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Piezoelectric materials transform electrical energy to 
mechanical energy and vice-versa making them tech-
nologically important as actuators, sensors and trans-
ducers in wide ranging applications. New regulations 
on prevention of hazardous materials in industrial 
applications have led to a great surge in research on 
environment friendly alternatives of the commercial 
Pb-based piezoelectrics – Pb(Zr, Ti)O3. The field of 
lead-free piezoceramics has seen great advances in the 
last two decades. This review focuses on the current 
status of understanding of structure–property rela-
tionships in Na1/2Bi1/2TiO3-based lead-free polycrystal-
line piezoceramics. 
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THE phenomenon of piezoelectricity, wherein a material 
develops voltage on application of mechanical force  
(direct piezoelectric effect) and changes dimension on 
application of electric field (converse piezoelectric ef-
fect), was discovered by Curie brothers in 1880 in single 
crystalline quartz minerals1. Piezoelectric materials are 
currently being used in wide ranging applications such as 
transducers, actuators, pressor sensors, mechanical ener-
gy harvesting2. The most common parameter to character-
ize a piezoelectric material is the piezoelectric coefficient 
(d) defined as the ratio of strain and electric-field (for the 
converse phenomenon) or ratio of polarization and stress 
(for the direct phenomenon). The piezoelectric coefficient 
d is commonly represented in units of pico-Coulomb/ 
Newton (pC/N) for the direct-effect and picometre/Volt 
(pm/V) for the converse effect. Both units are thermody-
namically (and dimensionally) equivalent3. The piezo-
electric coefficient d is a third rank tensor and has a 
maximum of 18 independent components. According to 
the Neuman’s principle, all the components are zero for a 
crystalline material, the structure of which has a centre of 
inversion symmetry. A fundamental requirement for a 
material to exhibit piezoelectricity is that its crystal struc-
ture should exhibit non-centrosymmetric point group. 
Among the 32 crystallographic point groups, 20 of them 
can show piezoelectric effect3.  

 The piezoelectric coefficient of a single crystal quartz 
is 2 pC/N (ref. 4). Research on piezoelectric materials 
picked up after the discovery of ferroelectricity in BaTiO3 
during the Second World War5. Ferroelectrics, first dis-
covered in Rochelle salt in 1921 (ref. 5), are a sub-class 
of piezoelectrics exhibiting spontaneous polarization, the  
direction of which can be reoriented by application of a 
strong electric field. Once subjected to a sufficiently 
strong electric field, the remanent polarization of a  
ferroelectric material makes it possible even for polycrys-
talline ferroelectric ceramic to behave as a piezoelectric-
material. Polycrystalline ceramics are easy to synthesize 
compared to single crystals and are attractive for mass 
scale production6. A polycrystalline BaTiO3 ceramic 
shows a longitudinal piezoelectric coefficient d33 (polari-
zation measured along the axis of the applied force) 
~190 pC/N (ref. 6) which is considerably larger than the 
piezoelectric coefficient of a single crystal quartz. How-
ever, after the discovery of better piezoelectric properties 
in pseudo-binary system PbTiO3–PbZrO3 (commonly ab-
breviated as PZT)6, interest in BaTiO3-based ferroelec-
trics shifted towards the development of high dielectric 
constant materials7. Though ferroelectricity is known in 
many different families of inorganic and organic mate-
rials, the ABO3 oxide ferroelectric perovskites have at-
tracted most attention because of their significantly large 
piezoelectric properties. The highest symmetry phase of a 
perovskite structure is cubic (space group Pm-3m). Being 
centrosymmetric, this phase is paraelectric. On cooling 
below the Curie point (ferroelectric–paraelectric phase 
transition temperature), the paraelectric state transforms 
to a ferroelectric state along with a concomitant change in 
the crystal structure. For example, BaTiO3 is paraelectric 
with a cubic structure above 130°C. Below 130°C, it 
transforms to a tetragonal (space group P4mm) ferroelec-
tric phase. The spontaneous polarization in the tetragonal 
phase is along the [001] direction, i.e. parallel to the c-
axis. On cooling further, BaTiO3 undergoes two more 
structural transitions: orthorhombic ferroelectric phase 
(space group Amm2) with spontaneous polarization  
parallel to [110] direction and rhombohedral ferroelectric 
phase (space group R3m) with spontaneous polarization 
parallel to [111] direction6. These directions are referred 
to with respect to the pseudocubic unit cell.  
 For over five decades, PZT-based piezoceramics  
have been the material of choice in most commercial  
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applications. The importance of PZT is not only because 
of its large piezoelectric response but also because of 
good thermal stability of the piezoelectric properties. It 
derives this unique feature from the composition–
temperature phase diagram which exhibits a nearly ver-
tical morphotropic phase boundary (MPB) at ~52 mol% 
of PbZrO3. The MPB of PZT separates rhombohedral and 
tetragonal phase fields6,7 and is therefore a composition 
driven inter-ferroelectric instability. This instability caus-
es near flattening of the free-energy profile making it 
easy for the polarization to rotate on application of exter-
nal electric-field and/or mechanical stress8 – the intrinsic 
piezoelectric response. The inter-ferroelectric instability 
also reduces the energy of the domain walls significantly, 
allowing their density and mobility to increase – the  
extrinsic contribution to piezoelectricity9,10. The dis-
covery of considerable enhancement of the electrome-
chanical response at the MPB in PZT has guided 
subsequent exploration of compositional engineering in 
other ferroelectric solid solutions. 

