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The 3D quantitative structure–activity relationship 
model representing r2 = 0.8605, q2 = 0.8193 and 
pred_r2 = 0.6847 respectively, was generated for 
thymidine phosphorylase (TP) inhibitory activity of 
some 1,3,4-oxadiazole derivatives. Electronegative 
substituents at R1 and less steric bulk with electroposi-
tive substituents at R2 were found to be favourable for 
TP inhibition. The activity prediction of a combinato-
rial library of 1629 compounds resulted in 50 mole-
cules whose predicted activity was comparable to the 
most active compound in the dataset and within the 
model’s applicability domain. Among them six mole-
cules showed favourable interactions with the active 
site of TP proposing potential anticancer activity of 
the title compounds.  
 
Keywords: Anti-cancer therapy, docking, combinato-
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DURING the last few decades, target-based drug design 
for anti-cancer therapy has gained increasing attention. In 
cancer patients, the level of thymidine phosphorylase 
(TP) is elevated1 leading to cell proliferation. The TP  
inhibitors, through inhibition of 2-deoxy-D-ribose-1-pho-
sphate, repress vascular endothelial growth factor 
(VEGF) production which in turn suppresses the forma-
tion of new blood vessels through inhibition of metallo-
proteinase secretion, proliferation, differentiation, 
angiogenesis and thus averts cancer metastasis2–4.  
 The quantitative structure–activity relationship (QSAR) 
has become an increasingly practicable approach in che-
mical and biological sciences through establishment of a 
statistical relationship between molecular features  
(descriptors) and activities of assorted compounds with 
similar scaffolds. The postulation of correlation between 
the descriptors and chemical/biological properties is the 
crux behind the wide applicability of this approach5–7.  
 In continuation of our efforts to explore TP inhibitory 
potential of 1,3,4-oxadiazole nucleus, a 3D-QSAR study 

was performed on 3,5-disubstituted-1,3,4-oxadiazole-2-
thione derivatives8 using VLife Molecular Design suite 
3.5 (MDS)9. 
 Binding mode of ligand to the TP receptor was pre-
dicted by docking through Python Prescription (PyRx) 
using AutoDock Vina10,11. Combinatorial library was 
generated by swapping the substituents of selected series 
using lead grow tool of VLife MDS. 

Materials and methods 

The workflow for exploration of new 1,3,4-oxadiazole 
derivatives through QSAR model development, valida-
tion, molecular docking and combinatorial library in the 
present work is shown in the following flow chart. 
 

 

Data mining and preparation 

A dataset of 1,3,4-oxadiazole derivatives with concentra-
tion inhibiting 50% of the enzyme (IC50 value (M)) was 
chosen for QSAR study8 and the reported IC50 values were 
transformed to negative logarithms [–logIC50/pIC50(moles)] 
(Table 1). 
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Table 1. Structure and thymidine phosphorylase inhibitory activity of 1,3,4-oxadiazole derivatives 

 

PLSR model 
Compound 
no. 

 
R1 

 
R2 

 
Observed activity pIC50 (mole) Predicted activity *Residual activity 

 1 
  

4.059 4.114 –0.055 

 2 
  

4.391 4.336 0.055 

 3 
  

3.929 4.208 –0.279 

 4 
  

4.391 4.391 0.000 

 5 

 
 

3.931 3.972 –0.041 

 6 

 
 

4.159 4.230 –0.071 

 7 
  

3.884 4.026 –0.142 

 8 
 

 

4.842 4.850 –0.008 

 9 
  

4.262 4.140 0.122 

10 
  

3.982 4.008 –0.026 

11 
  

4.625 4.494 0.131 

12 
  

3.874 3.862 0.012 

13 
  

4.08 4.200 -0.120 

(Contd) 
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Table 1. (Contd) 

 

PLSR model 
Compound 
no. 

 
R1 

 
R2 

 
Observed activity pIC50 (mole) Predicted activity *Residual activity 

14 
  

4.074 3.994 0.080 

15 

  

4.661 4.713 –0.052 

16 

  

4.58 4.452 0.128 

17 
  

4.754 4.699 0.055 

18 
  

4.235 4.033 0.202 

19 
  

3.761 3.760 0.001 

20 
  

4.334 4.021 0.313 

21 
  

4.052 4.011 0.041 

*Residuals = Obs. pIC50  – Pred. pIC50. 
 
