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Many social processes, from elections to terrorism, 
depend on growth of memberships to opinions. In a 
generic sense, an opinion is a proposition that for an 
individual has financial, cultural and emotional impli-
cations. The individual responses in turn create a ‘social 
response’ which influences the individual response  
resulting in a dynamical system with two-way feed-
backs. We consider a set of deterministic dynamical 
equations that describe individual response to a class 
of prescribed opinions. The time-dependent opinion 
dynamics model exhibits nearly complete acceptance 
to nearly complete rejection with complex evolution, 
providing the framework for a mechanistic descrip-
tion of opinion formation. 
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ADVANCEMENT of many social processes can be visual-

ized as evolution of growth of membership to a particular 

school of thought. In a social system, this membership 

grows through the response of individuals of the society 

to a given thought or proposition. Quantitative and causal 

understanding of the process of opinion formation (POF) 

can have multi-faceted applications. Besides, with grow-

ing computing power, it is now possible to consider simu-

lation of responses of a large population to an opinion as 

a function of time1,2. 

 The complexity involved in opinion3–6 or consensus 

formation7–9 has been noted and several studies have pro-

vided consistent or quantitative descriptions of opinion 

formation. An aspect that has received particular empha-

sis is the process/processes through which a large majori-

ty of people give up to an initial minority view10,11. These 

studies highlighted the importance of aggressiveness12 

and persuasive power (of a minority)10,11 against larger 

numbers (majority)13 that are more passive. An important 

implication of such a view is that reforms are possible 

only using social violence or authoritarian top-leadership 

decisions14. Several studies have also considered social 

processes among microorganisms15 and animals16. It was 

recognized by several workers that certain aspects of the 

process of POF could be given dynamical descriptions17–20. 

It is also clear that consensus formation7–9, or growth of 

opinion3,4,6,20, can manifest itself in many forms of vary-

ing complexity, from animal herding21 to elections22,23 to 

strategic alliance23. The question of consensus among  

individuals was addressed early24, for example, the De 

Groot model addressed the question of emergence of  

consensus in a group of k individuals with respect to a 

common subjective probability distribution. Berger24  

explored a necessary and sufficient condition for such a 

De Groot’s consensus. An empirical panhuman threshold 

that regulates man’s organization of his natural and social 

environment was proposed in 1990 by Kosse25. He sug-

gested that the thresholds were related to underlying  

regularities in the organization of long-term memory, and 

provided some hypotheses concerning group size25 and 

hierarchical complexity3. However, most works have con-

centrated on analysing the complex psycho-sociological 

mechanisms involved in the process of opinion forming26. 

 There have been several attempts in the mathematical 

modelling of opinion forming1–6. An important issue in 

POF within an interacting group is the development of 

consensus, polarization or fragmentation. A variety of 

techniques, both linear and nonlinear, have been applied 

to study this issue, such as matrix theory, Markov chain 

and graph theory. One of the social systems that has  

attracted interest of the mathematical modelling commu-

nity is the election. In a sense, election campaigns are 

aimed at opinion formation, especially among undecided 

voters. It is possible, for example, to model the diffusion 

of a political opinion in a society in terms of the macro-

scopic manifestation of a wide spectrum of local  

exchanges between individuals in the society. A mathema-

tical model for evaluating the expectation of the margin of 

votes to be received as a result of election campaigns was 

proposed by Belenky and King27. The model results could 

be expressed in terms of the minimum of the maximum 

function of the difference of two bilinear functions with one 

and the same first vector argument28. Similarly, the spread 

of two political parties (opinions) was modelled using an 

epidemiological approach with a nonlinear mathematical 

model28. The population was assumed to be constant and 

homogeneously mixed28, for which equilibria were shown 

to exist analytically. 

 Another important subject that has attracted modelling of 

POF is terrorism29,30. A mathematical model of insurgency 
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was represented by Farley29 based on the spin states of 

individuals (‘yes’ and ‘no’ spin) of interacting individuals 

(‘atoms’). Similarly, the emergence of social networks 

has provided added dimension to social dynamics3,19,31. 

