
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 Weather forecast is an inevitable requirement in the 
aviation industry all over the world. To ensure good 
weather forecast, experts are required to explore the 
weather conditions with particular emphasis on wind 
speed, temperature, humidity, etc. in a given number 
of locations for a given number of hours to predict the 
weather in the next couple of hours. This requires set-
ting up an objective function to measure the correla-
tion between observations and the atmospheric 
condition, bearing in mind the available constraints 
and the stated variables – a clear case of combinato-
rial optimization.  

 In image processing, computer applications are devel-
oped to identify handwritten characters in pixelated 
image form and then output the best guess of the rep-
resented digit of the image. This situation requires 
solving an optimization problem to adjust the training 
parameters in order to reduce the error count so as to 
attain dependable digit recognition.  

 In economics, a prudent businessman can only invest 
in a given venture after an exhaustive preview of 
available funds, variances and projected returns on  
investment depending on the projected risks on such 
investment. This analysis involves combinatorial opti-
mization.  

 In commercial transportation, whether it is road, rail 
or air transportation, a firm needs to choose its fleet 
routes in the most efficient manner so as to maximize 
efficiency and effectiveness. This requires the appli-
cation of combinatorial optimization. 

 
In summary, combinatorial optimization in real-life situa-
tions determines the most efficient way of allocating re-
sources in order to obtain maximum returns on 
investment. Other recent applications of combinatorial 
optimization include scheduling of production plants in 
industries, examination time-tabling in schools, colleges 
and universities, staff scheduling in large corporations, 
etc. In a nutshell, the broad areas of application of com-
binatorial optimization include determining the best cost, 
weight, distance, profit, value, utility, yield, production, 
capacity, etc. in various fields. 

Development of combinatorial optimization  
models 

Solving combinatorial optimization problems requires the 
development of algorithms that use a sequence of values 
of the variables (iterates) to arrive at a solution to the 
problem. To achieve this, the algorithm may require some 
previous knowledge gained in a previous iteration and  
intimate information about the problem being solved,  
including knowledge about its sensitivity to noise in the 
variables, etc. To successfully develop a good algorithm, 
therefore, the primary goal is the development of a good 

mathematical model of the targeted problems which 
could be designed from economic, statistical, biological 
or other natural principles. The model should describe the 
relationship between variables and may place restriction 
on states (constraints). Similarly, the model should have 
an objective function that needs to be minimized or maxi-
mized. The objective function evaluates the desirability 
of a set of values of the variables4. 

Essentials required for constructing mathematical  
models 

In constructing a mathematical model, it is necessary to 
understand that a good model should consist of three 
principal elements. These are the objective function, vari-
ables and constraints of a problem.  
 The objective function refers to a quantifiable evalua-
tion of operation of the system that is the target of mini-
mization or maximization. The index in the case 
industrial system could be maximization of profit or 
minimization of production, labour or distribution costs, 
etc. 
 Variables refer to the unknown quantity/components of 
the system of interest for which we must find the right 
values to meet the set objective. In an industrial system, 
the variables may be the number of human resources re-
quired to solve a given problem, demand for a particular 
product, production time, storage facilities, distribution 
channels, etc. For data-fitting in an experimental situa-
tion, the variables could be the parameters for the model. 
 Constraints describe the relationships among the vari-
ables and should also indicate the permissible values. A 
constraint in industrial firms could be the labour and 
other resources which should be less than or equal to the 
ones available. 

Mathematical formulation 

In developing a mathematical formulation for a combina-
torial optimization model taking into cognizance the es-
sential elements, a combinatorial optimization problem K 
is a quadruple consisting of I, FS, M and GF, where I rep-
resents a set of instances, FS is a set of feasible solutions, 
M is a measure of the feasible solution and GF is the goal 
function either to minimize or maximize an objective. 
That is, for every combinational problem, there is always 
a decision problem that studies whether there exists a fea-
sible solution for a particular measure of the problem 
leading to an answer that could be a yes or a no37. 

Examples of combinatorial optimization problems 

There exist several combinatorial problems that have 
been identified in the literature, some of which are the 
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travelling salesman problem, minimum spanning tree, 
packing problem, cutting stock problem, etc. 