 

 
 
Figure 1. Template based alignment of all the 1,3,4-oxadiazole deri-
vatives. 

 All the compounds were energy-minimized with a 
dielectric constant of 1, 10,000 number of cycles, modi-
fied Qeq equilibrium charge method based on atomic elec-
tronegativity and 0.01 kcal/mol Å as root mean square 
gradient using Merck molecular force field (MMFF)12. 
All molecules of the dataset were aligned using 5-methyl-
3-((methylamino) methyl)-1,3,4-oxadiazole-2(3H)-thione 
template13. 3-(((2-methoxy-5-nitrophenyl) amino) methyl)- 
5-(p-tolyl)-1,3,4-oxadiazole-2(3H)-thione (compound 8) 
was chosen as a reference molecule owing to its highest 
activity among the series (Figure 1). 

Molecular descriptors 

Following template-based alignment; the interactions of 
an SP3 carbon probe on a rectangular grid provided with 
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steric, electrostatic and hydrophobic descriptors of  
molecules14. The cut-off values for steric and electrostatic  
interactions were set to 30 and 10 kcal/mol respectively15. 

Division of the dataset  

For internal and external validation of the model, the 
training and test sets were chosen in the ratio of 
~80 : 20%. For the QSAR model to be truly predictive in 
the range of its descriptor and activity space, the training 
set must comprise compounds with maximum and mini-
mum activities. Determination of various descriptive  
statistical parameters facilitated the choice of best repre-
sentatives of training and test sets16,17.  

Development of statistically significant models 

The development of 3D-QSAR models involved partial 
least squares regression (PLSR) with stepwise forward–
backward method (SW FW–BW) for selection of appro-
priate descriptors18,19. The stepwise forward backward re-
gression involves a combination of forward selection and 
backward elimination of predictive variables (descriptors) 
in the model until no term is left out to meet the specified 
statistical significance criteria20. 
 PLSR involves finding linear regression using a small 
number of latent variables derived from a large number of 
original descriptors21. Thus, PLSR is the method of 
choice in most cases where the predictive variable space 
is very large as compared to the response variable space. 
The main advantage of PLSR lies in its ability to find lin-
ear relationship even if the variables have very little con-
tribution to the first few principal components22,23. The 
selection of statistically significant models involved de-
termination of squared correlation coefficient (r2), cross-
validated squared correlation coefficient (q2), predicted 
correlation coefficient (pred_r2) and external validation 
parameters ZScore r2, ZScore q2, ZScore pred_r2. 

Molecular docking 

Molecular docking was performed on ligand bound TP 
structure (protein data bank ID: 1UOU). The important 
residues of TP responsible for the activity are SER117, 
SER217, HIS116, LYS221, ARG202 and TYR19924. The 
ligands were prepared by computing the charges and set-
ting the number of torsions. The macromolecule was  
prepared by removal of ligands and water molecules (if 
any) present in the crystal structure, addition of polar  
hydrogens and grid generation around the active site. 
Vina generates multiple conformers for a molecule and 
the result of docking is expressed in terms of binding  
affinity (kcal/mol) and a lower scoring conformation is 
ranked higher. The generated conformers were loaded in 
PyMOL to visualize the binding modes with the recep-
tor25,26.  

Combinatorial library generation  

A library of compounds with different substituents at 
various sites of title compounds was generated using 
Leadgrow module of VLifeMDS. For this purpose,  
different substitutions of the dataset were scrambled to 
generate new structures. The generated structures were 
then filtered on the basis of Lipinski’s rule27: hydrogen 
bond acceptor (HAc) 10; hydrogen bond donors (HDr) 
5; slogp 5; molecular weight (MW) 500; rotatable 
bond (RtB) 10; polar surface area 140. The activity of 
generated compounds was predicted by the most signifi-
cant 3D QSAR model. 