 Friendly/hostile relationship, akin to follower or  

opposer of an opinion, can be also modelled as signed 

graph in a social network theory framework31. In such a 

formalism, individuals represent nodes of the network, 

while edge of positive (negative) weight represents 

friendliness (hostility or opposition). The social relation-

ships between individuals influencing their opinions in 

the case of structurally balanced social networks have 

been well studied3,19,31. A two-party political system pro-

vides a classic example of opinion dynamics in a social 

system28. Studies have been conducted to specify princi-

ples underlying how individuals are affected by their so-

cial environment. For example, computational models can 

be applied to simulate macro-level phenomena like 

change of attitude in a population based on micro-level 

(Latan’s) theory32. In particular, such models could simu-

late a stable equilibrium of an incomplete polarization of 

opinions in which coherent minority subgroups could ex-

ist in the margins of population10,11. 

 Opinion formation also involves complex and often 

non-quantitative aspects like belief 33, mutual understand-

ing and persuasion34; growth of membership to an opinion 

also depends on processes like rumour transmission35. 

Dynamics of continuous opinions has been examined  

using analytical methods and computer simulations36, 

both static and time-dependent, as well as in the presence 

of nonlinearities with bounded confidence of the agents. 

Kawachi proposed deterministic models for transmission 

of rumour for the age-independent case37, using a finite-

dimensional ordinary differential equation, with the solu-

tion converging to an equilibrium35. Essentially, the  

Kawachi model utilizes functional analysis and formu-

lates the model as an abstract Cauchy problem on an infi-

nite-dimensional Banach space. The results showed that, 

under certain assumptions, nontrivial equilibria exist. In 

such an approach, a system of n experts is modelled as a 

positive discrete dynamical system in n dimensions. One 

can then arrive at a sufficiency condition for reaching a 

consensus35. A theory describing the functioning of an 

individual in the presence of others was examined through 

computer simulation36. 

 An important aspect of opinion dynamics is group 

size4,25. While computational opinion dynamics was  

proposed as early as 1998 (ref. 2), several recent works 

have also suggested similar approaches4,6,10; computer 

simulations on binary opinion dynamics have been used 

in several works23,36. An important question is whether 

POF can be given a deterministic formulation that can 

lead to a causal, mechanistic description of the process. 

 We visualize POF as a dynamical process involving 

drivers and feedbacks that govern individual opinions; 

the membership to a given opinion changes as the number 

of individuals whose personal opinion is within a (fuzzy) 

ball37 around the given opinion changes, thus resulting in 

a dynamical set of membership. The dynamical set is 

considered based on membership criteria. We consider a 

number of prescribed opinions to examine the response of 

the system. 

Methodology 

The dynamical set of membership 

For a given population of NI individuals (assumed  

constant for simplicity; generalization is straightforward), 

we consider a membership set (NM is a set of members 

from the set of followers of an opinion in between lower 

and upper thresholds for the membership of the pre-

scribed opinion) as 
 

 NM(t) = {xi(t)|TL  xi(t)  TH}, 
 

 xi(t)  (Xmax(t), Xmin(t)). (1) 
 

Here xi(t) is the opinion/response of the ith member as a 

function of parameter t (time). The number of members 

(NM(t)) at time t is the number of individuals out of the 

total members (NT) who meet the above criterion at time 

t, or in other words, the member of the set of followers of 

an opinion. TL and TH respectively, represent the lower 

and upper thresholds for the membership of followers of 

the prescribed opinion. Xmax(t) and Xmin(t) respectively, 

represent the maximum and minimum opinion at time t. 

 Similarly, we define membership set for leftists (NL(t)) 

and rightists (NR(t)) as follows 
 

 NL(t): individuals for whom xi(t) < TL, 
 

 NR(t): individuals for whom xi(t) > TH. (2) 
 

The lower and upper thresholds for membership of  

followers can be defined as 
 

 TL = x0(1 – L), TH = x0(1 + H). (3) 
 

The opinion x0 and an individual opinion/response xi(t) 

belong to the same vector space, except that x0 is not  

assigned to any particular member; rather it drives an  

individual opinion xi(t). L and H respectively, represent 

the coefficient of strength for the lower and upper thresh-

olds of opinion x0. 

 While NM(t), NL(t) and NR(t) are sets of membership 

defined by eqs (1)–(3), we shall also designate the num-

ber of members in each of these sets by the corresponding 

symbol for ease of discussion. Thus, for example, NM(t) 

also designates the number of members in the set NT. 

