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The Indian sub-continent is characterized by extremely 
variable climatic regimes at present, and this strong 
climatic diversity is also reflected during late Quater-
nary and Holocene time scales. Fluvial archives across 
different morpho-climatic zones of India record vari-
able response to monsoonal fluctuations through time 
as preserved in patterns of sedimentary sequences and 
characteristic facies. This study has compiled the 
fluvial records from north and northwestern India to 
synthesize the palaeoclimatic information available 
from this broad region and to assess the coherence or 
otherwise of these records across widely different 
morpho-climatic regimes. Rivers across different re-
gions of India show widespread floodplain aggrada-
tion during Marine Isotope Stage (MIS)-5 but 
responded quite differently during MIS-4 e.g. degra-
dation in the Ganga plains and aeolian deposition in 
the western part. Significant discontinuities were  
developed in the interfluves of the Ganga plains dur-
ing MIS-3 and 2 whereas the western Indian rivers 
recorded variable response. The Holocene monsoonal 
fluctuations are manifested in widespread incision 
across western India and several events of valley filing 
in the Ganga plains. 
 
Keywords: Climate of the past, climate change, Indian 
summer monsoon, river response. 

Introduction 

THE issue of global climate change and its impact on  
socio-economic and natural resources has become a  
major concern in all parts of the world. To understand the 
recent climate changes more completely, it is useful to 
study the natural variability in climates of the past at 
longer (e.g. late Quaternary) as well as shorter (e.g. mil-
lennium and century) time scales. Such studies of the 
climate variability within the late Quaternary are of signi-
ficance to determine the magnitude, and rate of past  
climate changes, which may also provide some insights 
on future climate changes. 

 Northern India is drained by two major river systems, 
the Ganga/Yamuna system in the north and the Indus sys-
tem in the northwest. Besides, several moderate-sized 
rivers such as the Luni, Sabarmati, and Mahi drain west-
ern India. The rivers of the Indian sub-continent have ex-
perienced large fluctuations in discharge and sediment 
yield related to the variations in the Indian Summer Mon-
soon (ISM) that deliver more than 85% of total annual 
precipitation during mid-June through September. There-
fore, any changes in the monsoon strength and precipita-
tion, regional distribution and seasonality will impact the 
entire Indo-Gangetic plains (IGP) and neighbouring re-
gions. Fluvial sedimentary archives from the late Quater-
nary sequences of northern and northwestern India 
should, therefore, record a complex history of changes in 
the ISM that have been documented by detailed analyses 
of sedimentary facies characteristics, stratigraphy and  
depositional ages by several workers. The alluvial strati-
graphic records primarily represent aggradational and 
erosional/incisional history of the rivers that are in turn 
driven by forcing factors such as monsoonal precipita-
tion. Further, a significant rainfall gradient exists in the 
Indo-Gangetic plains in an east–west transect, which 
coupled with variable hinterland characteristics has gen-
erated a remarkable geomorphic diversity1. This also 
means that the river systems across the IGP may have had 
‘differential sensitivity’ to imposed climatic changes re-
sulting in significant spatial variability in fluvial response 
to climate change at late Quaternary and Holocene time 
scales. This study attempts to compile the available  
information on alluvial stratigraphic records across the 
IGP and neighbouring regions (Figure 1) to develop a  
regional scale understanding of fluvial responses to  
climate change. 