Results and discussion 

Interpretation of PLSR model  

The term selection criteria for model generation were r2, 
q2 and pred_r2 (Supplementary Table 1). Amongst these 
models, we discuss the most significant model (eq. (1)) 
on the basis of its robustness (Table 2) 
 

 pIC50 = –0.0724 E_427 – 21.4035 S_737  
  + 0.3960 E_1122 + 4.1317.   (1) 
 

Squared correlation coefficient and cross-validated corre-
lation coefficient were found to be 0.86 and 0.82, con-
secutively explaining the correlation and internal 
predictive potential of the model. The E_427 descriptor 
in eq. (1) has a negative coefficient value (–0.0724), im-
plying that more electronegative groups favour TP inhibi-
tion. Thus, substitution of more electronegative group, 
e.g. bromine at R1 will increase (compounds 17 and 15) 
while a less electronegative group methoxy reduces TP 
inhibitory activity (compounds 6 and 5). The parameters 
for steric field (S_737) with negative coefficient and 
electrostatic field (E_1122) with positive coefficient indi-
cates that less bulky and less electronegative group is  
favourable on R2. Figure 2 shows the stereo view of these 
interactions in the rectangular grid.  
 The residual values reflect the prediction potential of 
any model; lower the residual value higher is the statisti-
cal reliability of the model. The model indicates very low 
values of residuals (less significant differences) (Table 
1). Figure 3 presents the fitness plot between experimen-
tal and predicted activities. Figure 4 depicts the contri-
bution of all three descriptors towards the activity. 

Model validation  

The internal validation was performed to check the  
robustness and external validation was performed to  
determine the predictive ability of the model. 
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Leave-one-out cross-validation: Predictivity of the 
model was checked by predicted residual sum of square 
(PRESS) and leave-one-out cross-validation r2 (LOO-q2). 
Equation (2) represents the calculation of cross-validated 
r2 (q2) 
 

 
2
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( )
1 .
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The equation can also be expressed as 
 

 2
2
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 (3) 

 
In eqs (2) and (3), Yobs(train) is observed and Ypred(train) is the 
predicted activities of training and Ýtrain indicates mean of 
activities of training set28. q2 > 0.5 indicates the accept-
ability of the model. 
 
Predicted r2 (pred_r2 or q2

(F1)): Correlation of observed 
to predicted activity for the test set was checked by 
pred_r2 
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Table 2. Statistical and validation parameters of statistically  
  significant PLSR model  

Parameter  PLSR model 
 

Training/test set selection method Manual  
Training set size (percentage) 16 (80%) 
Test set size 5 
Test set 12,13,16,18,9 
Descriptors E_427 
  S_737 
  E_1122 
Degree of freedom 13 
F test 40.1007  
Coefficient –0.0724 
  –21.4035 
  0.3960 
Regression constant 4.1317 
r2 0.8605 
r2_se 0.1360 
q2 0.8193 
q2_se 0.1548 
pred_r2 0.6847 
pred_r2se 0.1473 
ZScore r2 4.44353 
ZScore q2 2.78738 
ZScore pred_r2 1.55711 
Best Rand r2 0.62703 
Best Rand q2 0.46504 
Best Rand Pred_r2 0.5946 
Alpha Rand r2 0.00015 
Alpha Rand q2 0.01 
Alpha Rand Pred_r2 0.1 

In eq. (4), Yobs(test) is observed and Ypred(test) is the predicted 
activity of the test set and  Ýtrain is the mean activity of the 
training set. pred_r2 > 5 indicates acceptable predictivity 
of the model. 
 
Y-scrambling/Y-randomization: The Y-scrambling method 
was used to rule out any likeliness of possible chance 
correlation between predictive and response variables of 
the model. Random correlation is calculated by ZScore

29 
using the following formula 
 
 Zscore = (h – )/. (5) 
 
In eq. (5), h represents q2 for the model and  and  rep-
resent average q2 and standard deviation respectively for 
models developed through random datasets. The values of 
all validation parameters is shown in Table 2. 
 
Applicability domain: Applicability domain (AD) is de-
fined as the predictive and response variable space that 
any model belongs to30. Any modelled response predicted  
 
 

 
 
Figure 2. Stereo view of field points around the molecule generated 
by 3D PLSR QSAR model. 
 
 

 
 
Figure 3. Fitness plot for the actual versus predicted activities of 3D 
PLSR model. 
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through QSAR can be valid only for compounds belong-
ing to the AD of that model and the activity of com-
pounds outside the AD may not be predicted with equal 
confidence. For a successful PLSR analysis, the predic-
tive variables should follow a normal distribution pattern.  
 
 

 
 

Figure 4. Contributory plot of 3D PLSR model. 
 