 An individual i is a member (follower) of opinion x0 if 

it satisfies the condition 
 

 TL  xi(t)  TH. (4) 
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The dynamical model 

The equation describing the dynamics of the ith individual 

opinion is given by 
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The first term on the right-hand side of eq. (5) represents 

restoration of the individual opinion xi(t) to the stagnant 

opinion x0(t), with a strength characterized by the param-

eter . The second term represents a forcing on the indi-

vidual opinion xi(t) due to rise in membership of the 

opinion at time t(NM(t)) and strength of this forcing char-

acterized by the parameter . The third term represents 

the effect due to opposition to x0 from the remaining in-

dividuals (NT – NM), and is assumed proportional to the 

unorthodoxy of x0. The term involving  represents a  

restoration of the individual opinion to the given global 

opinion (XG), while the term involving  represents a  

restoration of the average of the individual opinions 

(x0(t)) to the global opinion. 

 xR(t) represents a random component in the dynamics 

of each individual at every time step and is represented as 

 

 xR(t) = 1 – 2  r(t), such that xR(t)  (–1, 1), (6) 

 

where r(t) is a random number between –1 and 1. 

 We adopt the initial condition that represents a random 

distribution of opinions among the individuals. 
 

 xi(t = 0) = 1 – 2  r(t), such that xi
 (t = 0)  (–1, 1). (7) 

 

Initial conditions are similar for all types of opinions and 

scenarios. The random initial condition is used as a ca-

nonical representation of the situation where no prior 

knowledge of the initial state exists; the limits (–1, 1)  

ensure that the states are bounded and normalized. 

 We assume the global opinion to contain contributions 

from the average opinion and the prescribed opinion; the 

part of the global opinion that is independent of ( )x t  and 

x0(t) is not considered here 
 

 G G1 0 G2( ) ( ),* *x C x t C x t   (8) 

 

where CG1 and CG2 respectively, represent the coefficients 

of global opinion from the prescribed opinion and average 

opinion. 

 As discussed above, group size plays an important role 

in social dynamics4,24. We shall adopt a minimum group 

size that exhibits reasonable behaviour in the opinion x0. 

The minimum group size was adopted by considering a 

number of choices that led to bounded and/or convergent 

evolution. 

Representation of opinion and logical expectation 

In the absence of observed data for such a system, we use 

expected logical behaviour to calibrate and benchmark 

our results. We have assumed four types of opinions in 

the present study, which are described below. 

Average opinion 

The average opinion of the group and average opinion  

of members of the set of followers at any time t can be 

defined by eqs (9) and (10) respectively 
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where ( )x t  and M ( )X t  respectively, represent the aver-

age opinion of the group (NT) and average opinion of 

members of the set of followers (NM(t)). Thus eq. (9) 

provides specific representations of x0(t) introduced in  

eq. (8). 

 Since the opinion is an average of individual opinions, 

the logical expectation is that the membership will be 

nearly 100%, with very few and nearly equal number in 

either extreme left or extreme right. 

Stagnant opinion 

We consider two other cases to understand the behaviour 

of the system. The first is that of a static opinion, fixed at 

the initial time; we express this as xos = xi(t = 0) represent-

ing an extreme orthodox and conservative society with 

opinion fixed for all time. 

 The stagnant opinion is represented by the average of 

the initial individual opinions 
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where NI is the number of members following the stag-

nant opinion. 

Random opinion 

The other one is that of driving opinions random in time; 

this is expressed as xor(t) = xi(t), where xi(t) is the opinion 

of the ith member chosen at random. 
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Table 1. Parameters values for standard case (NM ~ 100%) for different opinion vectors under three scenarios: scenario 1 (SC1), scenario 2 (SC2)  

  and scenario 3 (SC3) 

 Opinion (10–4) 
 

 x0 = ( )x t  x0 = Xmin  x0 = Xmax  x0 = Ix  x0 = R(t) 
 

Parameter   Standard SC1  SC2  SC3  SC1  SC2  SC3 SC1 SC2 SC3 SC1 SC2 SC3 SC1  SC2 SC3 
 

L  0.9  –  –   –  –   –  –   –  –   –  –  

H  0.9  –  –   –  –   –  –   –  –   –  –  

  0.000007  0.5  0.004   0.001  0.009   0.001  0.003   0.001  0.009   0.01  0.05 

  0.00017  –  –   –  –   –  –   –  –   –  –  

  0.0000025 –  –   –  –   –  –   –  –   –  – 

  0.0022  –  –   –  –   –  –   –  –   –  –  

  0.000081  –  –   0.0004  0.003   –  –   0.002  0.002   0.002 0.002 

CG1  5.0  –  –   –  –   –  –   –  –   –  –  

CG2  5.0  –  –   –  –   –  –   –  –   –  –  

 
 

 For an opinion that is random in time, we expect very 

small or zero membership, although this opinion would 

be within the range of xi(t). 
 

 x0(t) = xor(t) = 1 – 2  r(t), (12) 
 

where r(t) is a random number between 0 and 1, and the 

values of xor(t) lies between –1 to 1. The random number 

is generated from the Fortran 77 library function. 