The southwest monsoon and its variability 

One of the first simulations of palaeoclimatic history of 
the northern hemisphere summer monsoon for the past 
150 ka using Global Circulation Models (GCMs)2 showed 
four distinct monsoon maxima at 10, 82, 104 and 126 ka 
that are closely related to solar insolation maxima. In 
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Figure 1. Mean annual rainfall (1998–2009) based on calibrated TRMM 2B31 data, a combined precipitation radar 
(PR)/TRMM Microwave Imager (TMI) rain-rate product with path-integrated attenuation at 4 km horizontal and 250 m 
vertical resolutions. Locations of stratigraphic sections and coring sites are: 1, 2, Thar Desert; 3, Sambhar lake; 4, South-
ern margin of the Thar; 5, 6, Luni plains; 7, Mahi; 8, 9, Sabarmati; 10, Gujarat plains; 11, Narmada-Bhima; 12,13, Ghag-
gar-Hakra; 14, Frontal Yamuna; 15, Alaknanda; 16, Ganga Plains; 17, Ganga-Yamuna interfluve; 18, Ganga-Gomati 
interfluve; 19, Yamuna plains; 20, 21, Belan. Locations of Mawmluh cave and Bitto cave are also shown. 

 
 
contrast, generally weaker monsoon conditions were  
simulated between 75 and 15 ka during which southern 
Asia was drier than today but with two monsoon maxima 
at ~58 and ~32 ka. Based on δ 18O variation in an ice core 
from the Guliya ice cap on the Qinghai–Tibetan Plateau, 
the interglacial stages (Marine Isotope Stage (MIS)-3 and 
5) and the glacial stages (MIS-2 and 4) have been 
marked3. Higher values of δ 18O in the Guliya ice core 
during the early Holocene compared to those in the mid-
Holocene were interpreted to represent warm and moist 
conditions3. A more recent record from the Mawmluh 
cave in Meghalaya shows strengthened ISM during 33.5–
32.5 ka, 15–12.9 ka (Bølling–Allerød) and 10–6.5 ka 
(early Holocene) but a weakened ISM during late-MIS-3 
that continued to early MIS-2 (26–23.4 ka)4. A high-
resolution speleothem oxygen isotope (δ 18O) record from 
Bittoo cave in Uttarakhand, northern India5 has provided 
millennial–orbital scale variations in the southwest mon-
soon dominated by orbital scale (23 ka long) cycles punc-
tuated by millennial-scale strong interstadial events. A 
compilation of Holocene climate based on lake records 
across the Indian subcontinent6 has shown an intensified 
monsoon between 9 and 5 kyr BP, corresponding to the 
globally recorded warm and wet period of the Holocene 
Climate Optima. After 4 kyr BP, a general trend in aridity 
is recorded throughout India. These results support the 

previous palaeoclimatic studies2,7 and suggest that the 
monsoonal conditions have varied on centennial–
millennial time scales within the Holocene. 

Fluvial archives from north and NW India:  
regional correlation and inter-comparisons 

Late Quaternary 

Late Quaternary alluvial stratigraphy of the eastern and 
western Ganga plains based on cliff sections and drill 
cores has been documented and reviewed earlier (Figure 
1)8–12. Table 1 and Figure 2 summarize the climatic inter-
pretations from studies in the Himalaya, IGP and western 
India rivers for the late Quaternary period. Stratigraphic 
sections supported by luminescence ages and radiocarbon 
dates have indicated that the western Ganga plains were 
dominated by floodplain aggradation, punctuated by pe-
riods of stronger pedogenic activity and local degradation 
during MIS 5–3 (100–35 ka)8,11,13,14. A set of drill cores 
from the Ganga valley coupled with cliff section strati-
graphy10,11,15 recorded a general weakening of ISM during 
the transition period from late MIS-5 to 4. This period is 
represented by channel (74 and 61 ka) and floodplain (at 
~89 ka) deposition in the Ganga valley16. A more recent 
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Figure 2. Climatic reconstruction and fluvial response in northern and northwestern India during the late Quaternary period. High-resolution 
speleothem oxygen isotope (δ 18O) record from Mawmluh cave4 in Meghalaya, northeast India and Bittoo cave in Uttarakhand, northern India5 are 
also shown. 

