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Astronomical datasets are typically very large, and 
manually classifying the data in them is effectively 
impossible. We use machine learning algorithms to 
provide classifications (as stars, quasars and galaxies) 
for more than one billion objects given photo-
metrically in the Third Data Release of the Sloan Digi-
tal Sky Survey (SDSS-III). We have used kNN, SVM 
and random forest algorithms in a distributed envi-
ronment over the cloud to classify 1,183,850,913  
unclassified photometric objects present in the SDSS-
III catalog. This catalog contains photometric data for 
all objects viewed through a telescope and spectros-
copic data for a small part of these. Although it is 
possible to classify all the objects using spectroscopic 
data, it is impractical to obtain such data for each one 
of them. To classify such a big dataset on a single  
machine would be impractically slow, so we have used 
the Spark cluster computing framework to implement 
a distributed computing environment over the cloud. 
We found that writing results (dozens of gigabytes) to 
the cloud storage is very slow while using kNN. 
Though writing the results with SVM is faster as it is 
done in parallel, its accuracy is only around 87%, due 
to lack of a kernel implementation of it in Spark. We 
then used the random forest algorithm to classify the 
entire set of 1,183,850,913 objects with an accuracy of 
94% in about 17 hours of processing time. The result 
set is significant as even collecting spectroscopic data 
for these many objects would take decades, and our 
classifications can help astronomers and astrophysic-
ists carry out further studies. 
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ASTRONOMICAL datasets are typically very large. The 
Sloan Digital Sky Survey (SDSS)1,2 catalog is a large col-
lection of astronomical data which comprises the most 
detailed three-dimensional maps of the Universe, with 
deep multi-colour images of one-third of the sky, and 
spectra for more than three million astronomical  
objects. One of the problems faced while processing  
astronomical data is to accurately and efficiently classify 

observed celestial objects. Classically, when an object was 
first observed through a telescope, its data was recorded 
manually and further manual calculations were performed 
over such data which facilitate in classifying the recorded 
object as belonging to a particular type of celestial object, 
say star or galaxy. This approach is infeasible given the  
sizes of contemporary astronomical datasets. 
 Processing the entire data from SDSS, even with the 
most efficient algorithms, takes enormous amounts of time 
and resources. In the SDSS dataset of our interest, there are 
two kinds of observational data – spectroscopic and pho-
tometric. Different types of objects in the spectroscopic 
catalog each have a well-described spectrum. Based on 
the spectral characteristics like redshift, emission peaks, 
absorption peaks, etc., each object has been classified as 
a star, quasar or galaxy. SDSS cannot get the spectrum 
data for all its objects, as it takes about an hour apiece to 
measure each spectrum; to get data for all the objects 
viewed would take hundreds of years. The photometric cat-
alog contains colour data about all the objects viewed so 
far, including objects in the spectroscopic catalog. The co-
lour of the object is measured in five filters: ultraviolet (u), 
green (g), red (r), and infrared (i) and (z). There are a total 
of 1,183,850,913 objects in the photometric catalog, out of 
which only 3,751,358 are spectroscopically classified, 
while the others are unclassified. 
 Here we have used machine learning algorithms over 
the Spark framework3 to classify the entire unclassified 
dataset of objects as stars, quasars or galaxies. 
 Before we delve into further details about the data, we 
describe the terms ‘machine learning’ and ‘Spark’ to  
indicate some context for the work that is described later. 
 Machine learning4 is an approach which automates the 
process of making predictions for new unclassified data, 
based on available classified data. (We used spectroscop-
ic data to train the model and make predictions over the 
photometric data.) Some of the standard algorithms for 
supervised learning are kNN, SVM, random forest, etc. 
(We were able to get good results using the random forest 
algorithm.) 
 Apache Spark5 is a cluster computing framework to 
handle big data processing. It works in a manner similar 
to traditional Hadoop MapReduce, but is much faster. 
The basic working of MapReduce is to split the input into 
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several parts and run a program on these separate parts in 
parallel at once. Though Spark’s functioning is similar to 
MapReduce, it is much faster than the Hadoop5 because it 
uses the concept of resilient distributed datasets (RDDs), 
which reduces the number of read/write operations to 
disk. Spark stores the data in the form of an RDD and 
persists to disk only when necessary, which reduces 
read/write times and makes Spark a fast engine for large-
scale data processing. It is over 100 times faster than Ha-
doop MapReduce. 
 We use the astronomical dataset available at SDSS. We 
utilize only the photometric data of the different classi-
fied objects (the objects are classified manually using 
their spectroscopic data) to train our algorithms, which 
we then use to identify quasars, stars and galaxies from 
the unclassified objects. 
 In order to store such huge amounts of data and make 
them available across all platforms for accessing, they 
should be live always. For this purpose, we have used the 
cloud platform which not only provides the storage but 
also makes it easy to run programs over the data. Cloud 
computing is an all-in-one tool which provides computing 
services such as storage, networking, analytics, etc., over 
the internet. 
 Here we have used the Google Cloud6 platform for our 
entire environment set-up. Google Cloud provides the in-
frastructure to run a complete machine learning project. It 
also frees the users from the overhead of managing and 
configuring networks. It provides the users with data ana-
lytics services to study and analyse the existing data. One 
such service that we have used is Google Dataproc, 
which allows the users to create and run Spark frame-
works over the cloud. Using the features of Google Data-
proc, we have set up our cluster environment. We have 
then created machine learning models from our training 
data and used those models to predict the class of each 
photometric object. 
 Thus, with the help of machine learning and our cloud 
set-up, we could automate the entire process by bypassing 
the need of human intervention and automating the calcu-
lation part. Typically, the spectroscopic SDSS data are 
classified based on their u, g, i, r and z parameters7.  
Using these parameters they measure the bivariate distri-
bution of r* luminosity with half-light surface brightness, 
intrinsic g*–r* colour and morphology. Based on these 
measurements, each object is classified as a star, galaxy 
or quasar. This work would be time-consuming and slow 
when it has to be done for around 1,183,850,913 objects, 
were it not for the cloud set-up. Under such circums-
tances, the combined power of machine learning and  
distributed computing can become a boon to the astro-
nomical community. Although machine learning algo-
rithms automate the process of making predictions for 
new data, making predictions for the entire SDSS dataset 
in a single machine would take an inordinate amount  
of time. So in order to reduce the time, we have used  