The travelling salesman problem 

This is the problem of a particular salesman whose duty 
is to visit a given number of his customers located in dif-
ferent parts of a particular city or in different towns 
across a given geographical location using the cheapest 
possible route in terms of time and cost of the journey38. 
Another constraint in this problem is that the salesman is 
expected to visit each of the cities only once, as much as 
possible. The traveling salesman is allowed to return to 
his initial starting city at the end of his trip. To ensure 
fairness, a cost is placed on each of the routes (edges)39. 
 The travelling salesman problem (TSP) is a hard non-
deterministic polynomial time (NP-hard) problem gener-
ates a decision problem that is NP-complete40. This graph 
theory problem represents the cities as vertices and the 
routes connecting them as edges on the graph41. Several 
optimization algorithms have been used to successfully 
solve this problem. Examples of such combinatorial algo-
rithms are ant colony optimization42, African buffalo  
optimization41, artificial bee colony optimization43, parti-
cle swarm optimization44, etc. 
 Application areas of TSP include network routing45, 
parcel delivery by courier companies46, job-shop schedul-
ing47, circuit board and oil-rig drilling operations48, vehi-
cle routing49, urban route planning50, etc. 

Minimum spanning tree 

This is another combinatorial problem that has become 
popular in recent years. A tree in graph theory is a simply 
a way devised to connect all the nodes of a graph together 
in order to create just a path from one node to the other  
 
 

 
 

Figure 1. A four-node graph. 

throughout the whole graph. In this way, if it is a practi-
cal situation involving different cities connected by road 
networks, the tree should be created in such a way to en-
able a person connect from one city to another within the 
minimum spanning tree. The constraint is that each city 
can only be reached from a point by one particular path. 
Figure 1 shows an example of minimum spanning for a 
four-node graph. This four-node graph has 16 spanning 
trees (Figure 2). 
 A minimum spanning tree, therefore, is a special kind 
of tree that minimizes the sum of the individual weights/ 
costs attached to individual edges in the graph. A graph 
like the four-node graph above could contain many 
minimum spanning trees if all the edges have equal 
weights, since in that case every tree is a minimum span-
ning tree. On the other hand, if all the edges have differ-
ent weights such that no two edges have the same weight, 
then the graph has one minimum spanning tree. The basic 
idea of minimum spanning is a spanning tree that has a 
weight that is less than or equal to the weight of all other 
spanning trees in the graph51.  
 Three prominent algorithms have proven to be success-
ful in solving the minimum spanning tree problems. 
These are the Kruskal algorithm52, Prim’s algorithm53 and 
Boruvka’s algorithm54. Recent application areas of the 
minimum spanning tree include communication net-
works, transportation networks, water supply, electricity 
supply and computer networks environments. 
 

 
 

Figure 2. Four-nodes graph indicating 16 spanning trees. 
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The cutting stock problem 

This problem has its origin in industries involved in cut-
ting large pieces of clothing, metal, film, glass or paper 
materials into smaller shapes and sizes as required by the 
customers, while ensuring minimum wastage. 
 In formulating a model to solve the cutting stock prob-
lem, one may first list the number of j orders placed, each 
customer requiring ki sizes and quantities (i = 1,…, j 
sizes). The IP equation could be represented in this form 
 

 
1

min .
n

i i
i

j k

  (8) 

 
Subject to 
 

 
1

, , 1,..., ,
n

ij i i
i

b x k i j m


   (9) 

 
 xi  0, (10) 
 
here, bi j represents i patterns appearing in order j, ji the 
wastage recorded in the cutting process of pattern i, and ki 
are the sizes to which the materials are cut55. 

Packing problem 

There are several variants of the packing problem. Basi-
cally, it refers to filling a box, ship or haulage vehicles 
with specified smaller-shaped items in a given manner. 
Some variants of the problem are concerned with filling 
the larger items in such a way as to avoid overlaps. In 
other variants of the packing problem, overlaps are per-
mitted, but the packing must not have gaps in the larger 
container. In general, packing problem is a merger of 
mathematics, puzzles and computer science in providing 
solutions to practical real-life problems. Some variants of 
the packing problem includes the parallel parking prob-
lem that involves parking cars in such a way as to allow 
as may cars as possible within a given parking lot. Other 
variants are packing infinite space, hexagonal packing, 
circles in circle, tiling of floors, etc. In Packing problem, 
the constraint is not always the breadth or length some-
times it is the weight or height of the items56. In a way, 
packing problem is similar to cutting stock problem, 
since both require managing a larger space with smaller 
shapes in a most efficient (profitable) manner. 