 
work based on micromorphology of the palaeosols in the 
Ganga–Yamuna (G–Y) interfluve has inferred three ma-
jor phases of humid conditions spanning 90–80 ka, 50–
30 ka and 10 ka with intervening drier phases17. These 
humid phases in the G–Y interfluve were characterized 
by palaeosols showing extensive illuviation, increased 
mineral weathering and strong pedogenic activity. In con-
trast, the dominance of pedogenic carbonates and weak 
pedogenic development were recorded in the palaeosols 
developed under relatively drier conditions during 75–
60 ka and 30–20 ka in the G–Y interfluve (Table 1). New 
data from the cliff sections along the Yamuna river has 
indicated alternate warm–wet and cold conditions during 
120–100 ka (MIS-5) represented by floodplain lithofacies 
followed by warmer and wetter conditions during 80–
54 ka (including MIS-4) characterized by channel facies18. 
Further south in the Ganga plains, mixed load river deposits 
in Belan valley14 provided dates between 85 and 72 ka  
(Table 1, Figure 2) suggesting sustained fluvial activity dur-
ing MIS-5 (ref 14). 
 In western India, the ISM maxima during late MIS-5 
and early MIS-3 is represented by aeolian sand deposition 
(at ~75 and ~55 ka) due to strengthened monsoonal winds 
in the Thar Desert19,20 whereas continued fluvial aggrada-
tion (86–64 ka) of multi-storied fining upward sand  
bodies in the Ghaggar–Hakra palaeochannel21 in NW  

India (Table 1) in response to hydrological changes 
across the transitions from late MIS-5 to early MIS-3 is 
observed. The MIS-5/4 transition in western India has 
been documented as gravel bedload aggradation (74 ka) 
in braided stream deposits in the Mahi river22,23, sheet 
flood deposits (~70 ka) in Luni river24, fluvial aggrada-
tion (~90 to 84 ka) and red soil formation (prior to 63 ka) 
in upper Sabarmati river25. Also, the MIS-4 in western 
India is represented by aridity (60–70 ka) as recorded in 
calcrete isotope records26.  
 The early MIS-3 (>40 ka) has been identified as a  
period of prolonged floodplain accumulation punctuated 
by pedogenetic modification and floodplain degradation 
in the Yamuna valley13 and Ganga valley16 as well as in 
the Mahi basin22, Sabarmati basin27 and Luni basin23 in 
western India. It has been suggested that such variable  
response across different regions was related to monsoonal 
fluctuations manifested as aggradation (higher floods) dur-
ing wetter and degradation during drier periods13. 
 During late MIS-3 and MIS-2, a major change in sedi-
mentation pattern was recorded in terms of discontinui-
ties manifested as gullying in the Yamuna plains (Kalpi 
section) and Belan valley14 (13.4 and 12.2 ka), aeo-
lian/lacustrine sedimentation in the Ganga valley (~27 ka, 
Bithur section15), and floodplain degradation in smaller 
interfluve rivers (13–9 ka, Mawar section13). During the 
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post-LGM time, the weakest phase of ISM was during 17 
to 15 ka, the Heinrich event H1 that was followed by an 
increase in ISM strength during the Bølling–Allerød from 
15 to 12.9 ka followed by a decrease in strength during 
Younger Dryas from ~12.8 to 11.7 ka (ref. 4). Records 
based on drill cores from the Ganga valley showed  
renewed fluvial activity (~16–11 ka)16 in the post-LGM 
period followed by incision, as well as southward migra-
tion of the Ganga river after 6 ka (ref. 15). In the Belan 
valley also, the evidence of localized eolian activity has 
been documented, interspersed with fluvial activity, dur-
ing 14–7 ka that coincided with the establishment of  
Palaeolithic and Mesolithic settlements after the 
LGM28,29. More recent work in the ravines of the margin-
al Ganga plains places ~14 ka as the cessation of aggra-
dation on these plains and initiation of incision leading to 
the formation of the ravines30. In the Ghaggar valley in 
NW India, the incision was interpreted based on the inset 
of younger deposits (~23 ka) into older fluvial deposits31. 
It is inferred that such incision possibly occurred during 
high precipitation4 in the late MIS-3. 
 In western India, the late MIS-3 is identified with re-
gional fluvial aggradation as recorded in the Luni basin33. 
This was followed by the weakest phase of ISM from 26 
to 23.5 ka identified by ephemeral sand–bed streams in 
the Luni basin24. The post-LGM time is identified as gra-
vel braided and mixed load sediments (12-14 ka) inset 
within the incised (c. 14 ka) Luni river24. However, sig-
nificant variability in fluvial response to climate change 
has been recorded in the upland western India that has 
been attributed to differences in basin area and rainfall34. 
The rivers such as Bhima and Narmada falling in high 
rainfall zone record massive aggradation during 26–14 ka 
in contrast to the rivers such as Sindhphana and Vel fall-
ing in a semi-arid zone which show a major erosional 
event around 14 ka. In the North Hill range in Kachchh, a 
period of non-deposition between 22 and 16 ka corres-
ponding to the LGM period followed by a major fluvial 
aggradation phase until 10 ka has been reported35. This 
phase was preceded by a bedrock incision event that was 
driven by the uplift along the Kachchh Mainland Fault 
(KMF) prior to 24 ka. Sedimentary records from the  
Gujarat plains36 suggest strong monsoonal conditions 
with some fluctuations between 37 and 27 ka followed by 
a gradual onset of aridity peaking at ~22 ka. Thus, flood-
plain and channel aggradation occurred respectively in the 
strong monsoon time during early37 and late MIS-3 (ref. 4) 
whereas, pedogenesis and calcrete formation happened in 
the mid MIS-3 during the time of relatively weak monsoon5 
(50 to 48 ka and 41 to 39 ka). 