distributed computing, a computing model in which the 
operations are distributed among the different systems in 
a cluster to improve performance8. Spark is a distributed 
framework which is used for large-scale data processing. 
Initially we put in place a distributed set-up over the 
cloud using Spark framework. We then applied the ran-
dom forest algorithm which yielded better results for both 
binary as well as multi-class classifications, when com-
pared to kNN and SVM implementations of Spark. (We 
however describe the kNN and SVM implementations al-
so, as they are standard algorithms and their implementa-
tions carry important lessons.) 
 Classifying even a mere 500,000 objects (a tiny frac-
tion of the photometric catalog) spectroscopically would 
have taken approximately 57 years using standard astro-
nomical tools. However, with Spark over cloud using  
machine learning techniques, we were able to classify the 
entire dataset in less than a day with an accuracy of 94%. 
Both our source code and result data are available on the 
cloud (http://tiny.cc/astro-sdss and the result data at 
https://doi.org/10.6084/m9.figshare.5143255.v1). Therefore 
this approach would be of use to the astronomy community. 

Related work 

There have been several efforts at using machine learning 
with astrophysics data; Zhang and Zhao9 survey this  
domain well. Such efforts, however, have mainly focused 
on the problem of classifying relatively smaller datasets 
like the Supernova Legacy Survey (SNLS) dataset10,11. 
The main focus of relevant existing work is to implement 
various machine learning techniques over a small dataset 
and identify the model which gives the best accuracy 
among them. In all such related works, attempts have 
been made to implement machine learning algorithms 
over a centralized system, without taking full account of 
scalability. As a consequence, though these efforts are 
generally successful on a small scale, they cannot be ex-
pected to work on complete, large datasets like SDSS-III. 
 The objective in this study is twofold; first is the use of 
distributed processing techniques (unlike the centralized 
ones seen elsewhere12–15, which are not scalable); and the 
second is the classification of the entire SDSS-III dataset, 
rather than small fragments of SDSS or other astronomi-
cal data, as done elsewhere16. The basic techniques of 
machine learning are well known and used all over, but to 
run them at scale in a large distributed setting is what is 
done in this study. 