Merits and demerits of combinatorial  
optimization 

From the foregoing discussion and analysis, it is obvious 
that combinatorial optimization has become a part of our 
daily lives. However a critical observer may notice that 
that are some obvious benefits and shortcomings in the 

use of combinatorial optimization in attempting solutions 
to our practical day-to-day problems.  

Merits  

Among the benefits derivable from the use of combinatorial 
optimization is solving practical problems are the follow-
ing: 
 
 Portability: Most combinatorial application models 
have wide applicability. That is, once a reliable model 
has been developed, it requires just tuning of the appro-
priate parameters of the same model to solve many other 
problems. This saves cost, especially in a large conglom-
erate/corporation as the same model can be used in  
different branches and departments of the industrial esta-
blishment. 
 Cost-saving: It is generally agreed by economists that 
it is cheaper to develop a model to attempt solutions to 
manufacturing problems than to use the real system for 
study. In cases of errors, the huge loss associated with 
learning-on-the-job using the real system can be enor-
mous. The cost in an event of failure through the use of a 
combinatorial optimization model is by far cheaper than 
that of the real system.  
 Efficiency: In many cases, in spite of the relative sim-
plicity of the combinatorial optimization models, they 
have proven to be efficient such that they could even pro-
duce more reliable results than some real-life system. 
Generally, it is much easier to replicate the same experi-
mental process when using a combinatorial optimization 
model than when using human subjects.  
 Time-saving: Industrial process modelling and simu-
lation using combinatorial optimization is usually much 
faster than using human subjects. Experiments using  
human subjects, machines, etc. in order to forecast out-
comes could take several years. This explains the popu-
larity of combinatorial optimization methods in solving 
real-life problems in the past few decades.  
 User-friendliness: Another high point regarding the 
use of combinatorial optimization is the ease of use. Once 
the model is developed, a user does not have to be an  
expert in mathematics or computer science to analyse and 
interpret the output from the model. 
 
The above-mentioned benefits explain the popularity of 
combinatorial optimization models in virtually every  
aspect of finance, supply-chain management, logistics, 
manufacturing and educational institutions today. How-
ever, there are some observed lapses that need to be  
addressed in order to maximize the benefits of combina-
torial optimization. 

Demerits  

Though combinatorial optimization models are popular in 
decision-making today, much needs to be done in order to 
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maximize the benefits of use of such models. Some of the 
observed lapses include: 
 
 Over-generalization: Practical industrial processes are 
unique and the effects of different manufacturing parame-
ters differ from place to place. Combinatorial optimiza-
tion models are theoretical and as such may be unable to 
capture special consideration leading to cases of over-
generalization of computational results. 
 Inaccurate computational results: Combinatorial opti-
mization models are generally stochastic. That is, they do 
not lay claim to discovering the optimal solutions. At 
best, they obtain near-optimal solutions. Making huge in-
vestments based on the use of such stochastic methods 
may not, in the long-run, be a wise decision. 
 Software and other costs: Due to the rising popularity 
of combinatorial optimization models, the cost of combi-
natorial optimization software is prohibitive. Investing in 
such software may constitute a huge drain on the finan-
cial resources of an industrial firm. Besides, there are per-
sonnel costs and other associated costs. 
 Inaccurate analysis and interpretation of results: An-
other challenge with the use of combinatorial optimiza-
tion models in decision making is the problem of 
inaccurate analysis and interpretation of computational 
results in order to make informed decisions. This may  
require some level of professionalism, which further in-
creases the investment cost. 

Conclusion 

This study is a review of combinatorial optimization with 
special emphasis on the practical application areas of 
combinatorial optimization models, the processes re-
quired for building a good model. It also discusses the  
existing combinatorial optimization problems in mathe-
matics, operations research and computer science. The 
study concludes with a discussion on the merits and de-
merits application of combinatorial optimization models 
in different practical aspects of our day-to-day lives. 
 In view of the observed weaknesses of combinatorial 
optimization in real-life applications we recommend that 
further research needs to be done with a view to develop-
ing simpler, faster, efficient and more user-friendly com-
binatorial optimization models. 
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