Lead-free piezoceramics 

In the past two decades increased environmental concerns 
and introduction of regulations aimed at restricting the 
use of toxic materials in industrial applications11 have 
oriented the scientific community to focus on Pb-free 
piezoelectrics12–21. The first breakthrough that accelerated 
research on Pb-free piezoelectrics, was the discovery of 
large piezoelectric effect (d33 ~ 450 pC/N) in textured  
ceramic of Li, Ta modified K0.5Na0.5NbO3 (KNN)22. Over 
the period, higher d33 (~500 pC/N) has been reported 
even in non-textured KNN-based ferroelectric systems23. 
Like the MPB in PZT, the compositional modification of 
KNN (by Li, Ta, Sb) is aimed at pushing the system to-
wards an inter-ferroelectric instability at room tempera-
ture24–29. As with BaTiO3, KNbO3 (and KNN) exhibits the 
same sequence of structural transitions on cooling from 
high temperature: cubic (paraelectric) → tetragonal (fer-
roelectric) → orthorhombic → rhombohedral (ferroelec-
tric). Analogous scenario in BaTiO3 can be achieved by 
substitution of Zr, Sn and Hf at the Ti-site, leading to en-
hancement in the piezoelectric response from ~190 pC/N 
(unmodified BaTiO3) to ~400 pC/N in the modified sys-
tems25,26. Interestingly, although the phase diagram is 
nearly the same, a notably larger d33 (~600 pC/N) was re-
ported in Ca-modified Ba(Ti, Zr)O3 (ref. 28), Ca-
modified Ba(Ti, Sn)O3 (refs 29–31) and Ca-modified 
Ba(Ti, Hf)O3 (ref. 32) systems. Despite their large pie-
zoelectric coefficient, BaTiO3-based piezoelectrics have 
the drawback of low Curie point (Tc ~ 80°C). This makes 
the system vulnerable to thermal depoling and deteriora-
tion in the piezoelectric response due to any unintentional 
increase in the temperature of the device during opera-
tion. In this context, though the KNN-based piezoelec-

trics are preferred because of their higher Curie point, 
their major drawback is the large dependence of the prop-
erties on the synthesis conditions. BiFeO3 is another in-
teresting lead-free ferroelectric compound with very high 
Curie point (~800°C)33. Synthesis of pure BiFeO3 is how-
ever difficult under normal conditions due to the presence 
of competing non-perovskite phases in the Bi2O3–Fe2O3 
phase diagram33. Another problem with BiFeO3 is the 
large leakage current which makes poling difficult. These  
issues are resolved to a certain extent in solid solutions of 
BiFeO3 with other perovskites34–36. Some solid solutions 
of BiFeO3 show reasonably high d33 (~324 pC/N)34  
together with a high Curie point of 466°C, making them 
interesting for high temperature applications. One of the 
most extensively studied lead-free piezoelectric systems 
are based on the solid solutions of Na0.5Bi0.5TiO3 (NBT) – 
sodium bismuth titanate. An important highlight of NBT-
based piezoelectrics is the large electrostrain (~0.7%) at 
~60 kV/cm making them interesting for high performance 
actuator applications37,38. Because of the ease of synthe-
sis, reproducibility of properties, and moderate depolari-
zation temperature, NBT-based lead-free piezoelectrics 
have been preferred in high-power ultrasonic devices17. 
The complexity of the microstructure and crystal struc-
ture however, pose a great challenge for establishing 
structure–property relationships in NBT-based piezoce-
ramics. Further in this review, a survey of the work with 
focus on structure-property correlations in NBT-based 
piezoceramics is presented.  