 

 
 

Figure 5. Applicability domain of 3D PLSR model compounds. 
 
 

 
 
Figure 6. Validation of the docking methodology (cocrystallized 
ligand: red, docked ligand: green). 

It follows that mean  3 standard deviations (SD) should 
cover 99.7% population. Any compound not belonging to 
this criterion can be considered as an outlier. 
 Recently, Roy et al.32 proposed a criterion for estimat-
ing AD by measuring the corresponding standardized 
value for predictive variable i of compound k (Ski). There 
are three conditions regarding the minimum and maxi-
mum values for Ski: 
 
(i) Ski < 3 for all the descriptors: The compound is 

within AD. 
(ii) Ski > 3 for all the descriptors: The compound is an 

X-outlier or is outside AD for training and test sets 
respectively. 

(iii) For some descriptors Ski < 3 and for others Ski > 3: 
The compound shows similarity with most of the 
compounds according to some descriptors but dis-
similarity to most according to others. 

 
It calls for formulation of some measurement criterion for 
the third group of compounds. For instance, if we have the 
standard score (Z) = 1.28, it represents that 90% of the 
observations will occur below 1.28*SD. Thus a probabi-
lity of 90% of any compound not being an X-outlier calls 
for a sum of 1.28*SD and mean of Si values of all the  
 
 

 
 
Figure 7. Docking of the most active and least active compound to 
active site of TP. 
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Table 3. Binding affinity of docked compounds 

Ligand Binding affinity (kcal/mol)      Binding residues 
 

Crystallographic ligand –8.2 SER117, SER217, LYS221, ARG202, HIS116 
Most active comp. (8) –7.3 SER117, SER217, LYS221, HIS116 
Less active comp. (19) –7 ARG146, GLN187 
Combi lab comp. 66 –8.6 SER117, LYS115, GLY152, TYR199, SER126 
Combi lab comp. 67 –8.5 SER117, LYS115, TYR199, GLY152, SER126 
Combi lab comp. 138 –6.7 SER117, SER217, TYR199, LYS115, GLY152, SER126 
Combi lab comp. 1279 –7.6 SER117, SER217, TYR199, LYS115, SER126 
Combi lab comp. 1922 –6.1 SER117, SER217, LYS221, THR154, SER126 
Combi lab comp. 2066 –6.6 SER117, SER217, LYS221, SER126, THR154 

 
 

 
 

Figure 8. Applicability domain of compounds obtained through combinatorial library generation. 
 
 
descriptors to be below 3. We can call it Snew. The values 
of Ski and Snew(k) were calculated using the formula 
 
 Ski = (|Xki – X́i|)/Xi.  (6) 
 
 Snew(k) = Śk + 1.28  Sk. (7) 
 
In eq. (6), k is the total number of compounds, i the total 
number of descriptors, Ski the standardized descriptor i 
for compound k (from the training or test set),  Śki the 
original descriptor i for compound k (from the training or 
test set),  X́i the mean value of the descriptor Xi for the 
training set compounds only and Xi the standard devia-
tion of the descriptor Xi for the training set compounds 
only. In eq. (7), Snew(k) is the Snew value  Śk is the mean of 
Si(k)  values and Sk is the standard deviation of Si(k) values 
of the compound k.  
 Compound 8 of the training set shows Ski and Snew(k) 
more than 3, therefore compound 8 may be considered as 
the outlier (Figure 5).  

Analysis of binding mode by molecular docking 

All the compounds were subjected to molecular docking 
studies to explore the binding site interactions with TP. 
The co-crystallized ligand was redocked into the enzyme 
binding pocket for validation of the docking protocol. 
Vina was able to generate the binding interactions of the 
docked pose identical to that of the co-crystallized ligand 
(Figure 6). In order to search for the optimum protein–
ligand interaction, a set of compounds had been docked  
to the protein active site. Few representatives especially 
the highest and the lowest active compounds were studied 
for their interactions with TP as shown in Figure 7. As 
expected, all the compounds exhibited hydrogen bond in-
teractions in the binding pocket. The most active com-
pound (compound 8) forms hydrogen bond closely with 
SER117, SER217, LYS221 and HIS116. Compound 19 
that exhibited low inhibition potency towards TP as  
evidenced by experimental and 3D-QSAR studies,  
reflects less binding affinity (ARG146, GLN187). Binding 
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Figure 9. Docking of combinatorial library compounds to active site of TP. 
 
 
affinities of docked compounds are presented in  
Table 3. 