Extremist and extreme opinions 

We define extremist opinions as averages over the right-

ists (NR) and the leftists (NL) 
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Here TL and TH are the lower and upper thresholds for 

membership of the followers of an opinion. 

 In addition, we consider two extreme opinions in terms 

of the maximum and minimum values of xi(t) at given 

time t. Thus, 
 

 0 0(min)( ) ( ) min{ ( )},ix t x t x t   

 

 0 0(max)( ) ( ) max{ ( )}.ix t x t x t   (14) 

 

Here x0 (max)(t) and x0(min)(t) respectively, represent  

the maximum and minimum opinions of the group of  

opinions. 

Calibration and benchmark state 

In the absence of constitutive relations or theoreti-

cal/observation constraints, the set of parameters describ-

ing the system (Table 1) cannot be ascribed unique  

values. Instead, our approach is to consider a set of  

values that produces ‘reasonable’ behaviour and exam-

ines the system dynamics against this reference state due 

to various processes. Thus although the parameters can, 

in principle, be arbitrary, they are only varied around 

their calibrated values to study their impact. 

 An important parameter in opinion dynamics is the size 

of the group, and several studies have emphasized the 

importance of group size. A review of some models in the 

social sciences in which system size plays an important 

role in the final outcome of the dynamics was presented 

by Toral and Tessone4. Some of these models examined 

the conditions under which changes in behaviour can  

appear only when the number of agents in the model 

takes a finite value; such changes in behaviour can be  

related to the apparent phase transitions that appear in 

some physical models. In our case, group size affects  

parameters like average opinion/response. The system 

was calibrated so that for the standard set of parameters, 

it produced membership close to 100% for an opinion  

expressed as the average of individual opinions. Based on 

the general system behaviour, discussed below, a stand-

ard set of parameters was adopted for analysis. 

Results 

The behaviour of the system has been studied under  

different initial distributions as well as varying strengths 

and combinations of the restoring forces. 

Effect of random forcing on the evolution of POF 

It was found that without a random component, however 

small, in the dynamics (last term in eq. (5)), the evolution 

of membership did not show much variation in time; the 

corresponding average and maximum of individual  

opinions showed nearly monotonic increase (Figure 1, 

right column). This was found to be true for different
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Figure 1. Evolution of membership and characteristics of five representations (average, stagnant, min-
imum, maximum and random opinions) of the prescribed opinion without random forcing (ar  = 0.0) in 
the dynamics. (Left) Growth of members (NM(t), solid line), extreme leftists (NL(t), dotted line) and  
extreme rightists (NR(t), long dashed line) as percentage of the total number (150). (Right) Average  
( ,x  left y-axis, solid line) and maximum of individual opinions (Xmax, right y-axis, dashed line). Values 
of the parameters correspond to the standard set. a–j represent the subplots of the figure. 

 

 

representations of the prescribed opinions. In contrast,  

introduction of even a small random component in the 

dynamics resulted in complex, non-trivial dynamics for 

each of the five representations of the prescribed opinion 

(Figure 2). The membership for average opinion without 

random component was about 100% (Figure 1 a), while 

with random component it was about 80% (Figure 2 a). 

Similarly, there was a major impact of the random com-

ponent on POF in case of stagnant opinion, maximum 

opinion, minimum opinion and random opinion (Figures 

1 b–e and 2 b–e). 

 While the presence of a random driving component is 

essential for non-trivial dynamics, its relative magnitude 

can be quite small throughout the dynamics. For example, 

for the standard case subsequently described, five of the 

six (non-random) terms in eq. (5) are comparable with a
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Figure 2. Evolution of membership and characteristics of prescribed opinion expressed for standard 
case as five scenarios: average individual opinions at time ( ( )),t x t  average of the individual opinions at 
the initial time I( ( )),x t  minimum and maximum of the random opinion (X0(t) = R(t)). (Left) Growth of 
members (NM(t), solid line), extreme leftists (NL(t), dotted line) and extreme rightists (NR(t), long dashed 
line) as percentage of the total number (150). (Right): Average ( ,x  left y-axis, solid line) and maximum 
of individual opinions (Xmax, right y-axis, dashed line). Values of the parameters correspond to the  
standard set. a–j represent the subplots of the figure. 