Holocene 

The GCMs show that the climate system in the Indian 
sub-continent was relatively stable commencing from 
11,700 years (ref. 2). Therefore, there has been a very 

strong focus on the reconstruction of high-resolution 
records for post-LGM and Holocene periods to under-
stand the forcing parameters, which have governed the 
monsoonal strength during these periods7,38,39. In the 
Ganga alluvial plains, several Holocene lake records have 
been extremely useful for the reconstruction of the Holo-
cene climate variability in this region. Based on a compi-
lation of radiocarbon dates across the Indian sub-
continent, it has been suggested that the Holocene mon-
soonal fluctuations have strongly influenced the century 
to millennium scale variability in fluvial systems albeit 
with variable regional responses40. 
 In central Ganga plains, three major phases of alluvia-
tion (13.9–12.3, 11.9–11.2 and 9.8–9.0 cal ka BP) have 
been suggested before the onset of the Holocene climate 
optimum phase based on the clustering of the available 
radiocarbon dates40. This has been borne out by several 
studies based on cliff sections and drill cores in this  
region by several workers as described next. In the  
Ganga–Yamuna interfluve, a ~11 m high cliff section at 
Mawar along the Sengar river reveals floodplain degrada-
tion and formation of gully fill channels in the early  
Holocene (13–9 ka) period (Table 1, Figure 3) and this 
was interpreted to correspond broadly with a period of 
increasing precipitation and a probable increase in trans-
port capacity of rivers13. In the Ganga–Gomati interfluve, 
a strong fluvial activity between 13 and 8 ka was fol-
lowed by minor lacustrine sedimentation and a brief pe-
riod of aeolian aggradation (post 6 ka) forming alluvial 
ridges41. The presence of lacustrine and aeolian deposits 
indicates a decline of fluvial activity in mid-Holocene 
time and reworking of fluvial sand by aeolian processes. 
Major alluviation phases in late Holocene (3.6–2.8 cal ka; 
1.1–0.9 cal ka) have been recorded and it has been sug-
gested that peak monsoon phases during the Holocene 
generally lacked any clustering of radiocarbon dates as 
these are generally marked by channel incision40. 
 The transition from late Pleistocene to Holocene, 
marked by the intensification of ISM2, shows a contrast 
of limited aggradation with dominant incision (11 and 
9.7 ka) north of the frontal thrust with that of continuous 
aggradation (12–6 ka) to the south42. The early Holocene 
(~9.5 ka) in the Higher Himalaya is characterized by the 
incision of the valley fills induced by high fluvial dis-
charge attributed to an intensified monsoon as recorded in 
the Alaknanda valley43,44. A major valley aggradation 
phase has also been documented in the Alaknanda val-
ley45 during 15–8 ka. In the upstream reaches of the 
Alaknanda valley, higher incision rates of 4 mm/a and 
5 mm/a based on cosmogenic radionuclide (CRN) dating 
of strath terrace were documented at Srinagar and Nanda 
Devi respectively in Garhwal Himalaya during the mid-
Holocene time46,47. 
 The frontal region in the Yamuna valley48 has three 
Holocene aggradation phases (Table 1) recorded between 
7 and 4 ka; 3 and 2 ka and <2 ka preceded by three 
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Figure 3. Climatic reconstruction and fluvial response in northern and northwestern India during the Holocene period. 
 
