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Soliton theory is an interdisciplinary area at the inter-
face of mathematics and physics. It studies a special
class of nonlinear partial differential equations
(NLPDEs) having solutions that are waves which be-
have like particles. Amazingly, unlike most NLPDEs,
we can write exact formulas for the solutions to these
‘soliton equations’. This article is a review providing
the historical context necessary to appreciate these
spectacular developments, a brief overview of the
early history of the field, and a list of references to
consult for additional information.
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THERE are many different phenomena in the real world
which we describe as ‘waves’. Because of tsunamis,
microwave ovens, lasers, musical instruments, acoustic
considerations in auditoriums, ship design, collapse of
bridges due to vibration, solar energy, etc., this is clearly
an important subject to study and understand. Generally,
studying waves involves deriving and solving some diffe-
rential equations. As these involve derivatives of func-
tions, they are a part of the branch of mathematics known
to professors as analysis and to students as calculus. But,
in general, the differential equations involved are tough
to work with, that one needs advanced techniques to even
get approximate information about their solutions.

It was therefore a big surprise in the 1960s and 1970s
when it was realized for the first time that some of these
equations were much easier than they first appeared.
These equations that are not as difficult as people might
have thought are called ‘soliton equations’ because
among their solutions are some quite interesting ones that
we call “solitons’. The original interest in solitons was
because they behaved a lot more like particles than we
would have imagined. But shortly after that, it became
clear that there was something about these soliton equa-
tions that made them not only interesting, but also too
easy compared to most other wave equations.

*The article is adapted by the author from the book Glimpses of Soliton
Theory: The Algebra and Geometry of Nonlinear PDEs, with permis-
sion of the publisher.
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The textbook Glimpses of Soliton Theory' was written
to provide an elementary explanation of the mathematics
responsible for these ‘miracles’. The present article was
adapted from that book (especially chapter 3) specifically
for the readers of Current Science. Its purpose is to pro-
vide a brief overview of the history, scientific signific-
ance and mathematical structure of soliton theory. For
additional details, please consult the reading resources
listed at the end of this article.

The observation

In August 1834, Scottish ship designer John Scott Russell
was sitting on his horse beside the Union Canal near
Edinburgh and staring at the water when he saw some-
thing that would change his life.

‘T was observing the motion of a boat which was ra-
pidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped — not so the
mass of water in the channel which it had put in mo-
tion; it accumulated round the prow of the vessel in a
state of violent agitation, then suddenly leaving it be-
hind, rolled forward with great velocity, assuming the
form of a large solitary e¢levation, a rounded, smooth
and well-defined heap of water, which continued its
course along the channel apparently without change of
form or diminution of speed. I followed it on horse-
back, and overtook it still rolling on at a rate of some
eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a
half in height. Its height gradually diminished, and
after a chase of one or two miles I lost it in the wind-
ings of the channel.”

-J. S. Russell?

In other words, he saw a hump of water created by a boat
on the canal and followed it for several miles. Certainly,
other people had secen such waves before since the
circumstances that created it were not particularly unusual.
But, it may be that nobody before gave it such careful
thought.

The point is that the wave he saw did not do what one
might expect. Similar to waves in a swimming pool or at
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the beach, one might expect a moving hump of water to
either:

e Get wider and shallower and quickly disappear into
tiny ripples like that of a wave generated in a swim-
ming pool or

e ‘Break’ like the waves at the beach, with the peak
becoming pointy, racing ahead of the rest of the wave
until it has nothing left to support it and comes crash-
ing down.

It was therefore of great interest to Russell that the
wave he was watching did neither of these things, but
basically kept its shape and speed as it travelled down the
canal unchanged for miles. Being a ship designer, he
must have been thinking ‘Look at that wave go and go
with just one little push. I wish that I could get a boat to
do that!’

Terminology and backyard study

Russell used the words ‘solitary wave’ and ‘wave of
translation’ to describe the phenomenon he observed that
day. By °‘solitary wave’, he was clearly referring to the
fact that this wave has only a single hump, unlike the
more familiar repeating sine wave pattern that one might
first imagine upon hearing the word ‘wave’. Although
this may not be quite what Russell intended, for our pur-
poses ‘translation’ refers to the fact that the wave profile,
i.e. the shape it had when viewed from the side, stays the
same as time passed, as if it was a cardboard cutout that
was merely being pulled along.

To study his solitary waves, Russell built a 30-foot
long wave tank in his back garden. Among the most
interesting things he discovered was that there was a
mathematical relationship among the height of the wave,
the depth of the water when at rest and the speed at which
the wave travels. He believed that this phenomenon
would be of great importance and so reported on it to the
British Association for the Advancement of Science’.