Problem formulation 

Algorithms and dataset 

Our aim is to classify the entire SDSS-III photometric  
data into stars, quasars and galaxies. This in turn requires 
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us to set up a cloud environment and apply different  
machine learning classification algorithms to choose the 
best among them, which can classify the entire data accu-
rately abiding by the evaluation metrics, within a reason-
able amount of time. We have used certain standard 
evaluation metrics to measure the performance of the 
classifier. The entire result of this classification is shared, 
which is useful to the astronomical community or any  
independent researcher. 

Distributed environment set-up 

The unclassified dataset from the SDSS III catalog is 
very large. To store such huge data and run machine 
learning algorithms for classification on local machines 
would require very high computing power, and a large 
data storage. To handle this issue we have used the 
Google Cloud services to set up a cluster for distributed 
computing, and the Apache Spark framework to distribute 
our jobs among the machines in the cluster. 

Cluster set-up over the cloud 

Google Cloud provides the Dataproc17 service to process 
large quantities of data easily. It provides Apache Ha-
doop, Apache Spark, Apache Pig and Apache Hive ser-
vices to handle large datasets. We have used the Apache 
Spark framework for cluster management over Google 
Dataproc. The steps that we have followed to set up a 
cluster and run Spark jobs over the cluster are: (1) Initial-
ly we set up a project over the cloud to use the Google 
Cloud services; (2) We created four instances, each of 
which had 7.5 GB RAM: one for master node and the re-
maining three for worker nodes; (3) These instances were 
used to set up a cluster using the Dataproc service of 
Google Cloud; (4) Cloud storage was used as common 
for storing training data, testing data and programs to  
be run on the cluster; (5) Using the Dataproc GUI, we 
could submit the jobs to the cluster using the Spark 
framework. 
 Figure 1 shows the basic architecture of our Google 
Cloud environment. Spark programs run as independent 
sets of processes on the cluster, coordinated by the Spark-
Context object in our main program. Spark acquires  
executor nodes of the cluster. It then sends the applica-
tion code to these nodes and makes the executor nodes 
run the tasks in a parallel manner. Figure 2 shows an 
overview of Spark cluster management. 

Data collection from SDSS catalog 

The data used were obtained from SDSS1,2. The data are 
of two kinds: spectroscopic and photometric. The spec-
troscopic data were taken from the DR12 (Data Release 

12) Spectroscopic Catalog, and the photometric data from 
the DR12 Photometric Catalog18. 
 The classified data from the Spectroscopic Catalog 
have the following format: 
 
ObjID, class, u, g, r, i, z 
where ObjID is the unique object ID. 

 
The unclassified data, from the Photometric Catalog, has 
the following format: 
 
ObjID, class = null, u, g, r, i, z 
where ObjID is the unique object ID. 

 
The SDSS database contains two main tables which are 
of interest to us: SpecObj and PhotoObj. The SpecObj  
table contains spectroscopic data (including the class) of 
spectroscopically classified objects, and the PhotoObj  
table contains photometric data (the colour data) of all 
identified objects. The SpecObj table contains a small 
subset of the objects in the PhotoObj table (those that 
have been classified). The SQL query used to retrieve our 
training data is as follows: 
 
SELECT p.objID, s.class, p.u, p.g, 
p.r,p.i, p.z FROM SpecObj AS s JOIN 
PhotoObj AS p ON s. bestObjID = p. 
objID WHERE (p.type = 3 OR p. 
type = 6). 

 
Table 1 shows the result format of the above query. 
 This query does a full join between the SpecObj and 
PhotoObj to get the classes and colours of all the objects 
 
 

 

 
 

Figure 1. Google Cloud environment. 
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Figure 2. Spark cluster management. 
 