Na0.5Bi0.5TiO3 (sodium bismuth titanate) 

Na0.5Bi0.5TiO3 (NBT) was discovered in 1961 by Smo-
lensky et al.39 as a rhombohedral (space group R3c) fer-
roelectric perovskite. NBT shows remnant polarization 
Pr = 38 μC/cm2, coercive field in the range 50–60 kV/cm, 
d33 ~ 70 pC/N and Curie point 320°C (the temperature 
corresponding to permittivity maximum). The tempera-
ture dependence of dielectric constant of NBT exhibits 
two anomalies – a broad maximum at 320°C and a hump 
at ~200°C (refs 37–48). The hump at 200°C exhibits con-
siderable frequency dispersion suggesting a relaxor  
ferroelectric behaviour43,44. Many reports exist on the 
anomalous changes in the physical properties of NBT in 
the temperature region 200–300°C (ref. 44). On heating, 
the remanent polarization decreases dramatically at 
200°C, the depolarization temperature44. The intermediate 
phase between 200°C and 320°C exhibits a pinched P–E 
hysteresis loop, a feature attributed to the onset of an  
anti-ferroelectric phase40. However, neutron diffraction 
studies did not reveal any signature of anti-ferroelectric 
structure49. In contrast to common ferroelectrics like  
BaTiO3, PbTiO3 or KNbO3, the paraelectric phase exhi-
bits a cubic (Pm-3m) structure, the paraelectric phase of 
NBT is a non-cubic tetragonal (space group P4bm)  
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structure comprising of in-phase tilt of the neighbouring 
octahedra along the c-axis of the tetragonal cell50. The 
cubic (Pm-3m) phase appears at higher temperature 
(~520°C)51. Cordero et al.52 reported sharp anomalies in 
the elastic compliance of NBT at ~550°C and 290°C and 
did not find any special structural origin of thermal depo-
larization at ~200°C. The two anomalies were attributed 
to the ferroelastic cubic (Pm-3m) – tetragonal (P4bm), 
ferroelectric P4bm–R3c transitions respectively. NBT ex-
hibits a complex evolution of domain pattern in the tem-
perature range 200–300°C, comprising of extensive 
twinning and formation of an intermediate orthorhombic 
(Pnma) structure on a shorter length scale53,54. The 
pinched P–E loop in this temperature region is attributed 
to this structural heterogeneity. 

Structural disorder in NBT at room temperature 

NBT exhibits a considerable degree of structural–polar 
disorder at room temperature. Balagurov et al.55 reported 
that the residue of the high temperature P4bm phase is 
found even at room temperature leading to an incommen-
surate modulation of the octahedral tilt. Evidence of long-
period modulation in NBT was also reported by Thomas 
et al.56 using X-ray diffuse scattering study. Earlier, Krie-
sel et al.57 reported the existence of local monoclinic dis-
placement of the Na/Bi ion. Neutron pair distribution 
function study of NBT by Keeble et al.58 suggested a  
bifurcated polarization due to two distinctly different  
polar displacement of Bi+3. First principles studies have 
revealed a complex interaction between local A-site  
cation ordering and octahedral tilt, and its influence on 
the relaxor ferroelectric behaviour of NBT59–61. The fun-
damental origin of the inherent structural disorder in NBT 
lies in the qualitatively different bonding characteristics 
of the Na–O (primarily ionic) and Bi–O (primarily cova-
lent) bonds. Local structure studies by extended X-ray 
absorption fine structure (EXAFS) have revealed that the 
Bi–O bonds are 0.3 Å shorter than that revealed by struc-
tural analysis of X-ray/neutron diffraction data62,63. This 
confirms that the local environment of Bi is much dis-
torted from that anticipated based on the average global 
structure. Aksel et al.64 have shown the structure when 
probed on the length scale of less than 10 Å to be differ-
ent from the average structure as seen by diffraction 
techniques. A readjustment of the Bi–O bond distance 
was noted in poled specimen of NBT but not in the Ti–O 
distances, suggesting that strong electric field induces a 
correlated motion between the Bi-off centering and octa-
hedral tilt63. 23Na and 49Ti nuclear magnetic resonance 
(NMR) spectroscopy studies have also revealed disorder 
on the A and B sites of NBT65,66, consistent with the other 
local structure studies. 
 The structural disorder on the local scale have a pro-
found effect on the average structure perceived on the 