 

 

much smaller but non-zero random term (Figure 3). Thus 

the results below are not driven by the random compo-

nent as the major forcing. 

 The random component in the dynamics of individual 

opinions represents various unsystematic effects. While 

we consider a random component in the dynamics  

unavoidable, the strength of the random component has 

appreciable effect on the evolution of the membership. It 

was found that the membership was close to 100% for 

random component equal to zero, but with undesirable 

behaviour of x  and Xmax (Figure 4 a and d). For much 

larger values of aR (>1.2), on the other hand, the mem-

bership fails to approach 100% (Figure 4 b and c). It  

was found that a moderate value (aR = 0.9) provides 
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membership close to 90% with acceptable behaviour  

of x  and Xmax (Figure 4 e and f ); our subsequent discus-

sions are based on a value of aR = 0.9. 

Response to average opinion 

For the standard set of parameters (Table 2) with the am-

plitude of the random component (aR) being 0.9 and the 

opinion x0(t) represented by the average opinion ( ),x t  a 

situation exists for which the membership is 80% (Figure 

5 a–c), with small membership in the extreme left or  

extreme right. The initial membership starts below 80%, 

and then rises and stays close to it (Figure 5 a). The cor-

responding average and maximum opinion exhibit com-

plex but bounded evolution (Figure 5 d). This behaviour 

is fairly robust in the sense that it does not change drasti-

cally for different scenarios represented in terms of dif-

ferent values of  (Figure 5 b–f ). This set of parameters 

then provides the benchmark set against which we shall 

consider relative roles of various processes as well as re-

sponse of the system to different representations of an 

opinion. 

Role of group size 

The dynamics of the opinion is also expected to depend 

on the number of individuals. Based on simulations for 

different values of NI, it was found that up to NI = 50, 

membership for the standard case did not generally  

approach 100% (Figure 6 a). However, beyond NI = 50, 

the membership was found to be essentially independent 

 

 

 
 

Figure 3. Absolute values of the terms in eq. (5) (left y-axis) for the 
standard case. The restoration of individual opinion to stagnant opinion 
(thick, long dashed line, left y-axis), strength of forcing on prescribed 
opinion due to rise of the membership of opinion (thin solid line, left  
y-axis), strength of opposition to the prescribed opinion x0 from the  
remaining individuals (thin dashed line, left y-axis), restoration of  
individual opinion to global opinion (thick dashed line, left y-axis), res-
toration of average opinion to global opinion (thin, long dashed line, 
left y-axis) and random component in the dynamics of individual  
opinion (thick solid line, left y-axis) as a function of time. The total 
(sum of all terms) is given in the right y-axis (dotted line with stars). 

of the number of individuals (Figure 6 b–d). The evolu-

tion of membership was found to be sensitive to larger 

values of NI. At NI = 500, the membership was dominated 

by leftist, with less than 25% of the individuals support-

ing the prescribed opinion (Figure 6 c). At NI = 600, there 

were strong out-of phase oscillations up to NI = 150–500 

among the leftists and rightists, with no membership to the 

prescribed opinion (Figure 6 d). We have therefore adopted 

a value of NI = 150 in the subsequent discussions. 

Response to stagnant opinion 

For the stagnant opinion based on average of the initial 

individual opinions 0 I( ( ) ),x t x  the membership  

remained close to 75% up to about 50 years for the standard 

set of parameters (Figure 7 a), with bounded x  and 

Xmax(t) (Figure 7 d). This value in membership of the 

opinion then showed a steep decline (around the 60th 

year), with a sharp recovery around the 125th year  

(Figure 7 a). This decline and rise in NM(t) were similar 

but out of phase to changes in NL(t) (Figure 7 a). For the 

stagnant opinion, membership to extreme rightists stayed 

small (<25%) throughout. These results also hold for  

different scenarios (Figure 7 b and c); for all these cases 

x  and Xmax(t) remain bounded (Figure 7 e and f ). 

Response to extreme opinion 

Consistent with our formalism and expectation, no mem-

bership to the prescribed opinion evolved for opinions 

represented by Xmax (eq. (13)); the membership belonged 

to either extreme left (NL(t) ~ 60%) or extreme right 

(NR(t) ~ 40%), with NM(t) ~ 0 (Figure 8 a). However, 

complex dynamics of cross-over from extreme left to  

extreme right was also seen (Figure 8 b and c). For very 

strong restoration, the values of NL(t) and NR(t) began to 

converge (Figure 8 c). 