 
incision events during 11–7 ka, 4–3 ka and <2 ka. Peat-
lake sediments in the Chandra valley in NW Himalaya49 
show elevated δ 13C values and low TOC values, suggest-
ing a weakening of monsoon between 12.8 and 11.6 ka 
corresponding to Younger Dryas event followed by inten-
sification of ISM during 11.6 and 8.8 ka. Based on geo-
chemical and pollen data, this study recorded three major 
cold-dry events, namely (a) ~8810 to 8117 cal year BP 
(~8.2 ka cold event), (b) ~4808 to 4327 cal year BP (pre-
ceding 4.2 ka cold-arid period), and (c) ~1303 to 1609 cal 
AD (equivalent to the LIA event). 
 Using clay minerals and soil micromorphology as 
proxies for climate change and pedo-sedimentary envi-
ronments in the Central Ganga plains50,51, three distinct 
phases have been interpreted in Holocene, namely (i) 
12,920–7390 cal year BP: arid climate, (ii) 5730 and 
4150 cal year BP: warm and wet climate and (iii) post-
4150 cal year BP: arid to sub-humid phase. In the Sharda–
Gandak interfluve area, two terrace surfaces in the Ghag-
hra–Rapti interfluve were dated as 11.5 ka and 5.5 ka, 
suggesting a fluvial history influenced by rapid deposi-
tion and avulsion. 
 Lake records in the Ganga plains have provided a bet-
ter-resolved palaeoclimatic data for the Holocene period 

(Figure 3). The early Holocene is marked by a cool and 
dry climate (14–12.5 ka and 11.5–10.5 ka), and the mon-
soonal intensification between 12.5 and 8.7 ka brought in 
warm and humid climate52,53. The warm and moderately 
humid condition continued during 8.5–6.4 ka and got 
wetter during 6.4–3.1 ka as inferred from the pollen data 
and stable isotope analysis of gastropod shells from the 
ox-bow lakes in the central Ganga plains54,55. This was 
followed by a weakening of monsoon and reduced rain-
fall between 3.1 and 1.1 ka marked by the dominance of 
open grasslands particularly after 1100 yrs cal BP54,55. 
 In NW India, major fluvial activity ceased owing to the 
avulsion of the large river from the Ghaggar–Hakra  
palaeochannel31 around ~8 ka and the palaeo-Yamuna 
River56 much before that (possibly prior to 41 ka). There-
fore, the Holocene period is represented by fine-grained 
sediment of ephemeral streams (7.1–4.0 ka) along with 
aeolian sediments. Similarly, fine-grained fluvial deposi-
tion between 6 and 4.3 ka has been reported in the  
upstream in the Ghaggar–Hakra57,58 followed by a decline 
in fluvial activity at 3.4 ka in late Holocene; while in the 
downstream, major fluvial activity (~7.3 ka and ca. 5 ka) 
ceased in the Ghaggar basin59,60 (Table 1) with the start of 
dune accumulation after 4.5 ka and before 1.4 ka. The 