global scale. Gorfman and Thomas67 and Aksel et al.68 

reported that the conventional rhombohedral (R3c) struc-
tural model was not enough to account for all the features 
of the high-resolution X-ray diffraction data of NBT. 
They proposed a monoclinic structure in the space group 
Cc. Levin and Reaney69 explained average monoclinic Cc 
structure in terms of assemblages of orthorhombic (aver-
age octahedral tilt a–a–c+) domains comprising of in-
phase tilted octahedral region of few nano metres and 
comparatively longer antiphase tilted regions69. Rao et 
al.70 have shown signatures of Bragg peaks corresponding 
to R3c and Cc phases in high resolution synchrotron X-
ray diffraction patterns of NBT (Figure 1). The relative 
fractions of the two phases are very sensitive to the 
treatment of the specimens by external electric-field and 
mechanical stress71,72. A correlation between the average 
Cc structure and high density of twinning was reported by 
Beanland and Thomas72. The regions in the specimen 
with less density of defect appear as rhombohedral72. Rao 
and Ranjan71 showed that poling of the NBT almost sup-
presses the monoclinic (Cc) phase and makes the global 
structure appear rhombohedral (R3c) (Figure 1). This is 
accompanied by suppression of the in-phase tilted local 
regions45 (Figure 1), and readjustment of the displace-
ments of the Bi cation in conformity with the long-range 
rhombohedral structure62,73. Recently, it was shown that 
even the monoclinic Cc average structure of NBT 
changes to cubic when the grain size is reduced to 
~2 microns74. Strong electric field could however bring 
about a cubic to rhombohedral distortion74. These studies 
confirm that the appearance of the different global struc-
ture cubic/monoclinic in the unpoled state of NBT is not 
associated with a structural transformation on the scale of 
unit cell but manifestations of different types of assem-
blages of the in-phase and anti-phase tilted regions69. In 
this context, Aksel et al.68 have shown that the local devi-
ations from the average structure is more in the calcined 
NBT (smaller grain size) as compared to their sintered 
counterpart (larger grains). 

Off-stoichiometry studies 

Owing to the strong influence of structural disorder on 
the average structure and properties, it is anticipated that 
chemical modifications of NBT, including making it off-
stoichiometric, would strongly influence its structure and 
properties75–85. Li et al.85 reported large oxygen ion con-
ductivity in A-site off-stoichiometric NBT compositions. 
In general, Na-excess/Bi-deficient compositions decrease 
and Na-deficient/Bi-excess increase the resistivity75,78,84. 
Some reports show enhancement in piezoelectric re-
sponse and lowering of the depolarization temperature in 
Bi-excess/Na-deficient compositions of NBT75,78,79,81. A 
detailed study on the effect of off-stoichiometry on the 
grain size, structure, electrical conductivity, impedance, 
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Figure 1. a, Selected profiles of the whole pattern Rietveld fitted high-resolution synchrotron X-ray (wavelength = 0.39991 Å) powder diffraction 
pattern of unpoled and poled Na0.5Bi0.5TiO3 specimens. The diffraction pattern on the poled specimen was recorded after breaking the poled pellet 
to powder to avoid preferred orientation effect. For the unpoled specimen the ground powder obtained from pellet was annealed at high temperature 
to get rid of stress induced structural changes. The arrows in the first row show unaccounted Bragg peaks corresponding to the rhombohedral phase 
when the data was fitted with monoclinic (Cc) phase. The patterns in the second row shows pattern of poled NBT fitted with single phase R3c 
structural model. All features in the diffraction pattern of the unpoled specimen are nicely accounted for with the Cc + R3c phase coexistence mod-
el as shown in the third row. b, The HRTEM and electron diffraction patterns of unpoled and poled NBT corresponding to [111] (shown at top cor-
ners of the corresponding HRTEM image) and [130] (shown at the bottom corners of the corresponding HRTEM image) zone axes. Important to 
note that the HRTEM of the unpoled NBT is hazy and that of the poled specimen show relatively well defined lattice fringes. The [111] zone axis 
diffraction pattern of unpoled NBT shows ½{odd odd even} type superlattice spots which are absent in the pattern of poled specimen. Also, diffuse 
streaks between Bragg spots are evident in the [130] zone axis pattern of unpoled specimen and not in the poled specimen70. 
 
