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of the popular tools to analyse genetic diversity. It helps 
determine the relative contribution of different compo-
nent traits in the total variability. Besides, it is also  
equally important in determining the degree of variability 
between populations. This is essential while selecting 
parents with wide diversity in order to have fruitful  
recombinations. In the present study, 20 plus trees/ 
genotypes of S. alba were resolved into five clusters fol-
lowing non-Euclidean hierarchical cluster analysis (Table 
2 and Figure 1). This type of clustering pattern revealed 
no relation between geographical and genetic diversity. 
The genetic diversity may be attributed to different  
factors such as differential adoption methods, selection 
criteria, selection pressure and environment factors18, 
which indicates that genetic drift resulted into greater  
diversity than that of geographic diversity19. Earlier stu-
dies in Jatropa curcas12, Pongamia pinnata13 and Mad-
huca latifolia16 are in line with the present findings, 
where no relation was observed between genetic diversity 
and geographical distribution. This can be attributed to 
the changes that these trees may have undergone during 
the process of selection. Plus trees in clusters II and I 
could be used for hybridization within groups as they 
were diverse and had maximum intra-cluster distance. 
Similarly, wider genetic diversity was observed between 
clusters V and IV, as they had maximum inter-cluster dis-
tance, followed by clusters IV and I. Thus, these groups 
can be utilized for hybridization, which will definitely 
yield fruitful results in the form of variable segregants 
having desired traits. This will be helpful in the im-
provement of the tree species in question. 
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Recently evolved satellite-based sun-induced fluores-
cence (SIF) spectroscopy is considered as a direct 
measure of photosynthetic activity of vegetation. We 
have used monthly averages of satellite-based SIF  
retrievals for three agricultural year cycles, i.e. May 
to April for each of the three years, viz. 2007–08, 
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2008–09 and 2009–10 to assess comparative perform-
ance of SIF and normalized difference vegetation in-
dex (NDVI) for predicting net primary productivity 
(NPP) over the Indo-Gangetic Plains, India. Results 
show that SIF values for C4 crop-dominated districts 
were higher than C3 crop-dominated districts during 
summer and low during winter for all three years. SIF 
explained more or less above 70% of variance in NPP. 
The variance explained by integrated NDVI ranged 
from 60% to 67%. Thus the present study has shown 
the potential of SIF data for improved modelling of 
agricultural productivity at a regional scale. 
 
Keywords: Crop lands, net primary productivity, pho-
tosynthetic activity, sun-induced fluorescence. 
 
AGRICULTURAL systems have received less attention by 
carbon science groups across the world, besides that they 
cover around 15 million sq. km of the terrestrial surface 
and approximately more than half of the land area in  
India. Scientific evidence suggests that intensively  
managed agricultural systems act as a CO2 sink. Reliable 
and consistent spatial databases on productivity of  
agricultural systems on a national scale are crucial for  
securing food security. 
 Satellite-based crop monitoring is a key to food security. 
Newly developed satellite-based spectroscopy is geared 
to improve crop monitoring, as it allows monitoring of 
photosynthesis through detection of key physiological 
traits, viz. xanthophyll cycle pigments and chlorophyll 
fluorescence. Traditionally, effectiveness of remote sens-
ing-based vegetation indices as direct proxies or as input 
of light use efficiency models for estimating agricultural 
productivity remains highly uncertain, particularly in ma-
naged croplands. These process-based crop models gen-
erally over estimate and ecosystem models underestimate 
the potential productivity of crops under real field condi-
tions. 
 Augmenting reflectance-based vegetation indices,  
satellite-based estimates of sun-induced fluorescence 
(SIF) have now become available for large-area estimate 
of crop productivity. Satellite-based estimation of SIF is 
an early and direct measure of photosynthetic activity of 
the vegetation and SIF is an indicator of light use effi-
ciency, vegetation stress and global primary productivity 
(GPP)1. 
 A part of the energy absorbed by chlorophyll is  
expelled from the light reactions of photosynthesis and 
dissipated as fluorescence, i.e. re-emission of light at a 
longer wavelength than for excitation (Figure 1)2. Satel-
lite-based observation of SIF was accomplished mainly 
through the utilization of weak signal contribution in the 
Fraunhofer line wavelengths3. Near infrared (NIR) solar 
Fraunhofer lines filled-in by vegetation fluorescence were 
used to estimate global terrestrial fluorescence with high 
spectral resolution Greenhouse gases Observing SATel-
lite (GOSAT)4–6. 