A less-than-enthusiastic response

Although we can say with hindsight that he was correct to
have had high expectations for the future of the solitary
wave, his ideas were not well received by the scientific
establishment of his day. In particular, mathematical
physicists George Biddell Airy and George Gabriel
Stokes each argued that Russell’s wave theory was com-
pletely inaccurate.

Perhaps Russell’s real problem was that although he
was clearly a great thinker, he had little expertise in
mathematics. Aside from the relationship between wave
height and speed reported above, he did not attempt any
serious mathematical analysis of the phenomenon. Stokes
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and Airy, however, were experts in the use of differential
equations to model wave phenomena. And, unfortunately,
they both mistakenly believed that their analysis had
demonstrated that Russell’s theory was incorrect.

In his an article’, Airy derives a different formula for
the speed of a wave that he believed was in disagreement
with Russell’s and wrote: “We are not disposed to recog-
nize [Russell’s Solitary Wave] as deserving the epithets
“great” or “primary”.’

Stokes wrote an article’ about waves with a periodic
profile (e.g. sine waves) and presented a formula for such
a wave with infinitely many humps which he claimed ‘is
the only form of wave which possesses the property of
being propagated with a constant velocity and without
change of form — so that a solitary wave cannot be propa-
gated in this manner. Thus the degradation observed by
Russell is ... an essential characteristic of the solitary
wave’.

Other known wave phenomena

Considering some of the mathematical analysis of wave
phenomena that was known at the time provides an
insight into why Stokes and Airy would have found
Russell’s observations difficult to believe.

Linear solitary waves
The equation

Uy — Uz =10 (D

is so fundamental, it is often called ‘the wave equation’.
It was studied by Jean le Rond d’Alembert in the 18th
century as a model of a vibrating string on a musical
instrument. For example, it is possible to see the solution
u(x, 1) =sin(x + ¢) + sin(x — 7) to this equation shown in
Figure 1 as being such a string tied to the x-axis at the
points x =0 and x = & and viewing the graphs for differ-
ent values of ¢ as being like the frames in a movie.

As this is a linear differential equation, one can talk
about having a basis of solutions and forming other solu-
tions as linear combinations of them. Usually, trigonome-
tric functions such as those above are being used to write
solutions of this equation. Although it is not necessary to
work upon with that basis, in order to compare this equa-
tion with the one shown in the next section below, let us
try to form a solution out of a trigonometric basis which
would look like the solitary wave that Russell observed
on the canal.

For any value of the parameter £, the function

uf (x, t) = cos(kx + kt)

is a solution of eq. (1). Note that the speed with which the
wave translates left is independent of the choice of the
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Figure 1 D’Alembert’s wave eqg. (1) models the dynamics of a vibrating string as a function u(x, t) which gives
the height of the string at horizontal position x and time t. By viewing a few different values of t (as shown
above) it is possible to see how the string will move. Note that we are assuming u(0, t) = u(n, t) =0 so that the

string is n units long when at rest and fixed at the ends.

Figure 2. The solution (2) to eqg. (1) looks like a single-humped wave translating to the left at constant speed
even though it is a linear combination of cosine waves of different frequencies. For this to happen, it is important
that the waves of different frequencies all move at the same speed.

constant k which determines the spatial frequency of the
wave. The solution u*(x, t) is a wave that has one peak
and one trough every 2n units while u*(x, t) has a peak
and a trough in only n units, but an animation of either
solution would show the solution moving to the left with
constant speed one unit of space per unit of time regard-
less of this frequency.

As D’Alembert’s wave equation is linear, any linear
combination of these functions will also be a solution. As
shown in Figure 2, the solution

u(x, t) =0.25 +0.352u*(x, t) +0.242u*(x, t)

+0.130u*(x, t) +0.054u*(x, t) +0.018u*(x, t), (2)

when viewed on the interval -3 <x<3and -0.7 <t< 14
looks like a single-humped wave moving to the left at
constant speed one. This particular choice of linear com-
bination of cosine waves has the effect of nearly cancel-
ling out to zero to form what appears on the graph to
be a long flat stretch on either side of the hump. Because
each component function u*(x, t) in the linear combina-
tion translates to the left at speed one, this property
of cancelling out to form what looks like a single hump
is preserved as time passes. It is precisely this interesting
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feature which will be altered in the example of the next
section.

Linear dispersive waves

In contrast to the example of the previous section, con-
sider the simple looking equation

Ut = Uxxx. 3)

One can easily verify that it has solutions of the form

u”™ (x, t) = cos(kx - k3t) = cos(k(x - k2t)).

The initial profile of uk (x, t) at time t= 0 looks exactly
like u*(x, t); a cosine wave with frequency depending
on k. However, since it is of the form f (x - k2t), it will
move to the right with constant speed k2 The fact that the
speed depends on the frequency is quite important, and so
there is a technical term that reflects it; we say that eq.
(3) is a dispersive equation.