 
dielectric, ferroelectric and piezoelectric properties of 
NBT was recently reported by Mishra et al.75 (Figure 2 a, 
b). The d33 increased from ~80 pC/N for x = 0 to 
~100 pC/N for x = –0.04 in the off-stoichiometric compo-
sition series synthesized as per the chemical formula 
Na0.5Bi0.5+xTiO3 (Figure 2 b). Mishra et al.75 reported a 
correlation between off-stoichiometry, grain size and d33. 
Structural analysis of the poled specimens of the different 
off-stoichiometric compositions revealed a consistent in-
crease in the degree of structural disorder with increasing 
Na-deficiency and Bi-excess specimens. The off-stoichio-
metric composition exhibiting the best piezoelectric re-
sponse has an optimum fraction of the structural disorder 

coexisting with the field stabilized long-range ferroelec-
tric order75. A similar trend was reported with grain size 
of stoichiometric NBT74 and led the authors to argue that 
perhaps, in addition to the chemistry, comparatively  
reduced grain size in Na-deficient/Bi-excess off-stoichio-
metric NBT has a role to play in increasing the piezoelec-
tric response74,75 (Figure 2 c).  

NBT-based solid solutions  

As stated above, the common compositional design appro-
ach in ferroelectric materials to enhance the piezoelectric 
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Figure 2. a, The grain-size dependence as a function of off-stoichiometry in Na0.5+xBi0.5TiO3 (blue) and Na0.5Bi0.5+xTiO3 (red). b, The dependence 
of longitudinal piezoelectric coefficient (d33) on the extent of off-stoichiometry for the two series. Note the considerable increase in the piezoelec-
tric coefficient for the off-stoichiometric composition Na0.96Bi0.50TiO3. c, The piezoelectric coefficient as a function of grain size for stoichiometric 
NBT. The specimen with grain size ~2 μm shows better d33 than that of the higher grain size74,75,84.  
 
 
response is to induce an inter-ferroelectric instability at 
room temperature. Given that NBT is a rhombohedral 
(R3c) ferroelectric, it is anticipated that if it is modified 
by another ferroelectric perovskite compound with tetra-
gonal structure, a composition driven rhombohedral-
tetragonal inter-ferroelectric instability can be induced. 
Over the years, this strategy has been tried by research-
ers, an extensive compilation of which can be found in 
ref. 16. The two most prominent lead-free derivatives of 
NBT are the pseudo-binaries (1–x)Na0.5Bi0.5TiO3–
(x)BaTiO3 (NBT–xBT)86–113 and (1–x)Na0.5Bi0.5TiO3–
(x)K0.5Bi0.5–TiO3 (NBT–xKBT)114–135. Both BaTiO3 and 
K0.5Bi0.5TiO3 are tetragonal (P4mm) ferroelectrics at 
room temperature and when increasingly dissolved in 
NBT are expected to show a rhombohedral–tetragonal  
instability. Takenaka et al.86 reported the first phase dia-
gram of NBT–xBT showing a morphotropic phase boun-
dary at x = 0.06 separating rhombohedral and tetragonal 
phase fields. The phase diagram of NBT–xKBT with 
MPB at x ~ 0.20 was first reported by Sasaki et al.115. The 
MPB compositions of NBT–xBT and NBT–xKBT show 
maximum dielectric and piezoelectric properties. The 
highest reported d33 for NBT–BT is 186 pC/N111 and for 
NBT–KBT is 207 pC/N125. It is important to point out 
that the maximum reported d33 in NBT-based piezoelec-
trics is significantly less when compared to the highest 
d33 reported in the BaTiO3-based and KNN-based lead-
free   piezoelectric systems (d33 ~ 550–600 pC/N). This 
issue has recently been dealt with by Adhikary and co-
workers132–134, discussed in the next section. In contrast to 
the classical Pb-based MPB systems like PZT, the MPB 
composition of which shows a coexistence of tetragonal 
and rhombohedral/monoclinic phases on the global scale, 
the MPB compositions of NBT–BT and NBT–KBT exhi-
bit a cubic-like structure87,91,94,98,132,133. The signature of 
the tetragonal and rhombohedral phases can however be 
seen in the Raman spectra89 and in the photoluminescence 
studies108,110 confirming that, as with the parent com-

