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The present study conducted in cotton fields of Vado-
dara district, Gujarat, India during kharif season of 
2009–10, aimed at assessing foliar traits, in particular 
crop leaf area index (LAI) and chlorophyll content 
(CC) from space-borne optical LANDSAT 5 TM and 
IRS LISS-IV satellite data. Field measurements of 
these foliar traits coinciding with the dates of the  
satellite data for cotton were used for validation of RS-
based VI–LAI and VI–CC empirical models developed 
in the present study. These models developed for LAI 
estimation in cotton crop showed good correlation 
with R2 varying from 0.592 to 0.805, and CC between 
0.585 and 0.746 with P at 0.01 level in both cases. It 
has been observed that the potential of NDVI–LAI 
and NDVI–CC empirical models was better compared 
to RVI–LAI and RVI–CC models. The VI–LAI and 
VI–CC models derived from LISS-IV data were better 
estimators of LAI compared to LANDSAT. A high R2 
value between ground-measured foliar traits and 
those predicted using empirical models complemented 
the validation.  
 
Keywords: Cotton crop, empirical models, foliar trait, 
spatial data. 
 
AGRICULTURAL, ecological and meteorological applica-
tions require an accurate quantitative estimation of cano-
py foliar traits – in particular vegetation biochemical and 
biophysical variables1,2. Information about the spatial and 
temporal distribution of these traits provides an important 
input for various models quantifying the exchange of 
energy and matter between the land surface and the  
atmosphere. The knowledge of these traits is of prime  
interest in many applications related to crop function 
modelling, evapotranspiration, crop growth modelling 
and yield prediction. These traits also aid in predicting 
the soil–vegetation–atmosphere energy transfers. Even at 
a much smaller scale, as in precision farming and water 
management, these traits play a critical role to describe 
the state of crop development and water needs. Measure-
ment of these traits during the growing season also pro-
vides an opportunity for improving grain yields and 
quality by site-specific application of fertilizers. Among 

the many canopy foliar traits, leaf area index (LAI) and 
chlorophyll content (CC) are of prime importance. 
 LAI, an important biophysical parameter characterizing 
a canopy, is the total one-sided area of leaf tissue per unit 
ground surface area3. It has a key role as one of the  
surface parameters in climate, weather and ecological 
studies as it influences vegetation photosynthesis, transpi-
ration and the energy balance of canopies4. It serves as an 
important input to the ecosystem productivity models  
operating at landscape to global scales5, and also as an  
interacting component in general circulation models6.  
Estimation of LAI is critical for understanding and quan-
titatively analysing many physical and biological 
processes that are related to vegetation dynamics, global 
carbon cycle and climate. 
 Chlorophyll is the earth’s most important organic  
molecule and one of the most important biochemicals in 
the leaves of plants. The CC within a vegetation canopy 
is positively related to both vegetation productivity and 
its health7. It holds significance since it controls photo-
synthetic potential8 and, consequently, primary produc-
tion as CC has a dominant control upon the amount of 
solar radiation absorbed by the leaves9. It is also an im-
portant indicator of nutritional stress10–13. Thus estimation 
of CC can provide an accurate and indirect estimate of 
plant nutrient status, especially nitrogen, because the  
molecular structure of chlorophyll incorporates a large 
proportion of total leaf nitrogen14–16. CC in leaves is an 
indicator of nitrogen content, as it is dependent on soil  
nitrogen availability to a great extent and also on crop  
nitrogen uptake. Hence, this foliar trait in agricultural 
fields can prove to be of immense use. Estimates of this 
parameter can help farmers and agronomists make man-
agement decisions related to nitrogen supply at critical 
growth stages. 
 Undoubtedly conventional methods of estimating LAI 
and CC are cumbersome, tedious, time-consuming at the 
global scale. In this context, information regarding these 
traits extracted from satellite data has better potential17,18. 
Approaches for the estimation of CC and LAI from re-
motely sensed data are based either on the inversion of 
physically based models19–27 or improved relationships 
between these traits and spectral indices28–37. In the former 
model approach, simulation of canopy reflectance is per-
formed, followed by quantitative relationships between 
remotely sensed data and canopy attributes for inversion 
purposes. Approaches using spectral indices rely on the 
establishment of empirical relationships between ground-
measured foliar traits and observed spectral reflectances. 
 Vegetation index (VI)–LAI and VI–CC models for cot-
ton crop using LANDSAT 5 TM and IRS LISS-IV reflec-
tance data have been developed in the present study. 
 The study was conducted in the cotton fields of  
Vadodara district, Gujarat, India (Figure 1). The district 
lies between 21°45′–22°45′N and 72°48′–74°15′E, hav-
ing a geographical area of 7550 sq. km. Major part of the 
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Figure 1. Map showing location of the study area. 
 