The term ‘dispersive’ suggests things being spread out
or dispersed, and that is exactly what it means here. A
linear combination of different frequencies will separate
as time passes and hence the coefficients selected to
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Figure 3. Because the different frequencies translate at different speeds, solution (4) to the dispersive
wave eq. (3) looks like a clear single-humped wave at time t =0 but degenerates into a mess by time

t=02

Figure 4. The dynamics of the initial profile u(x, 0) = 1+ 0.5e-x under the evolution of the Inviscid
Burgers equation illustrates that even with a clear initial shape, problems such as a shock wave (in the
centre) and ‘multi-valued functions’ (at right) can arise.

affect the shape of the graph such as in eq. (2) will not
last long.
Observe what happens to the solution

u(x, t) = 0.25 +0.352uf +0.242u"

+0.130u+0.054uk+ 0.018uB, (4)

as time passes (Figure 3). The figure shows that even
though it has the same clear single-humped shape at time
t=0, it quickly degenerates into a mess. (The figure
shows the solution attimes t=0,t=0.1 and t=0.2.)

Breaking nonlinear waves

Many of the common features of nonlinear equations can
be understood with the Inviscid Burgers’ equation

ut+ uux=0. (5)

One important difference between this equation and those
we have seen earlier, is that apart from such solutions
whose initial profile is a straight line, we cannot find
closed formulas for the solutions u(x, t) to this equation.
This is what generally occurs with nonlinear equations,
even when they appear as simple as eq. (5). Consequently,
various methods have been developed to explain the
behaviour and dynamics of solutions to those equations
without any explicit solutions.

The ‘method of characteristics’ is useful for figuring
out the behaviour of solutions to some differential equa-
tions. The basic idea is that the behaviour is tracked along
a curve (or ‘characteristic’) x = c(t) in the xt-plane. With
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an appropriate choice of the curve, things work out effec-
tively. In the case of eq. (5), for e.g. the method of
characteristics shows that the initial profile of a wave will
evolve in time so that its points shift to the right at a
speed proportional to their heights. In particular, if the
initial profile is the ‘bell-curve’ u(x, 0) = 1+ 0.5e-x2,
problems arise as shown in Figure 4. As the highest point
travels to the right at a higher speed than the lower
points, it eventually catches up with them. This leads at
first to a vertical ‘wall’ as seen in the middle image, offi-
cially known as a shock wave5. Continuing further the
peak of the wave finally passes the lower points.

This is actually not an unrealistic set of pictures. This
equation is a simple model of waves as they approach
the beach, and so this ‘wave breaking’ phenomenon is the
one to be recognized. However, despite the fact that these
figures could be associated with a familiar physical
phenomenon, they are mathematically troubling since the
curves in the centre and right graphs of Figure 4 fail to
satisfy the ‘vertical line test’. In other words, these are
not even functions.

Implicationsfor Russell’s solitary wave

As seen in Figure 2, we can find solutions to differential
equations which take the form of a single-humped wave
translating at constant speed. However, these solutions
were for linear differential equations. One consequence
of this linearity is that the solution can be multiplied by
the constant 2 (thereby doubling its height) and it would
still be a solution having the same speed. The fact that
Russell claimed that the speed of his wave would depend
on its height, clearly indicated that a mathematical model
of the situation would necessarily be nonlinear, in which
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case it would be reasonable to expect the sort of distor-
tion seen in Figure 4. Morcover, previous experience
would have led Airy and Stokes to expect dispersion to
be an important factor in the dynamics of water waves, in
which case something like the ‘mess’ in Figure 3 would
also be occurring at the same time. Between the distortion
and dispersion, it is difficult to see how a properly
shaped, translating, single-humped solution could possi-
bly exist, and this is what Stokes and Russell tried to
capture rigorously in their mathematical analysis.

As we will see shortly, such assumption would be at
least partly correct. The distortion and dispersion that
they would have expected are both present. However,
their conclusion that this would eliminate the possibility
of a solitary wave was incorrect. In fact, an appropriate
combination of the two produces several surprising and
unexpected results.