Combinatorial library 

Combinatorial library was generated using the substitu-
ents of the model’s training set. The generated com-
pounds were filtered on the basis of Lipinsky’s rule of 
five. Amongst the 1629 generated compounds, 696 com-
pounds were within AD according to the standardization 
approach (Figure 8). Therefore the predictions of these 
compounds through the model can be regarded as reli-
able. Among these, 50 compounds were found to have 
biological activity compared to or greater than the most 
active compound of selected series (Supplementary Table 
2). To establish the pre-eminence of molecules over the 
dataset compounds, they were docked in the TP receptor, 
amongst which docking of a few compounds is shown  
in Figure 9 and their binding affinities are presented in 
Table 3. 

Conclusion 

An attempt was made for identification of crucial struc-
tural features of 5-substituted-1,3,4-oxadiazole-2-thione 
derivatives for effective TP inhibition is made. The 

QSAR analysis advocates the substitution of electronega-
tive groups around R1, and less bulky and less electro-
negative group around R2 for enhanced biological 
activity. Combinatorial library was generated by scram-
bling the substituents followed by activity prediction of 
the new compounds. Docking study helped in predicting 
the ligand–receptor interaction of title compounds. The 
compounds with promising predicted biological activities 
were docked to TP active site to deduce their binding pat-
tern. On that account, the assumptions of this study may 
be instrumental in finding new anti-cancer leads with 
high selectivity and potency. 
 
 

1. Pauly, J. L., Schuller, M. G., Zelcer, A. A., Kirss, T. A., Gore, S. 
S. and Germain, M. J., Identification and comparative analysis of 
thymidine phosphorylase in the plasma of healthy subjects and 
cancer patients. J. Natl. Cancer Inst., 1977, 58, 1587–1590. 

2. Matsushita, S. et al., The effect of thymidine phosphorylase  
inhibitor on angiogenesis and apoptosis in tumors. Cancer Res., 
1999, 59, 1911–1916. 

3. Focher, F. and Spadari, S., Thymidine phophorylase: a two-face 
janus in anticancer chemotherapy. Curr. Cancer Drug Targets, 
2001, 1, 141–153. 

4. Sivridis, E., Giatromanolaki, A., Papadopoulos, I., Gatter, K. C., 
Harris, A. L. and Koukourakis, M. I., Thymidine phosphorylase 
expression in normal, hyperplastic and neoplastic prostates: corre-
lation with tumour associated macrophages, infiltrating lympho-
cytes, and angiogenesis. Brit. J. Cancer, 2002, 86, 1465–1467. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 114, NO. 10, 25 MAY 2018 2071 

5. Ferreira, M. M. C., Multivariate QSAR. J. Braz. Chem. Soc., 
2002, 13, 742–753. 

6. Abdullahi, A. D. et al., Novel insight into the structural require-
ments of P70S6K inhibition using group-based quantitative struc-
ture activity relationship (GQSAR). J. Appl. Pharm. Sci., 2014, 
4(06), 16–24. 

7. Jain, S. V., Bhadoriya, K. S., Bari, S. B., Sahu, N. K. and Ghate, 
M., Discovery of potent anticonvulsant ligands as dual NMDA 
and AMPA receptors antagonists by molecular modelling studies. 
Med. Chem. Res., 2012, 21, 3465–3484. 

8. Shahzad, S. A. et al., Synthesis and biological evaluation of novel 
oxadiazole derivatives: A new class of thymidine phosphorylase 
inhibitors as potential anti-tumor agents. Bioorganic Med. Chem., 
2014, 22, 1008–1015. 

9. VLifeMDS 3.5, Molecular Design Suite, VLife Sciences Techno-
logy Pvt Ltd, Pune, India, 2009; www.vlifesciences.com 

10. Trott, O. and Olson, A. J., AutoDock Vina: improving the speed 
and accuracy of docking with a new scoring function, efficient  
optimization and multithreading. J. Comp. Chem., 2010, 31, 455–
461. 

11. Dallakyan, S. and Olson, A. J., Small-molecule library screening 
by docking with PyRx. Meth. Mol. Biol., 2015, 1263, 243–250. 