 
study area is covered by alluvial soil which is fertile and 
thus suitable for agriculture. 
 Generally, the climate of Vadodara district during  
major part of the year is characterized by a hot weather 
and humidity. During winter season, it is not too cold in 
the district with temperature remaining over 10°C. Janu-
ary is the coldest month of the year, with mean daily 
maximum and minimum temperature of 30.1°C and 
10.8°C respectively. It is hot during March to October, 
with temperatures hovering over 35°C, with little respite 
during monsoon in June, which lasts till the end of Sep-
tember. May is the hottest month of the year with mean 
daily maximum and minimum temperature of 40.7°C and 
26.1°C respectively. During the last ten years, average 
rainfall has been recorded in the range of 1000–1200 mm. 
October and November are considered as the post-
monsoon period. 
 Based on India Meteorological Department (IMD)  
data, it was observed that predominant wind direction 
during winter season (October–April) was from northeast 
and northwest directions, whereas during summer, it was 
from west and southwest directions. The general weather 
conditions were conducive to good agriculture (both kha-
rif and rabi harvest). 
 LAI of cotton crop was measured using the plant cano-
py analyser (LAI-2000; LI COR Inc., Lincoln, NE, USA). 
This is a portable field instrument that simultaneously 
measures diffuse radiation using fisheye technique, with 
the optical sensors arranged in concentric rings in five 
distinct angular bands, and central zenith angles of 7°, 

23°, 38°, 53° and 68°. The basic technique involves mea-
suring sky brightness from a levelled sensor above the 
canopy and a second measurement below the canopy, 
with the sensor viewing towards sky38. 
 LAI measurements were taken at six random locations 
within each field, where each observation was the aver-
age of six point measurements. The measurements were 
carried out under uniform clear diffuse skies at low solar 
elevation to prevent the effects of direct sunlight on the 
sensor. 
 A portable chlorophyll meter (SPAD-502; Minolta 
Corporation, New Jersey, USA) was used to measure leaf 
CC. However, the instrument does not provide the actual 
contents of chlorophyll per unit area of leaf tissue;  
instead it gives data only in arbitrary units. In the present 
study, a standard method was used for determination CC 
in leaf samples of cotton crop. Homogenization of the 
leaf tissue in 80% acetone was carried out and then  
absorbance at 663 and 645 nm was measured. Then,  
specific absorption coefficients for chlorophyll a and b, 
provided by Arnon39 were used for the calculation of CC 
(ref. 40). 
 LAI and CC measurements were carried out corres-
ponding to the selected satellite pass time. 
 LANDSAT 5 TM and LISS-IV data were used for the 
study. The pixel reflectances were extracted in the red 
and NIR bands within the region of interest (ROI) centred 
on cotton fields, where LAI and CC measurements were 
taken. Mean values for red and NIR reflectances for each 
ROI were computed. 
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Table 1. Vegetation indices used in the study 

Index Equation Reference 
 

Normalized difference vegetation index (NDVI) NDVI = (NIR – red)/(NIR + red) 57 
Ratio vegetation index (RVI) RVI = NIR/red 58 

 
 

 
 

Figure 2. Land-use map generated using LISS-IV data for October 2009. 
 
 
 For retrieval of the foliar traits from optical satellite 
data, empirical statistical approach was adopted. The  
methodology involves two steps: (1) Extracting spectral 
indices from optical satellite images. (2) Establishing  
relationships between extracted spectral indices and 
ground-measured foliar traits. 
 Vegetation indices considered to be good candidates 
for estimating LAI and CC were tested. These were  
developed from the reflectance bands of the optical data 
using ERDAS-9.1. Table 1 shows two vegetation indices 
computed from the selected optical satellite images. 
 The gathered datasets of indices and foliar traits 
(namely LAI and CC) were statistically analysed to  
determine correlations and derive empirical relationships 
between crop LAI and VI; and leaf CC and VI. Each  
calculated VI was linearly related to different LAI values. 
Similarly, extracted values for each VI were also linearly 
related to CC. Accuracy assessment and validation of the 
developed models were also carried out. 
 To understand overall scenario of the study area, in-
itially land-use classification was carried out which pro-
vided a precise information on the total contribution of 
agricultural land in the study area (Figure 2). The data 
generated showed 78.7% of land under agriculture, which 