‘The Great Eastern’

It is unfortunate that these two mathematicians erro-
neously rejected Russell’s theory. Certainly, it must have
disappointed Russell. It may have looked as if his interest
in solitary waves was ecither misplaced or unappreciated.
However, among ship designers he was well remembered
for determining the natural travelling speed for a given
depth (a result which grew directly out of his research on
solitary waves) and for his work on what was at the time
the largest moving manmade object, The Great Eastern.
His obituary in the June 10, 1882 edition of The Times says:

The first vessel on the wave system was called the
Wave, and was built in 1835; it was followed in 1836
by the Scott Russell, and in 1839 by the Flambeau and
Fire King. Mr. Scott Russell was employed at this
time as manager of the large shipbuilding establish-
ment at Greenock, now owned by Messrs. Caird and
Co. In this capacity he succeeded in having his system
employed in the construction of the new fleet of the
West India Royal Mail Company, and four of
the largest and fastest vessels — viz., was the Teviot,
the Tay, the Clyde and the Tweed — were built and de-
signed by himself ... The most important work he ever
constructed was the Great Eastern steamship, which
he contracted to build for a company of which the late
Mr Brunel was the engineer. The Great Eastern, what-
ever may have been her commercial failings, was un-
doubtedly a triumph of technical skill. She was built
on the wave-line system of shape ... It is not necessary
now to refer to this ship in any detail. In spite of the
recent advances made in the size of vessels, the Great
Eastern, which was built more than a quarter century
ago, remains much the largest ship in existence, as
also one of the strongest and lightest built in propor-
tion to tonnage.
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It is especially interesting to note that in 1865, the
Great Fastern was used to lay 4200 km of the transatlan-
tic telegraph cable between Ireland and Newfoundland,
which was the first electronic communication system
between Europe and America.

The KdV equation

By the year 1895, Russell and Airy were both dead and
George Gabriel Stokes was essentially in retirement. So,
the controversy over Russell’s wave was less emotionally
potent, if not completely forgotten. It was at that time that
a Dutch mathematician, Diederik Korteweg, and his stu-
dent Gustav de Vries, decided to model water waves on a
canal using differential equations. (Perhaps they were
inspired by the fact that their home country of the Nether-
lands has so many canals!)

Beginning with the accurate but unwieldy Navier—
Stokes equations, they made some simplifying assump-
tions including a sufficiently narrow body of water so
that the wave could be described with only one spatial
variable and constant, shallow depth as one would find in
a canal. Putting all of this together, they settled on the
equation®

u, :%uu +lu ©)

X 4 XxXx*©

Due to their initials, this important equation is now
known as the ‘KdV equation’ (note 1).

It may be that the mathematical progress on under-
standing Russell’s solitary wave was delayed until the
appropriate mathematical techniques were available. The
study of elliptic curves in the decades after Russell’s
original observation did not have any application in the
study of water waves. However, it was by making use of
results from this arca of ‘pure mathematics’, that Korte-
weg and de Vries were able to derive a large set of solu-
tions to eq. (6) which could translate and maintain their
shape. Among these solutions were the functions

8k?

—— =2k? sech? (kx +£°1),
e*kJC*k Z)2

Usory (¥, ) = S
e

)

which satisfy the KdV equation for any value of the con-
stant k. This formula gives a translating solitary wave,
like Russell’s, that travels at speed &* and has height 2/°.
For instance, in Figure 5 solutions u,y(x, ) and w2, 1)
are compared side-by-side. Note that in each case the
height of the wave is twice its speed.

Two things here should be surprising to those who
created prejudices on differential equations, viz. they
found an exact formula for various solutions to a non-
lincar partial differential equation (NLPDE), and the
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Figure 5. Two solitary wave solutions of the form of eq. (7) to the KdV eq. (6). The figure on the left shows solution
with k = 1 and the right is k = 2. In each case, the figure illustrates the solution at times t=-1, t=0 and t = 1 Note that
the speed with which the wave translates is k2 and that the height is twice the speed.

solutions could avoid distortion and dispersion despite
Stokes’ intuition to the contrary. Consider, for instance,
that eq. (6) is an evolution equation which looks like a
combination of two equations that we saw previously.
The uxxx term in the evolution eq. (3) resulted in the sepa-
ration of different frequency components of a ‘single-
humped’ initial profile, leading to its dissipation. On the
other hand, the uux term in the Inviscid Burgers’ eq. (5),
for which we could not find explicit solutions, induced a
nonlinear distortion in its solutions that destroyed any
‘single-humped’ initial profile. However, strangely, the
combination of these two terms seems to avoid both of
these problems.

It would be easy to dismiss these surprises as being
mere coincidences, not worthy of further study, and this
is likely the way that anyone interested in the solitary
wave controversy might have reacted at the time. Specifi-
cally, the fact that solutions could be written explicitly
was a consequence of the coincidence that the KdV equa-
tion bears some similarity to an equation related to ellip-
tic curves. And, one might say that it is a coincidence
here that the effects of distortion (from the uux term) and
dispersion (from uxxx) are perfectly balanced so they can-
cel out. However, it would be a long time before anyone
realized that these were not mere coincidences. In fact,
many more solutions to the KdV equation can be written
exactly and have geometric origins, and the ‘perfect
balance’ that allows the existence of a solitary wave solu-
tion to a nonlinear equation is not so rare as one might
think.