 Joiner et al.7 retrieved the far-red chlorophyll fluores-
cence using satellite-based hyperspectral measurements 
close to O2 A band. This retrieval process exploited the 
different spectral structures produced by the far-red chlo-
rophyll fluorescence feature, atmospheric absorption and 
surface reflectance. This algorithm was purported to be 
advantageous as nearby nonfluorescing target was not  
required for fluorescence measurements. This study used 
data from global ozone monitoring instrument-2 (GOME-
2) on-board MetOp-A platform. A similar approach using 
GOME-2 SIF data demonstrated that SIF retrievals could 
provide a direct estimate of the GPP of cropland and 
grassland ecosystems8. 
 We examined comparative performance of SIF and the 
most commonly used vegetation index, i.e. NDVI for  
estimating net primary productivity (NPP) of managed 
agricultural lands in the Indo-Gangetic Plains (IGP). We 
have utilized monthly averages of GOME-2 SIF retrievals 
over India at 0.5 resolution for three agricultural year 
cycles, i.e. May to April for each of the three years, viz. 
2007–08, 2008–09 and 2009–10. 
 The study area is the IGP covering six states, viz.  
Punjab, Haryana, Uttarakhand, Uttar Pradesh, Bihar and 
West Bengal. The IGP occupies nearly 15% (0.7 million 
sq. km) of the total land area of the country. The region is 
known for large stretches of fertile alluvium soil favour-
able for agriculture and produces about 50% of the total 
food grains in the country9. The study area is an inten-
sively managed agroecosystems with major cropping sys-
tems like rice–wheat, sugarcane–wheat, maize–wheat, 
cotton–wheat, rice–potato, rice–mustard–jute and rice–
vegetable–jute. 
 We prepared cropland NPP inventory at the district 
level based on acreage and yield data of major crops for 
the years 2007–08, 2008–09 and 2009–10, and crop-
specific conversion factors. Biomass partitioning factor 
(harvest index), moisture content and root : shoot ratio  
databases for major crops were collected from the litera-
ture. District-wise cropland NPP of the IGP was used for 
establishing relationships with SIF and NDVI. Harvestable 
 
 

 
 

Figure 1. Distribution of solar energy incident on a green leaf – 
illustrated with the cross-section of a leaf (source: ref. 1). 
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products at the district level were converted to NPP using 
crop-related parameters10 
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where gC/g is gram carbon/gram, Yi the reported produc-
tion for crop i, MYi the mass per unit of harvestable prod-
uct, Hi the harvest index (seed : biomass ratio) for crop i, 
MCi the moisture content in seeds and Ai is the harvest 
area of crop i. The numerator and denominator are 
summed over N = 16 crops. 
 The GOME-2 version 26 740 nm SIF data for the  
period from 2007 to 2014 were downloaded from Aura  
 
 

 
 

Figure 2. Relationship of cropland net primary productivity with in-
tegrated sun-induced fluorescence (iSIF) in IGP. 

Validation Data Centre, NASA, USA6. The monthly data-
sets available since 15 July 2013 have a spatial resolution 
of approximately 40 km  80 km at nadir and 40 km  
40 km. GOME-2 SIF retrieval primarily corresponds to 
emission at 740 nm wavelength. Monthly composites of 
moderate resolution imaging spectroradiometer (MODIS)-
based NDVI (NIR-Red/NIR + Red) at 5 km spatial reso-
lution, quality filtered for clouds, aerosols and extreme 
sun-sensor view geometries, were obtained from the VIP 
(Vegetation Index/Phenology) laboratory, University of 
Arizona. 
 We computed integral NDVI (iNDVI) covering the  
entire year in order to assess the annual NDVI using the 
following formula10 
 
 iNDVI = P/2(NDVI t1, 
 
    + 2*NDVI t2, +2*NDVI t3 +  + 2*NDVI tn), 
 
where P is the number of months (i.e. 12) and t1, t2, 
t3 …, tn are the months from May to April in each year. 
 