 

Table 1. Training data 

Object ID Class u g r i z 
 

1237645879551000764 GALAXY 18.55396 25.91849 19.23725 20.98709 18.41879 
1237645879551066262 GALAXY 17.20153 19.41061 17.58132 19.41061 16.90159 
1237645879562862699 STAR 19.28224 18.95554 19.03111 20.14984 18.78287 
1237645879580098737 QSO 20.11118 19.53674 20.00373 20.19055 19.36661 

 
 

Table 2. Testing data 

Object ID u g r i z 
 

1237645943435034783 18.55396 25.91849 19.23725 20.98709 18.41879 
1237645943435034775 17.20153 19.41061 17.58132 19.41061 16.90159 
1237645943434969150 19.28224 18.95554 19.03111 20.14984 18.78287 
1237645943433396364 20.11118 19.53674 20.00373 20.19055 19.36661 

 
 
in SpecObj. The query used to retrieve our testing data is 
as follows. 
 
SELECT p.objID, p.u, p.g, p.r, p.i, 
p.z FROM PhotoObj AS p LEFT OUTER JOIN 
SpecObj s ON p. objID = s. bestObjID 
WHERE (p. type = 3 OR p. type = 6) 
AND s. class is NULL. 

 
Table 2 shows the result format of the above query. This 
query does a left outer join between the SpecObj and the 
PhotoObj to get the colours of all the objects in PhotoObj 
where the class is null. 

Implementation of kNN and SVM over the data 

Our initial approach was to run the kNN and SVM algo-
rithms using Spark distributed framework. These algo-
rithms did not give the best results, but we report these 
negative outcomes as they are of interest. 

 The kNN4 algorithm classifies a new data point based 
on the majority of the classes of the k nearest training 
samples to that data point. In our case, the attributes of 
the object are colours and based on the majority of co-
lours near the data object, the algorithm decides the class 
of each object. 
 There is no direct implementation of kNN in Spark, so 
we implemented distributed kNN over Spark using the 
scikit-learn library19. The basic steps to implement distri-
buted kNN over Spark are as follows. 
 
• Create a Spark context for the program. 
• Read the training data from cloud storage and store it 

as an RDD object. 
• For each of these objects compute features as g–r,  

u–r, r–i, i–z and store them as an RDD object. 
• Convert this RDD object to a stack of numpy tuples20. 
• Create a dataframe to store all the classes correspond-

ing to the respective objects. 
• Using scikit-learn, create a kNN model using features 

and classes obtained in steps 4 and 5. 
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• Create a corresponding broadcast object for the model 
to distribute the job. 

• Read the testing data from cloud and perform steps 2 
and 3. 

• Using the broadcasted model, predict the class of each 
object in a parallel manner. 

• Finally write the results onto cloud storage. 
 
There were some problems with this kNN implementa-
tion. First, the accuracy was not satisfactory, as it was 
around 87%. Due to data conflicts between scikit-learn 
and Spark, the writing operation was taking linear amount 
of time, which would have required a month to classify 
the entire SDSS III data. 
 We then used SVM4 for binary classification of SDSS 
data. The basic concept of SVM is to construct a hyper-
plane based on the training dataset. It then uses this mod-
el to classify the dataset based on which side of the hyper 
plane the test data belong. According to SVM, there are 
two groups of data. If the data points are separable by 
drawing a straight line with all points of one class on one 
side of the line and all the points of other class on the 
other side, then such data are linearly separable. For those 
data which are not linearly separable, they are trans-
formed to higher dimensions using kernel functions to 
make them separable at higher dimensions. The Spark 
implementation of SVM is linear21. It is based on the loss 
function formulated by hinge loss22. 
 As our data were not linearly separable, the linear 
SVM of Spark did not give satisfactory results and the 
accuracy was also around 87%. Though the issue of writ-
ing the results to the cloud in parallel was solved using 
SVM, the accuracy was still not satisfactory. Due to lack 
of a kernel implementation of SVM in the Spark frame-
work, we were not able to improve the accuracy of the 
SVM model to more than 90%. 

Random forest implementation 

Random forest algorithm 

Random forests are ensembles of decision trees23. Deci-
sion trees build classification models in the form of tree 
structures. A dataset is broken down into smaller and 
smaller subsets, while at the same time an associated deci-
sion tree is incrementally developed. The final result is a 
tree with decision nodes and leaf nodes. A decision node 
has two or more branches. Each leaf node represents a clas-
sification or decision. It constructs the tree using an in-
formation-theoretic entropy function. The entropy function 
represents the information gain of each of the data points.  
 The internal unit model used in the random forest algo-
rithm is that of a decision tree. The random forest  
algorithm builds a set of decision trees separately. The 
algorithm produces different trees by injecting some ran-

domness in the construction of each decision tree. It then 
combines the predictions of each tree to predict the final 
class of the object, which reduces the variance and im-
proves the performance of the predictions made on the 
test data. 