Early 20th century

Researchers in the early 20th century showed little inter-
est in the KdV equation or Russell’s solitary wave. Thus,
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nothing directly related to this story occurred during this
time. However, two tangentially related developments are
worth mentioning.

The theory of physics underwent a major revolution
during that period in the form of quantum mechanics. At
the risk of oversimplifying a very complicated theory, let
me say that quantum mechanics comes from two basic
assumptions: that particles themselves are waves and that
quantities that were previously thought of as numbers
(such as ‘speed’) are actually operators, like the differen-
tial operators mentioned below. (See for e.g., an article
by Terence Tao on the Schrodinger operator; http://
www.math.ucla.edu/~tao/preprints/schrodinger.pdf.)

In the context of this article what matters is that there
is lot of interest in waves that behave like particles and/or
particles that behave like waves as this seems to be what
the world is made of. In that sense, Russell’s observation
of an isolated wave that maintains its shape and speed -
just as a hypothetical particle would do under its own
inertia - could have been of interest to the scientists who
created quantum physics, but that did not happen.

Another important base to the story of solitons is that
the mathematical physicists treat differential operators
like the “Schrodinger Operator’ L = d2+ u(x) as having a
physical reality and not merely as formal mathematical
notations. Among the other things done with them is to
theoretically ‘scatter’ a wave off of them.

Also in the early 20th century, the British mathemati-
cians Burchnall and Chaundy were doing their own re-
search in which the numbers of the usual theories were
replaced by differential operators. However, rather than
doing concrete physics, they were working in one of the
most ‘pure’ areas of math research: algebraic geometry?7.

As it turned out, the algebraic geometry of differential
operators and scattering of waves off of d2 + u(x) became

1491


http://www.math.ucla.edu/~tao/preprints/schrodinger.pdf

REVIEW ARTICLES

important parts of the theory of solitons in the second
half of the 20th century.

Numerical discovery of solitons

Just as the first big mathematical advance towards under-
standing Russell’s solitary wave had to wait until the
theoretical machinery of the theory of elliptic functions
was in place, the next big step required some actual ma-
chinery: the digital computer. In the 1950s, computers
were not the user-friendly machines of today but were
considered tools for mathematicians.

Among those doing ‘numerical experiments’ on these
early computers were physicist Enrico Fermi and mathe-
maticians John Pasta and Stanislaw Ulam at the Los
Alamos National Laboratory, USA. Together with Mary
Tsingou, they programmed a Los Alamos computer to
obtain approximate solutions to nonlinear equations with
the prescient intention of developing better intuition
about nonlinearity. It was their assumption that if a non-
linear system was to start with a nice, ordered initial
state, it would not take long before it was distorted and
destroyed beyond recognition; but they wanted to see it
happen in experiments on the computer. What they found
surprised them. Just as Stokes and Airy were mistaken in
their assumption that a nonlinear wave equation would
necessarily destroy a nice single-humped initial state, the
Los Alamos investigators were surprised to see that their
intuitions were not confirmed®; or, as Ulam described it:

Fermi expressed often a belief that future fundamental
theories in physics may involve nonlinear operators
and equations, and that it would be useful to attempt
practice in the mathematics needed for the under-
standing of nonlinear systems ... . The results of the
calculations (performed on the old MANIAC
machine) were interesting and quite surprising to
Fermi. He expressed to me the opinion that they really
constituted a little discovery in providing intimations
that the prevalent beliefs in the universality of ‘mix-
ing and thermalization’ in nonlinear systems may not
be always justified’.

This mystery, that nonlinearity was seemingly better
than expected, was known as the Fermi-Pasta—Ulam
Problem and was described in an article published at Los
Alamos. Because Los Alamos is the site of much classi-
fied work on nuclear weapons, the article was not offi-
cially distributed until the 1960s.

It was then that mathematicians Martin Kruskal at
Princeton University and Norman Zabusky at Bell Labs,
USA, conducted their own computer experiments'’.
Rather than considering a discrete system of connected
vibrating masses as in the Fermi-Pasta-Ulam experi-
ments, they wanted to consider a nonlinear wave equation.
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Taking the Fermi—Pasta—Ulam model and considering its
continuum limit gave them such a nonlinear partial diffe-
rential equation for a function u(x, f). However, it was not
a new equation; they had rediscovered the KdV eq. (6).

At this point, the existence of solutions in the form
of eq. (7) was known. However, there was no reason to
expect that any additional solutions could be written in an
exact form. So, Kruskal and Zabusky conducted numeri-
cal experiments using computers. There were two inter-
esting results from this study:

o If the initial profile was positive and ‘localized’ (if it
was equal to zero everywhere except on one finite inter-
val where it took positive values), then their experiments
showed the solution breaking apart into a finite number
of hums, each behaving like one of Russell’s solitary
waves, along with some ‘radiation’ which travelled away
from them in the other direction. This would suggest that
the solutions of eq. (7) play a fundamental role in
describing a general localized positive solution to the
KdV equation, similar to the way in which basic vibrating
modes form a basis for solutions to D’Alembert’s wave
eq. (1). (Of course, they cannot actually form a basis for
solutions as the equation is nonlinear and its solution set
does not have the structure of a vector space!)