 

 
 

Figure 3. Relationship of cropland net primary productivity with  
integrated NDVI in IGP. 
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Figure 4. Spatio-temporal variability in SIF over the IGP for crop cycle years 2007, 2008 and 2009. 
 
 

 
 

Figure 5. Temporal SIF trends over C3 and C4 crop-dominated districts of the IGP. 
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 Similar to iNDVI, iSIF (integrated SIF) was also calcu-
lated taking into account of monthly time series of SIF in 
a year to derive the annual iSIF. 
 About 115 districts having dominantly agricultural 
lands and covering a major portion of individual SIF  
grids were used for regression analysis. An exponential 
function better explained the NPP–SIF relationship for all 
the three crop cycles as indicated compared to that of a 
linear fitting. The temporal pattern of SIF was studied 
over C3 (wheat–rice) and C4 (sugarcane) dominant crop 
area for Hisar district, Haryana and Moradabad district, 
Uttar Pradesh. 
 The findings revealed that cropland NPP (t/ha) had 
strong links with SIF in comparison to NDVI (Figures 2–
4). However, both iSIF and iNDVI over crop year 
showed exponential form of relation with NPP. Regard-
less of years and descriptive variables, linear fit offered 
significant but relatively low coefficient of determination 
(R2). The amount of variance in NPP explained by SIF 
was approximately above 70%. The variance explained 
by iNDVI ranged from 60% to 67%. Higher SIF value 
was recorded during the 2007–08 crop season, which co-
incided with higher rainfall recorded in the area for the 
period. Lower SIF peak was observed in the 2008–09 
crop season during which period lower rainfall of the 
2008–09 window was recorded (Figure 3). Detailed 
analysis is required to understand these inter-annual varia-
tions in prediction capability. Various climatic, land 
cover and management factors could play a crucial role in 
these assessments. 
 Temporal plot of SIF over Moradabad and Hissar dis-
tricts showed distinct pattern owing to predominance of 
C3 or C4-based crops in these districts (Figure 5). In  
Moradabad district, the magnitude of SIF remained high 
and persisted for a longer duration due to input-intensive 
sugarcane-based cropping system. Sugarcane being a C4 
and long-duration crop, has high photosynthesis rates and 
NPP. The average sugarcane yield (NPP) obtained in  
Moradabad for 2007–08, 2008–09 and 2009–10 was 56.4 
(26.5), 54.3 (23.1) and 56.2 (24.5) tonnes/ha respectively. 
On the other hand, Hissar district is dominantly occupied 
C3 crops comprising cotton–wheat, rice–wheat or bajra–
wheat systems. These crops have low photosynthetic effi-
ciency and yield potential, as reflected in lower values of 
SIF throughout the agricultural years. The average NPP 
for Hissar was just above 8 tonnes/ha in these three years. 
Preliminary analysis revealed that SIF from GOME-2 
could capture variation in photosynthetic productivity due 
to diversity in cropping systems practised over the IGP. 
 Thus the present study shows that SIF at enhanced 
space–time resolution in future would offer possibility of 
improving forecasts of agricultural productivity and  
minimizing uncertainty in carbon accounting. Results in 
general point to the significance of SIF in the precise 
mapping of the spatio-temporal changes in crop produc-
tivity. However, the variability in the predictive power of 

SIF across different years warrants a more detailed study 
by integrating existing time-series remotely sensed vege-
tation indices, meteorological parameters and ground-
based data for robust modelling. Though the current 
coarse resolution of SIF data restricts their application to 
regional scales, the future satellite data (NASA’s orbiting 
carbon observatory-2) will provide impetus to satellite-
based mapping of SIF at unprecedently finer scales. 
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