Reasons for choosing the random forest algorithm 

The random forest algorithm not only gives good results 
for binary classification, but it also can be extended for 
multiclass classification23. It does not require feature 
scaling. The algorithm is capable of capturing nonlinear 
information inherent in the data. Additionally, it can  
capture feature interactions. 

Training data and parameters used 

Here we have used pySpark implementation of random 
forest over the Google Cloud environment3. The parame-
ters used for training decision trees are g–r, u–r, r–i, i–z. 
These parameters along with the 500,000 classified  
objects are given as input to the algorithm to build a set 
of decision trees. This training of multiple decision trees 
is done in parallel with the use of the Spark framework. 

Model construction 

The master node of the cluster fetches the training dataset 
from the Google Cloud storage and stores it as an RDD 
object inside the Spark context. Using this RDD object, it 
then distributes the training job to all the worker nodes in 
the cluster to produce the final model. For distribution of 
jobs within the cluster, the map function of pySpark is 
used. During this training process, the algorithm attempts 
techniques like sub-sampling of the original dataset at 
each iteration and considering different random sets of 
features to split on at each tree node, to inject randomness 
in the construction of decision trees. We have used this 
algorithm for both binary classification and ternary  
classification of SDSS data. For binary classification, 
each training object is labelled as 0 for quasar and 1 for 
non-quasar objects. The same approach is followed to 
classify into other types such as stars and galaxies. For 
ternary classification, training objects are labelled as 1 
for quasars, 0 for stars and 2 for galaxies. 

Final prediction 

Prediction of objects classes is done by aggregating the 
results from all decision trees. The class of an object is 
decided based on majority voting. Each tree prediction is 
counted as a vote for one class. The class is predicted to 
be that which receives the most votes. 
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Box 1. Pseudocode for ternary classification 
 
1 # Creating Spark Context for the cluster environment 
2 sc = SparkContext (‘local’, ‘test_script‘) 
3 # Reading Training file from Google Cloud 
4 data = sc. textFile (trainingFile) 
5  
6 # Defining Method to compute features and assign labels to each object 
7 def parsePoint (line ): 
8  Assign label as 0 for star , 1 for quasar and 2 for galaxy 
9  Compute g–r,u–r, r–i, i–z as features for each object 
10  return LabeledPoint (label , features ) 
11  
12 # Removing Header from the training file 
13 header = data .first () 
14 data = data . filter (lambda line : line != header) 
15 # Parsing the training file as per the method defined above 
16 parsedData = data .map(parsePoint) 
17 # Create a model using Random Forest Algorithm 
18 model = RandomForest . trainClassifier (parsedData , numClasses = 3, 
   categoricalFeaturesInfo={}, numTrees = 21, featureSubsetStrategy=‘auto‘, 
   impurity =’ entropy’, maxDepth = 20, maxBins = 32) 
19 testData = sc. textFile (testingFile) 
20  
21 # Defining Method to parse the testing file 
22 def parseTestData (line): 
23  Assign object ID as label for each object 
24  Compute g–r, u–r, r–i, i–z as features for each object 
25  return (label , features) 
26  
27 # Parsing the testing file as per the method defined above 
28 parsedTestData = testData .map(parseTestData) 
29  
30 # Making predictions using the model created in line 18 
31 predictions = model. predict ( parsedTestData .map(lambda x: x[1])) 
32 labelsAndPredictions = parsedTestData .map (lambda lp: lp [0]) .zip(predictions) 
33  
34 # Defining Method to parse the results 
35 def getResults (t): 
36  Assign object ID as label 
37  Assign feature as STAR, GALAXY, QSO for 0, 2, 1 respectively 
38  return (label, features) 
39  
40 # Parsing the results as per the method defined above 
41 resultList = labelsAndPredictions .map(getResults) 
42 #Save the results back to the cloud 
43 resultList . saveAsTextFile (destination)  

 
 
Writing final results 

In this study we had 1,183,850,913 unclassified objects. 
These were stored in the Google Cloud storage. The  
objects were read from the storage and stored as an RDD 
object in the Spark context. Using this RDD object, the 
job of predicting the class for the object was distributed 
across the worker nodes of the cluster, using model from 
training step. This result of prediction was stored back  
into the Google Cloud Platform by writing it into a csv 
file in a parallel manner. 