 The situation driven by the opinion corresponding to 

minimum of the individual opinions (Xmin) resulted in 

very different situations (Figure 9 a–c). For weak restora-

tion ( = 0.00005), membership to the prescribed opinion 

(Xmin) stayed close to 75%, but with strong variability in 

time (Figure 9 a). Once again (as in Figure 8 a), the  

variability in NM(t) was opposite in phase to NL(t), with 

NR(t) ~ 0 (Figure 9 a). For stronger restoration ( = 

0.0001), NM(t) remained close to 75% throughout, with 

nearly equal values (~10%) of NL(t) and NR(t) to the pre-

scribed opinion. Interestingly, the general nature of  

evolution of average opinion and maximum opinion was 

quite different for the three scenarios (Figure 9 d–f ). 

Response to random opinion 

For an opinion that is a random function of time 

(X0(t) = R(t)), the membership showed a highly variable
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Figure 4. Impact of strength of random component in the evolution of membership of a prescribed 
opinion. (Left) Growth of members (NM(t), solid line), extreme leftists (NL(t), dotted line) and extreme 
rightists (NR(t), long dashed line) as percentage of the total number (150). (Right) Average ( ,x  solid line, 
left y-axis) and maximum of individual opinions (Xmax, dashed line, right y-axis). Values of the parame-
ters correspond to the standard set. a–f represent the subplots of figure. 

 
Table 2. Values of parameters for standard opinion 

Process  Symbol  Standard value  Range considered 
 

Total population  NI  150  50–10,000 

Coefficient of restoration to the opinion    0.00007  0.00000005–0.005 

Coefficient of strength of support to the opinion    0.00017 0.0000003–0.0007 

Coefficient of strength of opposition to the opinion    0.0000025  – 

Restoration of individual opinion to global opinion    0.0022 0.000009–0.01 

Restoration of average to global opinion    0.000081  0.00000001–0.01 

Threshold for membership: lower  L  0.9  0.5–1.2 

Threshold for membership: higher  H  0.9  0.5–1.2 

Coefficient of contribution of opinion to global opinion  CG1  5.0  0.7–20.0 

Coefficient of contribution of average opinion to global opinion  CG2  5.0  0.7–20.0 

Coefficient of random forcing of individual opinion  aR  0.9  0–1.5 

 

behaviour, changing from nearly 100% leftists to close to 

100% rightists for the standard case (Figure 10 a). This 

behaviour was found to persist even for greater strength 

of restoration ( = 0.00005) to the prescribed (random) 

opinion (Figure 10 b and c). For all the three scenarios, 

the average ( )x  and maximum (Xmax) were found to  

exhibit complex dynamics with bounded values (Figure 

10 d–f ). 

Response to different processes 

Very interesting behaviour was found to result through 

variation of ; while smaller values of  (<0.00009)  

resulted in slow growth in NM(t) from about 50%, larger 

values of  (~0.0002) resulted in large values of NL(t) 

and NR(t) in the beginning, with small NM(t) (~15%) 

which may grow to only about 50%. Thus for very strong
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Figure 5. Evolution of membership and characteristics of prescribed opinion expressed as an average of individual opin-
ions as a function of time. (Left) Growth of members (NM(t), solid line), extreme leftists (NL(t), dotted line) and extreme 
rightists (NR(t), long dashed line) as percentage of the total number (150). (Right) Average ( ,x  solid line, left y-axis) and 
maximum of individual opinions (Xmax, dashed line, right y-axis). Results are shown for three different scenarios. Values 
of the parameters correspond to the standard set. a–f represent the subplots of figure. 

 

 

restoration to the average opinion (a strictly consensus-

based system), membership can become very small and 

fall below the extremist opinion (Figure 11). Small values 

of restoration to global opinion ( < 0.0001) resulted in 

membership that was stable around 80%, with nearly 

equal values of NL and NR (Figure 11); the results were 

comparable to the standard case (Figure 11 b). However, 

for much larger values of  (~0.001), the effects were 

dramatically different; NM(t) decreased quickly to less 

than 40%, while NL and NR(t) attained nearly equal values 

of ~20% (Figure 11). The dynamics of the opinion was 

found to be not very sensitive to the strength of the oppo-

sition characterized by  (Supplementary Figure 1). Simi-

larly, the strength of restoration of the individual opinion 

to the global opinion ( ) was not found to have apprecia-

ble effects on the dynamics of the membership (Figure 

12). With our representation of global opinion in terms of 

the average opinion and prescribed opinion, dynamics of 

the membership was found to be essentially  

independent of the structure of the global opinion 

(Supplementary Figure 2). 