pound NBT69,72,75,84, the cubic like global structure of the 
MPB compositions of NBT–BT and NBT–KBT is asso-
ciated with microstructural heterogeneity on a mesoscop-
ic length scale. Similar to NBT, strong electric field 
induces a cubic to rhombohedral/rhombohedral + tetra-
gonal structures91,98,104,109,133. Using the slope of the linear 
plots between permittivity and log–frequency as an indi-
cator of polar-heterogeneity (Figure 3), Garg et al.93, 
Khatua et al.109 and Adhikary et al.133 argued that the 
structure–polar heterogeneity increases, which in turn in-
creases the relaxor–ferroelectric characteristic, as the 
MPB is approached. These authors have also reported 
that the system tends to form a long-period modulation in 
the octahedral tilt configuration suggesting a sequential 
arrangement of the in-phase and anti-phase tilts98,133. Pol-
ing, however, dramatically suppresses the in-phase tilts 
and transforms the structure to rhombohedral or rhombo-
hedral + tetragonal93,98,133 (Figure 3 d). The short ranged 
relaxor state to long-range ferroelectric transformation 
has also been reported by mechanical stress93,136. The sig-
nature corresponding to the long-period modulation pers-
ists in the tetragonal (P4mm) composition region 
(x > 0.07) until x ~ 0.20. Rao et al.105 have demonstrated 
evidence of a new criticality at x = 0.2 in the (1–x)NBT–
(x)BT system where the coercivity and the spontaneous 
tetragonal strain exhibit a non-monotonic dependence 
with composition well within the tetragonal composition 
regime (Figure 4). Using neutron diffraction as a tool, 
Rao et al.105 showed that this new criticality is associated 
with the system’s transformation from a non-modulated 
tetragonal phase (for x > 0.2) to a modulated tetragonal 
phase (for x < 0.2). The occurrence of modulation in the 
octahedral tilt configuration depolarizes the system well 
before the diffuse dielectric anomaly temperature, i.e. in-
ducing a relaxor–ferroelectric characteristic to the system. 
 As stated above, a unique feature of NBT-based  
piezoelectrics is that some compositional derivatives  
exhibit large high-field electrostrain compared to 
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Figure 3. a, Temperature dependence of relative permittivity of (1–x)Na0.5Bi0.5TiO3–(x)BaTiO3 for different BaTiO3 concentration (x values 
shown in the plot). b, The permittivity as a function of log-frequency for a representative composition x = 0.065 (in the MPB region) measured at 
room temperature. The slope of the such plots as a function of BaTiO3 concentration (x) is shown in (c). Important to note that this slope is maxi-
mum for the MPB compositions suggesting a greater degree of polar-heterogeneity at the MPB. d, Rietveld fitted neutron powder diffraction pat-
terns of two close by MPB compositions x = 0.06 and x = 0.0675 using R3c + P4bm phase coexistence model. The misfit regions are highlighted in 
the insets and with arrow in the plot. The additional superlattice peak marked with arrow suggest the need for considering higher order modulation 
in the octahedral tilt configuration93. 
 

 
 

Figure 4. Composition dependence of (a) tetragonality and (b) coer-
cive-field of (1–x)BaTiO3–(x)Na0.5Bi0.5TiO3. A maximum in both the 
quantities can be seen at x = 0.80. (b) The composition evolution of the 
neutron powder diffraction pattern of (1–x)BaTiO3–(x)Na0.5Bi0.5TiO3. 
The ½{310} superlattice peak corresponding to in-phase octahedral tilt 
appears for x > 0.80. The reduction in the tetragonality and coercive 
field for x > 0.80 is therefore attributed to the onset of the in-phase 
tilt104.  

others37,38,137–143. A glimpse of this behaviour is observed 
even in the unmodified NBT when heated above the de-
polarization temperature (200°C). At 400°C, NBT shows 
a unipolar electrostrain of ~0.4% at 80 kV/cm (ref. 142). 
The role of different modifications is to bring down the 
ergodic–non-ergodic relaxor transition temperature to just 
below room temperature. Strong electric field at room 
temperature can induce a ferroelectric state causing large 
electrostrain. The reproducibility of the large electrostrain 
in different cycles is possible because the system is capa-
ble of reverting back to its ergodic relaxor–ferroelectric 
state when the field is reduced to zero. In the situation, 
this does not happen completely, the electrostrain reduces 
in successive cycles109. The field induced ergodic–
ferroelectric transitions are also interesting from the 
viewpoint of achieving enhanced electrocaloric res-
ponse141. 