Explanation of the pseudocode for ternary  
classification 

In line 2 in Box 1, the Spark context is created to handle 
all Spark jobs in the cluster. In line 4, the training file is 
read from Google Cloud storage and stored as an RDD 
object inside the Spark context. From lines 7 to 11, a me-
thod parsePoint is defined which splits each data  
object of the training file into labels and features. For  
labels it assigns 0 for star, 1 for quasar and 2 for galaxy. 
It computes g–r, u–r, r–i, i–z values for each object and
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Table 3. Original data – sample 

Object ID u g r i z 
 

1237645879551000764 20.98709 18.55396 19.23725 25.91849 18.41879 
1237645879551066262 18.23754 17.20153 17.58132 19.41061 16.90159 
1237645879562862699 19.28224 18.95554 19.03111 20.14984 18.78287 
1237645879580098737 20.11118 19.53674 20.00373 20.19055 19.36661 
1237645943973675227 20.77234 18.22479 19.19735 23.54567 17.63784 
1237645943435034783 18.95963 16.81595 17.58961 21.46995 16.40388 
1237645943435034775 18.50592 16.20174 17.0387 21.10589 15.65076 

 
 

Table 4. Results – sample 

Object ID Class 
 

1237645879551000764 GALAXY 
1237645879551066262 GALAXY 
1237645879562862699 STAR 
1237645879580098737 QSO 
1237645943973675227 GALAXY 
1237645943435034783 STAR 
1237645943435034775 STAR 

 
 
assigns them as features for those objects. From lines 13 
to 14, it removes the header from the testing file. In line 
16, it calls the parsePoint with the training file RDD ob-
ject as an argument and collects the parsed training file 
into another RDD object. In line 18, it creates a model  
using the random forest algorithm over the parsed RDD 
object created in line 16. In line 19, it reads the testing 
file from the Google Cloud storage and stores it as an 
RDD object. From lines 22 to 25, it defines a method par-
seTestData, which splits the testing file as labels and fea-
tures for each object. The object ID is assigned as  
label and the values of g–r, u–r, r–i, i–z as features for 
each object of the testing file. In line 28, it calls the me-
thod parseTestData with the testing file RDD object as an 
argument to function and collects the parsed testing file 
into another RDD object. In line 31, using the model 
created in line 18, it makes predictions for each of the 
testing file objects and collects the results of the classifi-
cation into an RDD object. From lines 35 to 41, it defines 
and calls a method getResults which converts the result 
RDD object into a readable format by converting labels 
back to their respective classes. In line 42, it writes re-
sults back to the Google Cloud storage. 

Results 

The results of this study are stored in several large comma-
separated values (CSV) files. Each row stores the  
object ID and the corresponding class to which it belongs. 
Tables 3 and 4 show the format of our original dataset 
and the results respectively. The classified results of the 
entire 1,183,850,913 unclassified objects took around 
17 h of processing, and the total size of the classified data 

is around 40 GB. They have been divided into 7 files, 
each about 600 MB in size and containing the results of 
approximately 1.3 × 107 unclassified objects. The results 
are available online (https://doi.org/10.6084/m9.figshare. 
5143255.v1). 