 A summary of the response to different prescribed 

opinions in terms of NM(t), NL(t) and NR(t) in Table 3 

shows that a wide spectrum of evolutions is possible with 

different prescribed opinions. At one end of this spectrum 

is the prescribed opinion represented by average of indi-

vidual opinions, with high and nearly steady membership 

(NM(t)) as expected. At the other end of the spectrum is 

the prescribed opinion random in time, for which no 

membership develops. 

Discussion and conclusion 

Quantitative and causal models of social processes are 

challenging, but can be of diverse and critical use. Essen-

tially all major social processes, be it an organization of 

https://www.currentscience.ac.in/Volumes/116/04/0577-suppl.pdf
https://www.currentscience.ac.in/Volumes/116/04/0577-suppl.pdf


RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 116, NO. 4, 25 FEBRUARY 2019 586 

 
 

Figure 6. Impact of size of population on growth of membership to prescribed opinion (represented here by the  
average of individual opinions). Growth of members (NM(t), solid line), extreme leftists (NL(t), dotted line) and  
extreme rightists (NR(t), long dashed line) as percentage of the total number. Results are shown for four three diffe-
rent values of the total population: 50 (top left panel), 150 (top right panel), 500 (bottom left panel) and 600 (bottom 
right panel). Values of the parameters correspond to the standard set. a–d represent the subplots of figure. 

 
Table 3. Summary of opinion formation for different scenarios 

   Number (percentage of NI) 
 

Scenarios  Members Leftists Rightists 

(prescribed opinion) Scenarios (NM)  (NL)  (NR) Characteristics of evolution (150 years) 
 

Average opinion ( )X  SC1  66  24.   9  Nearly constant 

  SC2  70  20  10 

  SC3  68  22   9 

 

Stagnant opinion (XI)  SC1  65  16  18  Strong decrease (increase) in NM (NL) around t = 100 years  

  SC2  63  20  16  

  SC3  68  11  21  

 

Maximum opinion (Xmax)  SC1   0  62  38  Nearly constant 

  SC2   0  48  52  

  SC3   0  57  41  

 

Minimum opinion (Xmin)  SC1  68  21  10  High-frequency oscillations in NL and NR 

  SC2  70  19  10  

  SC3  76  11  12  

 

Random opinion (XR)  SC1  13  15  72  High-frequency oscillations in NM, NL and NR 

  SC2  18  14  68 

  SC3  20   9  71 
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Figure 7. Evolution of membership and characteristics to a prescribed opinion expressed as average of stagnant opinion 
(average of initial individuals opinions). (Left) Growth of members (NM(t), thick solid line), extreme leftists (NL(t), thin 
solid line) and extreme rightists (NR(t), dotted line) as percentage of the total number (150). (Right) Average ( ( ),x t  
dashed line, left y-axis) and maximum of individual opinions (Xmax, solid line, right y-axis). Results are shown for three 
different scenarios in terms of restoration of individual opinion to stagnant opinion () and restoration of individual  
opinion to global opinion (). a–f represent the subplots of figure. 

 

 

election or a rise of terrorism are affected by genesis and 

growth of opinion. Our work shows that causal dynamical 

models that mimic many characteristics of such opinion 

dynamics are possible. While the processes and coeffi-

cients that drive the model have been chosen for the 

adopted reference state, the results are not unduly de-

pendent on the variation of these coefficients; in particu-

lar, even large (>100%) variations in the coefficients 

produce bounded and meaningful results. 

 While we have considered many scenarios, the time 

evolution of membership essentially follows two patterns: 

nearly constant in time (such as for average opinion or 

maximum opinion), or high-frequency oscillations, espe-

cially in NL(t) and NR(t) (Table 3). It is noteworthy,  

however, that strong membership does not evolve for 

maximum opinion or random opinion (Table 3). In  

general, the model shows the ability to respond differen-

tially to various prescribed opinions. 

 It is interesting to note that neither an extreme con-

servative group (x0 = XR  XL) nor a group driven by  

opinions random in time, can lead to significant member-

ship; both result in extreme rightists or extreme leftists. A 

stagnant prescribed opinion based on the average initial 

individual opinions fails to create a sustained member-

ship. The present results do not appear sensitive to the 

global opinion; however, they depend on a number  

of factors. In particular, we have not considered the  

representation of global opinion in terms of many
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Figure 8. Evolution of membership and characteristics of an opinion expressed as the maximum of individual opinions 
(Xmax) as a function of time. (Left) Growth of members (NM(t), solid line), extreme leftists (NL(t), dotted line) and extreme 
rightists (NR(t), long dashed line) as percentage of the total number (150). (Right) Average ( ,x  solid line, left y-axis) and 
maximum of individual opinions (Xmax, dashed line, right y-axis). Results are shown for three different scenarios. Values 
of the other parameters correspond to the standard set. 