Factors influencing thermal depoling in  
NBT-based piezoelectrics 

The mechanism governing thermal depoling/ 
depolarization of NBT and its chemical derivatives is a 
subject of considerable debate. The absence of any ano-
maly in the elastic compliance of NBT at ~200°C led 
Cordero et al.52 to suggest that the thermal depolarization 
is not driven by any kind of structural event. Aksel et 
al.144 on the other hand, related the thermal depolarization 
at 200°C to structural transition on a smaller length scale. 
Rao et al.45 have shown that the depoling process of  
NBT starts at ~150°C with the onset of in-phase octahe-
dral tilt (Figure 5). For the two most investigated solid 
solutions, (1–x)Na0.5Bi0.5TiO3–xBaTiO3 (NBT–BT) and 
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(1–y)Na0.5Bi0.5TiO3–yK0.5Bi0.5TiO3 (NBT–KBT), exhibit-
ing MPBs at x = 0.06 and y = 0.20 respectively, the depo-
larization temperature decreases sharply as the MPB is 
approached87,116,132–134. This scenario contrasts with other 
MPB ferroelectric systems where no such remarkable  
 
 

 
 

Figure 5. a, The phenomenon of thermal depolarization in terms of 
an abrupt anomaly in the relative permittivity during heating of a poled 
NBT. The temperature dependence of remanent polarization (shown in 
the inset) starts to drop above 150°C. b, The neutron powder diffraction 
of NBT collected at different temperatures (wavelength of neu-
tron = 1.548183 Å). Important to note is the appearance of superlattice 
reflection of the ½{odd odd even} type such as 0.5{310} and 0.5{312} 
at 150°C. The intensity of these reflections increases fast above 200°C. 
These experiments confirm that the onset of thermal depolarization in 
NBT is due to appearance of in-phase tilted regions ~ 150°C. Being in-
compatible with ferroelectric distortion, these regions increasingly dis-
turb the long-range ferroelectric order established in NBT by the poling 
field45. 