PALEOCLIMATE STUDIES IN INDIA 
 

CURRENT SCIENCE, VOL. 119, NO. 2, 25 JULY 2020 239

early Holocene in Sutlej is identified by periodic but pro-
gressive incision between 10 ka and 8.7 ka pre-dating the 
Harappan settlements60. In contrast, both fluvial and  
aeolian deposition is reported from the Ghaggar-Hakra 
interfluve61 with fluvial deposition during early to mid-
Holocene (8.5 to 3 ka) with more intense fluvial 
processes prior to 5 ka, whereas aeolian accumulations 
were identified at 9 ka, and between ~7.1–5.7 ka and ~2–
1.7 ka. Aeolian activity and dune building in the Thar 
Desert during early Holocene (10.14 ± 0.69 ka) continued 
until 6.86 ± 0.49 ka with mid- and late Holocene activity 
at ~5 ka and ~3.5 ka coinciding with periods of lower 
precipitation62. 
 In western India, the early Holocene period of relatively 
stronger and intense monsoon is represented by erosional 
events, e.g. incision in Sabarmati basin63 at ~12 ka  
followed by fluctuating climatic conditions with frequent 
arid events including the 4.2 ka cold event35,36,40,64. Based 
on the clustering of the radiocarbon dates, major alluvia-
tion phases in the Deccan peninsula40 during the Holo-
cene have been identified as 12.8–11.2, 10.8–8.9, 8.1–6.7 
and 5.1–3.9 cal ka. Variable fluvial responses are mani-
fested as fluvial and aeolian deposition (9–5 ka) in Luni, 
Mahi and Sabarmati rivers23,27,65. Aggradation in both 
Narmada and Godavari rivers in western India has been 
documented34 in the early Holocene but an erosion in the 
Bhima basin highlights differential fluvial response to 
climate change. In the Northern Hill Region (NHR) in 
Kachchh35, the period 10–8 ka lacks any sediment accu-
mulation but a major aggradation phase was recorded  
between 8 and 4 ka. In Gujarat plains, the monsoon 
strengthened gradually after the LGM (18–12 ka) with a 
short reversal around 12–11 ka that has been attributed to 
the Younger Dryas cooling event36. The regional aridity 
in this region between 6 and 3.5 ka was recorded as indi-
cated by the aeolian sand sheet followed by a short-lived 
humid phase after ~2 ka that includes the Medieval Warm 
Period (MWP)36. High-resolution lake records from south 
of Narmada, particularly from Lonar, have provided some 
interesting data from the core monsoon zone of central 
India. An increased detrital flux at Lonar66,67 in response 
to intensified monsoon from ~10 ka lasted up to ~6 ka 
followed by two short arid phases from 4.6 to 3.9 ka and 
2 to 0.5 ka. 
 High-resolution lake records from the Thar and Thar 
margin have shown that the monsoon was strengthened 
between 9.4 and 8.3 ka as manifested in high lake levels 
and salinity variations during this period64,68,69. A more 
recent regional synthesis of lake records from the Indian 
sub-continent6 shows a peak in monsoon strength bet-
ween 9 and 5 ka corresponding to the global Holocene 
climate optima. An abrupt dying out of Riwasa70 has been 
recorded at 8.2 ka followed by wetter monsoon condi-
tions and highest lake levels at ~6 ka in Didwana71;  
Nal Sarovar72; Lunkaransar68. An abrupt phase of desic-
cation at ~4.1 ka has been documented at Kotla Dhar70 

and then complete desiccation of several lakes between 4 
and 3 ka has been noted32,68,71 followed by a general 
aridity trend throughout India. 