Results of binary versus multiclass classification 

A binary classification is a concept of predicting the 
classes from a two-class problem, whereas in multiclass 
classification we are concerned with the class of an object 
as being one among more than two possible classes. Our 
initial work was on binary classification of data into qua-
sars and non-quasars. Figure 4 shows the Mollweide pro-
jection of a sample of our binary classification results. 
 The most common measure to assess the performance 
of a classifier is accuracy, but it ignores many of the fac-
tors which should be taken into account when assessing 
the classifier. Accuracy just gives an idea about the count 
of correct classifications. This count alone might not be a 
good classification measure for certain datasets. In  
particular for SDSS data, 90% of the objects are  
non-quasars. So any classifier which would classify entire 
data into non-quasar would get an accuracy of 90% which 
seems impressive, but that figure ignores all quasar ob-
jects in the data. In order to get a better assessment of the 
classifier we have used a receiver operating characteris-
tics (ROC) graph24. This technique assesses the perfor-
mance of the classifier. This is especially useful for 
domains like SDSS, where the data have skewed class 
distribution. ROC graphs are two-dimensional, in which 
true positive rate is plotted on the y-axis and false posi-
tive rate on the x-axis. An ROC graph depicts the trade-
offs between true positive and false positive. Here we 
have used spark implemented ROC metric to measure  
accuracy and precision of random forest classifier, and 
Table 5 presents the results. 
 The random forest algorithm for binary classification 
gave an accuracy of 94%. The same approach was used 
for binary classification of stars and galaxies. The accu-
racy for all these categories was around 94%. 
 For multiclass classification, we classified the data into 
quasars, stars and galaxies. Using the random forest  
algorithm for multiclass classification, we were able to 
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Table 5. Confusion matrix 

Algorithm TP FN FP TN Accuracy Precision 
 

Binary classification 9290 3594 2315 84960 0.94100 0.80051 

 
Table 6. Results for all algorithms 

Algorithm TP FN Fp TN Accuracy Precision 
 

kNN 460 12421 781 86800 0.88734 0.37066 
SVM 428 12401 813 86820 0.86846 0.34488 
Random forest 9290 3594 2315 84960 0.94100 0.80051 

 

 
 

Figure 3. a, Binary versus ternary classification. b, Binary versus multiclass classification. 
 

 
 

Figure 4. Mollweide projection of sample of binary classification  
results28,29. 
 
 
achieve an accuracy of 92%. Table 5 gives a summary of 
the results for binary classification. 

Parameters relevant to accuracy 

The main parameters that are relevant to the accuracy of 
the algorithm are described below. 
 
Number of trees: A general tendency of decision trees is 
to overfit to the given data. According to the bias  
variance lemma, a model which is prone to over-fitting is 

highly unstable25. This suggests that a decision tree is 
very sensitive to any slight change of data. This property 
of decision trees leveraged by the random forest algo-
rithm to build diverse models using only a subset of data 
and features to construct a decision tree. As the trees are 
diverse from each other, increasing the number of trees 
decreases the variance in predictions, improving the 
models test-time accuracy. We found that when the num-
ber of trees was 10, the algorithm gave an accuracy of 
90% for binary classification and 87% for three-way clas-
sification. By increasing the number of trees from 10 to 
50 improved our accuracy to 94% for binary classifica-
tion and 92% for three-way classification (Figure 3 a). 
However, after this point, the accuracy remained the 
same but increasing the number of trees increased train-
ing time linearly. Increasing the number of trees above 
100 might yield slightly better results, but it might take 
much longer to just train the model; so for the entire  
process of training and testing, it might take more than a 
day. 
 
Maximum tree depth: This parameter implies the maxi-
mum depth each tree can take in the algorithm. Increasing 
the tree depth makes the model more expressive and po-
werful. With a maximum depth of 20, we were able to 
achieve an accuracy of 94% for binary classification and 
92% for three-way classification (Figure 3 b). 
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Summary of all algorithms used 

Initially, we used the kNN and SVM algorithms to train 
our model. The accuracy for both kNN and SVM algo-
rithms over the SDSS data was around 87%. Using the 
random forest algorithm we were able to achieve better 
accuracy for both binary classification (94%) and multic-
lass classification (92%) of the dataset. Table 6 provides 
a summary of all the results. 

Conclusion 

The random forest algorithm worked well for SDSS  
data1. We ran the algorithm over the cloud using the 
Spark framework3. We were able to classify the entire  
dataset of 1,183,850,913 objects into stars, quasars and 
galaxies with an accuracy of 92%. These objects could be 
used to identify the distribution of quasars, stars and  
galaxies in the sky, which in turn can lead to new insights 
about them. 
 It seems unlikely that any substantial gain in classifica-
tion accuracy would result using any other algorithms or 
approaches on the same dataset, given the classical wis-
dom that ‘invariably, simple models and a lot of data 
trump more elaborate models based on less data26. How-
ever, some significant gains could well occur if more 
spectroscopically classified data (training data) were 
available. However, given more such training data, better 
algorithms may also be possible27. 
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