 

 

processes. The influence of global opinion will also  

depend on its likely socio-economic impact on the mem-

bers. 

 The standard procedure for parameter choice is through 

calibration and validation based on comparison with  

observation. Validation, or calibration of our model  

requires observed data on two groups (control and test) 

subjected to a given opinion; the test group must be  

unaware of the externality of the opinion. Such observa-

tions are not available and difficult to obtain. In the  

absence of observed data on opinion dynamics, we need 

to consider effects where intuitively logical results can be 

expected to study the behaviour of the system. To our 

knowledge, there are no comparable studies. 

 One of the applications of the model can be to examine 

growth of opinion under different scenarios, such as 

strength of restoration of individual opinion to prescribed 

opinion (through state or institutional machinery). It was 

found that the evolution of membership could respond 

strongly and in different ways to such scenarios (Figure 

4 d–f ). A particular application of the model can be  

opinion formation in complex social networks, using  

methods like Shannon’s Entropy38 or graph entropy for 

special weighted graphs39. More sophisticated and recent  

developments like distance-based graph entropies with 

information functional40 can provide new avenues.  

Undoubtedly, prediction of community (or opinion) evo-

lution in social networks will be an important future  

direction41. An important feature of the present work is 

that it provides a predictive model of opinion formation 

as an initial value dynamical system42. This opens up a 

new direction of research in social dynamics. 

 It needs to be emphasized that our focus has been on a 

generic model rather than on a specific process. As an

Extreme opinion (x0 = xmax) 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 116, NO. 4, 25 FEBRUARY 2019 589 

 
 

Figure 9. Evolution of membership and characteristics of a prescribed opinion expressed as the minimum of i n-
dividual opinions (Xmin) as a function of time. (Left) Growth of members (NM(t), solid line), extreme leftists 
(NL(t), dotted line) and extreme rightists (NR(t), long dashed line) as percentage of the total number (150). (Right) 
Average ( ,x  solid line, left y-axis) and maximum of individual opinions (Xmax, dashed solid line, right y-axis). 
Results are shown for three different scenarios. Values of the other parameters correspond to the standard set. 

 

 
 

Figure 10. Evolution of membership and characteristics of a prescribed opinion expressed as a random variable 
as a function of time. (Left) Growth of members (NM(t), solid line), extreme leftists (NL(t), dotted line) and  
extreme rightists (NR(t), long dashed line) as percentage of the total numbers (150). (Right) Average ( ,x  solid 
line, left y-axis) and maximum of individual opinions (Xmax, dashed line, right y-axis). Results are shown for three 
different scenarios. Values of the other parameters correspond to the standard set. 
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Figure 11. Impact of strength of restoration of average of individual opinion (x0) to global opinion. Values of the other parameters correspond to 
the standard set. 

 

 

 

 
 

Figure 12. Impact of strength of restoration of the prescribed opinion to the global opinion on the growth of membership; here prescribed opinion 
is represented by the average opinion of the population. Values of the other parameters correspond to the standard set. 

 

 

analogy, our equation represents a general dynamics of 

fluids; the initial, boundary conditions as well as the spe-

cific forcings, and sources and sinks will depend on the 

specifics of the process. It is assumed that the response of 

an individual can be represented as a scalar that combines 

economic, cultural and emotional aspects. Quite clearly, 

this is a simplification; in the subsequent versions, the  

response needs to be represented through an appropriate 

vector. It will be also necessary, and natural as the theory 

evolves, to include abstract processes into the opinion 

dynamics17–20. For practical applications it will be neces-

sary, but possible, to assign specific values and con-

straints. Naturally, this will depend on the process being 

studied as well as the target population. The prescribed 

opinion can be more specific, such as a policy or an elec-

tion manifesto. An important area of future work could be 

the study of dynamics of social processes like rise of  

terrorism, and possibly laying the foundation for social 

engineering. In such applications, pre-designed opinion 

(proposition) can be visualized for goal-oriented growth 

of membership with the rapidly growing computing  

power and social networks and such applications are  

becoming feasible. 
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