included both cropland and fallow field categories with 
an overall accuracy of 93.3% and kappa statistics as 0.89. 
 Crop-type classification showing cotton area in the  
entire study region was found to be subtle, despite high 
resolution due to field heterogeneity resulting into mixing 
of signatures. Several workers have also reported such 
difficulties in crop-type classification due to small-scale 
traditional agricultural holdings, such as the densely  
populated rural landscapes of India41,42. Small agricultur-
al fields and diversity in crop types are the components 
contributing to subtleness in crop-type classification 
while mapping large areas. 
 In situ LAI values in the cotton fields captured the data 
range 0.2–4.76, around a total mean value of 2.59. CC 
ranged from 9.07 to 22.47 mg g–1, with mean value of 
15.8 mg g–1. NDVI and RVI values for cotton crop  
extracted from LANDSAT 5 TM and LISS-IV data are 
shown in Table 2, which serve as an input for the retrieval 
of cotton foliar traits, viz. LAI and CC. 
 Linear models developed for the assessment of LAI in 
cotton crop by correlating it with LANDSAT and LISS-
IV-derived NDVI and RVI showed good correlations. 
Chlorophyll also showed good correlation with the  
extracted indices. Coefficient of determination (R2) for 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 116, NO. 12, 25 JUNE 2019 2092

Table 2. Extracted vegetation indices from LANDSAT 5 TM and LISS-IV data 

 NDVI RVI 
 

Crop Satellite data Range SD Range SD 
 

Cotton Landsat 5 TM 0.11–0.42 0.07 1.0–2.7 0.33 
 LISS-IV 0.13–0.45 0.08 1.1–2.7 0.43 

 
 

 
 

 
 

Figure 3. a, Linear relationship between LANDSAT NDVI and cotton leaf area index (LAI); b, Linear relationship between 
LISS-IV NDVI and cotton LAI; c, Validation of Landsat NDVI–LAI model using ground-measured cotton LAI; d, Validation of 
LISS-IV NDVI–LAI model using ground measured cotton LAI. 

 
 
these models varied from 0.585 to 0.805. RS-based  
empirical models generated from spatial indices for the 
retrieval of foliar traits have also been reported by earlier 
researchers43–45. They have confirmed that the retrieval of 
these traits using vegetation indices such as NDVI and 
RVI can be achieved with an acceptable accuracy. 
 For any established statistical model, its validation  
becomes important with respect to algorithm develop-
ment for large-scale applications46. Validation carried out 
for all the developed models exhibited strong relationship 
between estimated and predicted foliar traits. 
 NDVI–LAI model: The correlation of LAI with LISS-IV 
NDVI was comparatively higher with R2 = 0.805 (Figure 
3 b) when compared to that with LANDSAT NDVI with 
R2 = 0.674 (Figure 3 a and b). The t-test conducted for 
correlation coefficient showed that the results are highly 
significant at P = 0.01 level. Validation of both the 

LANDSAT NDVI-LAI and LISS-IV NDVI-LAI models 
showed a good relationship between ground-measured 
LAI and NDVI–LAI-predicted LAI (for LANDSAT data, 
R2 = 0.756 and for LISS-IV data R2 = 0.679; Figure 3 c 
and d). A good accuracy of 92.7% and 87.8% was obser-
ved for the developed LANDSAT and LISS-IV data 
based biophysical models respectively. 
 RVI–LAI model: The linear regression relationships 
established between in situ cotton LAI and LANDSAT RVI 
showed comparatively less but good positive correlation 
(Figure 4 a) (R2 = 0.592) than LISS-IV RVI which showed 
better correlation with in situ LAI (Figure 4 b) (R2 = 
 0.696). Results for these correlations are highly signifi-
cant (P = 0.01 level). Validation carried out for RVI-LAI 
models showed significant correlation between ground-
measured LAI and RVI-LAI model-predicted LAI (Figure 
4 c and d). RVI–LAI model established using LANDSAT 
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Figure 4. a, Linear relationship between LANDSAT RVI and cotton LAI; b, Linear relationship between LISS-IV RVI and cot-
ton LAI; c, Validation of LANDSAT RVI–LAI model using ground-measured cotton LAI; d, Validation of LISS-IV RVI–LAI 
model using ground-measured cotton LAI. 