¢ Somecthing interesting also happens when one views
solutions that just appear to combine two different solita-
ry waves (without ‘radiation’). For these solutions (Fig-
ure 6), there are two humps each moving to the left with
speed equal to half their height. However, it is not just a
case of a sum of two of the solitary wave solutions found
by Korteweg and de Vries; if the taller of the two humps
is on the left, then they simply move apart. Here, it would
be intriguing if we consider a situation in which a taller
hump is to the right of a shorter one. As it is moving to
the left at a higher speed it will eventually catch up. Intui-
tion about nonlinear differential equations would have
made an expert at the time realize that though the KdV
equation has this unique property of having solitary wave
solutions, when two solitary waves come together like
this, the result would be a mess. One would expect that
whatever coincidence allows them to exist in isolation
would be destroyed by overlap and that the future dynam-
ics of the solution would not resemble solitary waves at
all. However, the numerical experiments of Kruskal and
Zabusky showed hump shapes surviving the ‘collision’
and seemingly separating again into two separate solitary
waves translating left at speeds equal to half their
heights! Moreover, the same phenomenon occurred when
three or more separate peaks were combined to form an
initial profile where the peaks moved at appropriate
speeds, briefly ‘collide’ and separate again.

The name ‘solitary wave’ coined by Russell more than
one hundred vears ago was intended to reflect the fact
that these waves, unlike the periodic sine wave solutions
generally considered at the time, had only a single peak.
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Figure 6. A solution to the KdV equation as it would have appeared to Kruskal and Zabusky in their
numerical experiments. Note that two humps, each looking like a solitary wave, come together and then

separate.

However, now seeing how gregarious they are, the name
no longer seems appropriate. The term ‘soliton’ was used
by Kruskal and Zabusky to describe these solutions, by
combining the beginning of the word ‘solitary’ with an
ending meant to suggest the concept of a fundamental
particle in physics like a ‘proton’ or ‘electron’.

More specifically, we now refer to the solitary wave
solutions as 1-soliton solutions of the KdV equation. In
general, an n-soliton solution of the KdV equation has n
separate peaks (at most times). One can loosely refer to
each of the separate peaks as being ‘a soliton’, even
though they are part of the graph of the same function,
similar to a local maximum in the graph of a polynomial.

For instance, Figure 6 illustrates a 2-soliton solution of
the KdV equation in which a taller soliton travelling at
speed 4 catches up to a shorter one with speed 1. Briefly,
at time t= 0, we cannot see two separate peaks, but later
again they separate so that we can clearly see a soliton of
height 2 and another of height 8. However, this should not
be mistaken to be the same as two 1-solitons viewed to-
gether. The next section will explore the ways in which the
two solitons ‘noticed’ and affected each other as they met.

Hints of nonlinearity

As the KdV equation is nonlinear, there is no reason to
think that the sum of two solutions would be a solution.
In particular, the function ux(x, t) = usol()(x, t) + usol2)
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(x, t) shown in Figure 7 is not a solution to the KdV equa-
tion. However, if one were to watch an animation that
shows its dynamics, one would have to look very closely
to see how different it is than usd(12)(x, t), shown in Figure
6. These differences, though subtle, are quite important.

First, consider the graphs of ux(x, 0) and usol(12)(x, 0).
In both cases, only a single hump is seen in the graph of
the function at that time. However, the height of the
hump is different. Since ux(x, 0) is the sum of peaks of
heights 2 and 8, it has a peak of height 10. In contrast,
Figure 6 clearly shows that uso(L2)(x, 0) has a peak of
height 6. This is one clear difference between the 2-
soliton solution and the sum of two 1-soliton solutions.

More subtle is the fact that there is something slightly
different about the positions of the peaks in the 2-soliton
solution. Note that the shorter soliton is nearly centered
on the y-axis at time t=-0.5. At time t=0 one cannot
see two separate peaks, but then at time t= 0.5 when the
peaks have separated again, one still sees the smaller soli-
ton nearly centered on the y-axis. In contrast, as the
smaller peak in ux(x, t) always moves to the left at con-
stant speed 1 (note 2), it will have moved one unit to the
left at the time interval -0.5 <t < 0.5.

Clearly there is some sort of nonlinear interaction
going on in the 2-soliton solution. If solitons are consi-
dered as particles, they would have not simply passed
through each other without any effect, but have actually
‘collided’” and in some sense the KdV equation incorpo-
rates their ‘bounce’.
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Figure 7.