change in the Curie point is reported at the MPB132–134 
(Figure 6 a–c). Since the depolarization temperature is an 
indicator of the strength of the cooperative interaction of 
the neighbouring dipoles in a ferroelectric material, the 
anomalous dip in the depolarization temperature at the 
MPB of NBT–BT appears to indicate weakening of fer-
roelectricity at the MPB of NBT–BT. Recently Adhikary 
et. al.132–134 have shown that as the MPB is approached, 
there is also an increasing intervention of a non-
ferroelectric distortion in the form of in-phase tilt (Figure 
6 d and e). The authors argue that the system’s propensity 
for this non-ferroelectric distortion causes weakening of 
ferroelectricity leading to a dramatic decrease in the de-
polarization temperature at the MPB. The authors also 
suggested that this could be one of the reasons which lim-
its the weak-signal electromechanical properties of NBT-
based systems. 
 With increasing technological interest in NBT-based 
piezoelectrics in high power applications17, attempts are 
also being made to improve their depolarization tempera-
tures145–150. Zhang et al.148 reported a composite approach 
to enhance the depolarization temperature without signi-
ficantly compromising the piezoelectric properties. The 
authors demonstrated that dispersed ZnO grains amid the 
ferroelectric grains of the MPB composition 0.94Na0.5- 
Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) led to increase in the 
depolarization temperature by ~40°C (i.e. from 90°C to 
130°C). They hypothesized that the free charge carriers in 
the semiconducting ZnO grains screen the depolarizing 
field in the ferroelectric grains and sustain ferroelectricity 
up to a relatively higher temperature. Mahajan et al.146 
have questioned this electrostatic argument and argued in 
favour of a structural mechanism to explain thermal de-
polarization. Riemer et al.149 argued that the sustenance 
of ferroelectricity up to higher temperature in the 0–
3 NBT–6BT/ZnO composite is caused by deviatoric 
stress field due to difference in the thermal expansion 
coefficients of ZnO and the ferroelectric grains. A nota-
ble increase in the depolarization temperature has also 
been reported in non-composite specimens such as in Zn-
doped NBT–6BT150 thereby suggesting that the compo-
site nature of the specimen need not be the primary factor 
influencing the delay in thermal depolarization of ZnO 
modified NBT-based piezoceramics. Recently Khatua et 
al.107 demonstrated that the depolarization temperature of 
NBT-based piezoceramics is grain-size dependent (Figure 
7). They established a coupled microstructural (grain 
size)–structural mechanism and show that the large grain-
sized NBT specimens show higher depolarization temp-
erature as compared to NBT with small grain size.  
Khatua et al.107 demonstrated that the increase in the de-
polarization temperature in large grain size specimen is 
caused by larger grains able to stabilize large ferroelectric 
distortion after poling. The authors rationalized that in-
stead of the screening-field stabilizing the ferroelectric 
phase in ZnO-doped NBT107, it is the larger grain size of 
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Figure 6. a–c, Depolarization temperature/Curie point as a function of composition around the respective morphotropic phase boundaries of (a) 
(1–x)Na0.5Bi0.5TiO3–(x)BaTiO3, (b) Pb(ZrxTi1-x)O3 and (c) (1–x)BaZr0.8Ti0.8O3–(x)Ba0.7Ca0.3TiO3 piezoelectric systems. Note the anomalous dip at 
the MPB in the NBT–BT and not so in the other two systems. d, The composition dependence of evolution of the 0.5{310} and 0.5{311} superlat-
tice peaks as observed in the neutron powder diffraction of the specimens. e, The peak intensity of these two superlattice peaks plotted on a norma-
lized scale (treating the background corrected peak count of the strongest reflection as 100). Note the significant increase in the intensity of the 
0.5{310} superlattice peak corresponding to in-phase octahedral tilt at the MPB (x = 0.06). A concomitant decrease in the intensity of the 0.5{311} 
superlattice peak, corresponding to the R3c phase is also evident at the MPB composition134.  
 
 
 

 
 
Figure 7. Scanning electron microscope images (secondary electron image) of NBT sintered at (a) 1150°C and (b) 1200°C. (c) Thermal depoling 
of the two specimens by measuring d33 as a function of the thermal aging temperature. Note the higher depolarization temperature of the NBT1200 
with significantly larger grain size107.  
 
 
the ZnO-modified specimens and the corresponding stabi-
lization of the relatively large ferroelectric distortion after 
poling in such specimens which causes the increase in the 
depolarization temperature. 

Summary and outlook 

Regulations on the restricted use of hazardous materials 
in several countries across the world have given a great 
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thrust to research and development in Pb-free piezoce-
ramics. While some lead-free compositions have found 
applications in niche products, a PZT like universal lead-
free piezoelectric material system for wide ranging appli-
cations is still not on the horizon. This urgency has  
however helped in discovering new Pb-free systems with 
large electromechanical properties, and helped in devel-
oping deeper scientific understanding of some of the 
complex issues related to structure–property correlations. 
Regarding NBT-based piezoceramics, it is now evident 
that a highly complex inter-relationship exists between 
synthesis conditions, grain size, length scale dependent 
crystal structures and physical properties. As highlighted 
in this review, an important structural feature associated 
with structural–polar disorder is the system’s propensity 
for stabilizing in-phase octahedral tilt which is incompat-
ible with ferroelectric order. Recent research shows that 
this propensity is maximum at the MPB of NBT–BT and 
NBT–KBT systems. The consequent weakening of the 
strength of ferroelectric interaction causes lowering of the 
depolarization temperature and, perhaps, also not allow-
ing the system to develop large piezoelectric response 
(comparable to what has been achieved in other Pb-free 
piezoelectrics). It is anticipated that large piezoelectric 
response in NBT-based piezoelectrics requires strategies 
which can suppress the system propensity for this in-
phase octahedral tilt. At the same time, this tilt disorder 
appears to be playing an important role in enabling the 
system to exhibit large high-field electrostrain making 
them interesting for high performance actuator applica-
tions.  
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