12. Halgren, T. A., Merck molecular force field. III. Molecular geo-
metries and vibrational frequencies for MMFF94. J. Comp. Chem., 
1996, 17, 553–586. 

13. Ajmani, S., Jhadav, K. and Kulkarni, S. A., Three-dimensional 
QSAR using the k-nearest neighbor method and its interpretation. 
J. Chem. Inf. Model., 2006, 46, 24–31. 

14. Ghosh, P. and Bagchi, M. C., Comparative QSAR studies of nitro-
furanyl amide derivatives using theoretical structural properties. 
Mol. Simul., 2009, 35(14), 1185–1200. 

15. Clark, M., Cramer, R. D. and Van, O. N., Validation of the general 
purpose Tripos 5.2 force field. J. Comp. Chem., 1989, 10, 982–
1012. 

16. Golbraikh, A. and Tropsha, A., Predictive QSAR modeling based 
on diversity sampling of experimental datasets for training and test 
set selection. J. Comp. Aided Mol. Des., 2002, 16, 357–369. 

17. Sahu, N. K., Sharma, M. C., Mourya, V. and Kohli, D. V., QSAR 
studies of some side chain modified 7-chloro-4-aminoquinolines 
as antimalarial agents. Arabian J. Chem., 2014, 7, 701–707. 

18. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., Optimization by 
simulated annealing. Science, 1983, 220, 671–680. 

19. Scior, T., Medina-Franco, J., Do, Q. T., Martínez-Mayorga, K., 
Yunes, R. J. and Bernard, P., How to recognize and workaround 
pitfalls in QSAR studies: a critical review. Curr. Med. Chem., 
2009, 16, 4297–4313. 

20. Armstrong, N. A., Pharmaceutical Experimental Design and In-
terpretation, CRC Press, Taylor & Francis, 2006. 

21. Hoskuldsson, A., PLS regression methods. J. Chemom., 1988, 2, 
211–228. 

22. Martens, H. and Naes, T., Multivariate Calibration, Chichester, 
Wiley, 1989. 

23. Palyulin, V. A., Radchenko, E. V. and Zefirov, N. S., Molecular 
field topology analysis method in QSAR studies of organic com-
pounds. J. Chem. Inf. Comp. Sci., 2000, 40, 659–667. 

24. Norman, R. A. et al., Crystal structure of human thymidine  
phosphorylase in complex with a small molecule inhibitor. Struc-
ture, 2004, 12, 75–84. 

25. Seeliger, D. and Groot, B. L., Ligand docking and binding site 
analysis with PyMOL and Autodock/Vina. J. Comp. Aided Mol. 
Des., 2010, 24, 417–422. 

26. Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J. and 
Goodsell, D. S., Automated docking to multiple target structures: 
incorporation of protein mobility and structural water heterogene-
ity in autodock. Proteins: Struct. Funct. Genet., 2002, 46, 34–40. 

27. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J., 
Experimental and computational approaches to estimate solubility 
and permeability in drug discovery and development settings. Adv. 
Drug Deliv. Rev., 1997, 23, 3–25. 

28. Golbraikh, A. and Tropsha, A., Beware of q2. J. Mol. Graph 
Model., 2002, 20, 269–276. 

29. Zheng, W. and Tropsha, A., Novel variable selection quantitative 
structure–property relationship approach based on the k-nearest 
neighbor principle. J. Chem. Inf. Comp. Sci., 2000, 40, 185–194. 

30. Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T., McDow-
ell, R. M. and Gramatica, P., Methods for reliability and uncer-
tainty assessment and for applicability evaluations of 
classification- and regression-based QSARs. Environ. Health Per-
spect., 2003, 111, 1361–1375. 

31. Snedecor, G. W. and Cochran, W. G., Statistical Methods, Oxford 
and IBH, New Delhi, 1967.  

32. Roy, K., Supratik, K. and Pravin, A., On a simple approach for  
determining applicability domain of QSAR models. Chemometr. 
Intell. Lab. Syst., 2015, 145, 22–29. 

 
 
 
ACKNOWLEDGMENTS. We acknowledge the Head, SLT Institute 
of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur 
(C.G.) for his support in carrying out the present study. 
 
 
Received 14 October 2016; revised accepted 6 November 2017 
 
 
doi: 10.18520/cs/v114/i10/2063-2071 

 
 
 
 
 
 
 