 
 
 

 
 

Figure 5. a, Linear relationship between LANDSAT 5 TM NDVI and cotton chlorophyll content (CC); b, Linear relationship  
between LISS-IV NDVI and cotton CC; c, Validation of LANDSAT NDVI–CC model using ground-measured cotton CC; d, Vali-
dation of LISS-IV NDVI–CC model using ground-measured cotton CC. 
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Figure 6. a, Linear relationship between LANDSAT 5 TM-derived RVI and cotton CC; b, Linear relationship between LISS-IV 
RVI and cotton CC; c, Validation of Landsat RVI–CC model using ground-measured cotton CC; d, Validation of LISS-IV RVI–
CC model using ground-measured cotton CC. 

 
 
 

Table 3. Empirical–statistical relationships between cotton leaf area index (LAI) and optical RS-derived  
 vegetation indices 

Parameter Index Satellite data Fitting formula R2 
 

LAI NDVI LANDSAT TM LAI = 11.476NDVI – 0.2567 0.6747 
  LISS-IV LAI = 12.088NDVI – 0.6207 0.8056 
  RVI LANDSAT TM LAI = 2.302RVI – 1.2409 0.5922 
   LISS-IV LAI = 2.8691RVI – 2.7463 0.6965 
 

Chlorophyll content (CC) NDVI LANDSAT TM CC = 56.753NDVI + 0.4385 0.6973 
  LISS-IV CC = 56.613NDVI – 0.3912 0.7468 
 RVI LANDSAT TM CC = 11.668RVI – 4.9625 0.643 
  LISS-IV CC = 9.0572RVI – 0.0368 0.5851 

 

 
data showed an accuracy of 92.6% and that established 
using LISS-IV data showed an accuracy of 87.8%. 
 NDVI–CC model: A positive and comparatively higher 
correlation was obtained between pigment CC and LISS-
IV NDVI with R2 = 0.746, when compared to that be-
tween leaf CC and LANDSAT NDVI with R2 = 0.697 
(Figure 5 a and b). NDVI-CC models when validated 
showed good correlation between ground measured CC 
and predicted CC (Figure 5 c and d). Accuracies for these 
models were estimated; for LANDSAT 5 TM data it was 
85.4% and for LISS-IV data it was 82.9%. 

 RVI–CC model: Fitted empirical regression relation-
ships between CC and LANDSAT RVI showed good  
correlations with R2 = 0.643 (Figure 6 a). Fitted regres-
sion relationships for CC and LISS-IV RVI emphasized 
comparatively low correlations with R2 = 0.585 (Figure 
6 b). Validation for these models showed good relation-
ship between CC estimated on the ground and that pre-
dicted using RVI–CC model (Figure 6 c and d). Accuracy 
test for these RS-based models was found to be good. For 
LANDSAT data 90.2% accuracy was obtained while for 
LISS IV data 65.9% accuracy was obtained. 
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 Based on R2 values NDVI was seen to be more closely 
related to CC than RVI, highlighting the potential of the 
former in the estimation of CC. 
 LISS-IV data showed better potential for estimation of 
LAI and CC when compared to LANDSAT 5 TM data, 
except for LISS-IV RVI-CC model. Comparison of R2 
values between the models revealed that NDVI was 
slightly superior to RVI in its correlation with crop foliar 
traits in both LANDSAT 5 TM and LISS-IV data (Table 
3). Hence, NDVI–LAI and NDVI–CC models proved to 
be better for estimation of these traits. This may be due to 
the relatively lower insensitivity of NDVI to background 
soil reflectance and greater sensitivity of RVI to this fac-
tor47. Moreover, NDVI is less affected by atmospheric 
conditions and topographical variations, while RVI is  
affected the most by atmospheric haze and topography. A 
relative disadvantage of NDVI is its saturation at higher 
LAI values48–54 compared to RVI, which indicates the  
inappropriateness of NDVI in the discrimination of crops 
with high-density cover or LAIs55,56. 
 In the present work, NDVI and RVI were used to  
retrieve foliar traits, viz. LAI and CC by developing  
empirical models. It is well known that there exists a 
strong correlation relationship between NDVI and RVI 
values. A simple linear regression model has been used in 
this analysis for estimation of crop foliar traits using  
optical satellite data, as these methods have been found to 
be fast and easily implementable for the large datasets. 
The models developed from both LANDSAT 5 TM and 
LISS-IV data for cotton showed good performance. In 
terms of indices, NDVI and in terms of data, LISS-IV  
exhibited better potential in the retrieval of foliar traits. 
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