This is not a solution to the KdV equation. This is a sum of the one-soliton solutions

ugd(i)(x, t) and usd@(x, t). Compare this with Figure 6, which is a KdV solution, to see subtle dif-
ferences despite the fact that each shows a hump moving to the left at speeds 1and 4 respective-
ly, at most times and a single hump centred on the x-axis at time t = 0.

Explicit formulas for n-soliton solutions

An interesting fact revealed in a later study by Gardner
et al.11, was that these n-soliton solutions of the KdV eq-
uation did not have to be studied in numerical simulations
because it was possible to write exact formulas for them.
For example

wol(1,2)(x, t) =

24(e2xk2t + 6e6xK18t k 4e4xki6t k 4e8x+20t k e 10xk34t)
(1K 3e2xk2t k e6xki8t k 3edxk16t)2 . ®

is an exact solution of eq. (6) and is shown in Figure 6.
This is quite surprising as it means that we have expli-
cit formulas for a large and interesting family of solutions
to this NLPDE. It is quite intriguing to note that the tech-
nique which was used to find those solutions is based on
quantum mechanics (the theory in which particles have a
wave-like nature). In that theory, some of the quantities
which were numbers in previous theories of quantum
physics were replaced by differential operators. To study
the one-dimensional scattering problem of how an incom-
ing wave y/(x) will ‘bounce off of another wave u(x)
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(thought of as an obstacle), one is led to work with the
differential operator d2 + u(x). Eventually, this shows that
the n-soliton solutions u(x, t) to the KdV equation have
the property of being reflectionless for this scattering
problem (for any value of t and any n-soliton solution).
An additional property that turns out to be important is
that they depend isospectrally on the variable t (i.e. the
eigenvalues of the operator do not change in time). Pur-
suing this line of reasoning, Gardner et al.n were able to
use a technique called inverse scattering to write exact
formulas for the n-soliton solutions.

Soliton theory and applications

The KdV equation is quite interesting; despite being non-
linear and dispersive, it has solutions which avoid the
damaging effects of dispersion and nonlinear distortion
and maintain their clear, localized shapes indefinitely.
These solutions have a certain ‘particle-like’ nature,
which is contrary to our intuition of how waves ought to
behave but might prove useful in understanding the beha-
viour of both waves and particles. Interestingly, the n-
soliton solutions look almost like linear combinations of
n 1-soliton solutions, suggesting that there might be some
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nonlinear analogue of the superposition principle for
linear equations at work. Finally, unlike most nonlinear
equations whose solutions can be studied only numerical-
ly or qualitatively, we can write explicit formulas for
exact KdV solutions.

Soliton theory is a branch of mathematics which was
developed to understand this phenomenon. Some of the
big questions it addresses are: (i) Why is it that we can
write several exact solutions to the KdV equation when
we cannot do so for most nonlinear equations?. (ii)
The relationship between the n-soliton solutions and »
different 1-soliton solutions that it suggests that there is a
way in which the KdV equation solutions can be combined.
We know that they are not actually linear combinations and
do not form a vector space. What is the method in which
solutions are combined and can we give them a geometric
structure analogous to the vector space structure for solu-
tions to linear equations?. (iii) How can we identify other
equations — either known already to researchers or yet to be
discovered — that have these same interesting features?. (iv)
What can we do with this new information?

The briefest possible answer to these questions is to
note that the KdV equation has a hidden underlying alge-
braic structure that generic NLPDEs do not share and by
understanding this structure we can find many different
equations that share all of these features and thus deserve
the name ‘soliton equations’.

These equations often have physical significance as
they model those phenomena which we encounter in
the real world such as waves on a 2-dimensional surface
like the ocean, light in optical fibre, electrons in a
thin wire, transcription bubble in DNA, or energy
transfer in proteins. In this sense, solitons have become
tools of scientists and engineers for understanding the
universe.

Soliton theory is also useful in mathematics. As Fermi
predicted, it gives us a window into the world of nonli-
nearity. Previously, it was difficult to predict about a
nonlinear situation. Now, we have a large set of nonlinear
equations whose solutions can be studied explicitly (note
3). So, in some senses, the algebro-geometric structure of
soliton equations allows us to use our knowledge of alge-
bra and geometry to understand nonlinear differential
equations better than we did before. However, soliton
theory is also surprisingly useful in the other direction as
well. That is, there are questions in algebraic geometry
which have been answered using soliton theory.

Mathematics is sometimes seen as being divided into
‘pure’ and ‘applied’ subjects. The analysis of NLPDEs
and especially the dynamics of waves, generally fall in
the ‘applied’ side of this division while algebraic geome-
try is a part of the ‘pure’. To some of us, it is endearing
that each of these can inform us of the other in the inter-
section that is the soliton theory.

My textbook Glimpses of Soliton Theory' attempts to
claborate further on the answers to big questions (i)—(iii)
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at a level which would be accessible to any reader who
has taken traditional undergraduate courses in linear
algebra and multivariable calculus. If I achieved my goal,
by the end of the book a reader should have a sense of
satisfaction, much as one feels a certain thrill upon learn-
ing how a magician performed a particularly surprising
trick. Of course, many other authors have written about
this topic as well. After the ‘epilogue’, I have suggested
some additional literature about solitons that can be
consulted.

Epilogue

It was not only other researchers who were uninterested
in the article by Korteweg and de Vries in the early 20th
century, even Korteweg and de Vries themselves failed to
show much interest in it. At the time, it must have
scemed like a relatively minor result, not noticeable
among the other important discoveries of Korteweg, and
not important enough to interest de Vries who stopped
doing research and became a teacher.

Both Korteweg and de Vries would be very surprised
to learn what became of their one collaboration. I was in-
spired to look at their article on its 100th anniversary, and
so in 1995 I found my way to a rarely used corner of the
MIT library where the old journals were kept. There were
shelves and shelves of journals from the late 19th cen-
tury, all covered in dust. One volume stood out as its
binding was clean, and when I took it off the shelf it fell
open to the KdV article. Clearly, this article which
attracted little attention when it was first published was
of great interest one hundred years later.

Korteweg and de Vries are honoured in other ways that
they probably would never have imagined. The mathe-
matics institute in Amsterdam is called the ‘KdV Insti-
tute’, and one of the headings in the mathematics subject
classification scheme is ‘KdV-like Equations’.

One of the applications of soliton theory has also pro-
vided an ironic epilogue to the story of J. S. Russell and
his interest in solitary waves. As they did in the 19th cen-
tury, people have once again laid cables for communica-
tion between North America and Europe under the ocean.
This time, of course, Russell’s boat is not being used.
However, Russell’s work is still central to this newer
effort at trans-Atlantic communication. The cables this
time are not electronic but optical. The interesting point
is that the information in the optical fibre is carried in the
form of solitons — solitary waves of light. One can see
why the property that Russell’s wave on the canal ‘kept
on going’ would be a useful feature for communication
over such long distances. As the Fiber Optic Reference
Guide puts it, “The ability of soliton pulses to travel on
the fiber and maintain its launch wave shape makes
solitons an attractive choice for very long distance, high

data rate fiber optic transmission systems'*".
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Suggested reading

Consider consulting the following resources for additional
information on this topic:

e Filippov’s The Versatile Soliton'” covers many histor-
ical facts which were left out of this brief summary.

¢ Bullough and Caudrey’s historical analysis'’ appears
in the proceedings of a conference honouring the
100th anniversary of the article by Korteweg and
de Vries.

e The article on symmetries of solitons by Palais in
Bulletin of the AMS" begins with a history of solitons
before moving onto a more rigorous mathematical
discussion.

o Ficlds Medalist, Sergei Novikov, wrote an article in
Russian which was translated into English and
provides a glimpse of the history of solitons from a
Soviet perspective'®.

e Please consult the book by Remoissenet'’ for a more
physical approach to this subject, including many
laboratory experiments. This book also contains
discussions of solitons in optical fibre and electrical
circuits.

e A brief survey of the applications of the KdV equa-
tion, emphasizing those which had been confirmed by
experiments as of 1995, can be found in the review
article by Crighton'®.

e Of course, if you enjoyed this article please also take
a look at the book Glimpses of Soliton Theory' from
which it was excerpted.

Notes

1. In fact, the equation they wrote was not exactly as in the form of
eq. (6). In particular, their equation had explicit parameters for
various physical constants which have been eliminated here for
convenience by a change of variables. Moreover, it should be noted
that the history of mathematics is rarely as simple as it is portrayed
in textbooks, and many would argue that this equation was not
accurately named, as the equation and its connection to Russell’s
solitary wave were studied in earlier publications by another
mathematician, Joseph Valentin Boussinesq'®*’.

2 Admittedly, the peaks in u"(x, f) are not necessarily located in
exactly the same places as the corresponding peaks in the two soli-
tary wave solutions. However, if one takes this into account, then
the apparent shifting of the expected locations of the peaks in the
2-soliton solution is actually worse, not better, so we will simply
ignore it.

3. However, it should be noted that these are rather special nonlinear
equations and so we should be careful not to over-generalize. Much
more is possible in ‘the nonlinear world” than we see through
the window of soliton theory. Chaos theory, another important
development of 20th century mathematics, provides a ‘window’
that looks at nonlinearity from the other side that gives a different
view.
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