Last millennium 

High-resolution records, particularly from fluvial  
archives, documenting the climatic events in the Indian 
subcontinent during the last millennium are very few. 
However, some fluvial cut off lakes and palaeoflood 
records in northern and NW India have been compiled 
here to summarize the climatic history of this region.  
Recent compilations of lake records and other archives 
from different geomorphic and climatic regions across 
India6,73 suggest that the last millennium witnessed warm 
and wet phase between 1.05 and 0.7 ka year BP in the 
Central Ganga Plains as manifested in reduced δ 18Ocarb 
(‰) values in sediments from the Ropan Chappra lake74, 
roughly corresponding to the Medieval Climate Anomaly 
(MCA). Pollen records from peat-lake deposits in Chan-
dra valley in NW Himalaya show moderate expansion of 
broad-leaved, non-arboreal pollens (NAP) and ferns  
between ~1158 and 647 cal year BP (792–1303 cal AD) 
and this coupled with increased TOC and LOI content in 
sediments suggest climatic amelioration during this  
period that roughly corresponds to the Medieval Warm 
Period (MWP)49. 
 Lake records from the Higher and Lesser Himalaya for 
the Little Ice Age (LIA) period (0.7–0.1 ka BP) reveal a 
cold and dry phase6 along with a weakened ISM. This is 
exemplified by a decline in broad-leaved taxa and mea-
dow vegetation during 647–341 cal year BP in the peat-
lake deposits in Chandra valley suggesting cold–dry and 
weaker ISM49. While it is generally agreed that the ISM 
was strong during the MCA and relatively weak during 
LIA, it has been suggested that the region influenced by 
the Westerlies experienced increased precipitation during 
LIA linked with the intensified western disturbance over 
NW India during this period73. 
 In NW India, late Holocene dune accumulation 
(1.92 ± 0.16 ka and 1.07 ± 0.09 ka) in the Thar desert62 
links with the gradual drying of the fluvial channels in 
this region; recent dune activity (between 600 and 200 
years ago) in the area coincides with reduced rainfall 
600–200 years ago75. 
 An important archive for reconstructing the last mil-
lennium palaeoclimatic record is the palaeoflood events 
identified by the slackwater deposits. A palaeoflood 
record from the Alaknanda valley suggests a wetter cli-
mate 200–300 years ago while an older flood event at 
1.2 ka was interpreted as a local sediment mobilization 
during a relatively drier climate43. Several palaeoflood 
records are available from western India and some of the 
best-preserved deposits have been found in the Narma-
da76–78, Tapi79, Luni80 and Mahi81,82 basins. A recent 
compilation of palaeoflood records83 shows that there is a 
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general absence of large floods during MWP in the  
peninsular as well as Himalayan rivers. Several rivers in 
Gujarat such as Mahi82,84, Sabarmati54 and Narmada78 
recorded high magnitude floods during weak monsoon 
periods (e.g. 0.5 and 1.7 ka), possibly due to time lag in 
response to ISM variations65,85. This observation seems to 
be corroborated by the analysis of historical floods as 
well76. A clustering of floods during the LIA has been  
reported83 and this has been linked to the intra-seasonal 
monsoonal variability dominated by ‘active’ and ‘break’ 
spells in the core monsoon zone86,87. A 2000-year record 
of palaeofloods from Narmada78 suggests that exception-
ally high floods occurred during 400–1000 AD and post 
1950 AD whereas the period 1400–1950 AD was characte-
rized by lower magnitude floods. The palaeoflood record 
from Tapi88 suggests 6–9 high floods in the post-1950  
period; the highest being of the order of 4000 m3/s. 

Concluding remarks and future perspectives 

Our compilation of climatic reconstructions for northern 
and northwestern India indicates significant variability in 
fluvial response to climate change during the late Quater-
nary. Records in the Himalaya and the IGP generally 
show a first-order coherence in terms of aggradation and 
degradation events (Figure 2). Our synthesis shows that 
the wetter condition during MIS-5 was characterized by 
widespread floodplain aggradation in rivers across the 
Indian subcontinent. A general weakening of ISM during 
the MIS-5/4 transition is marked by channel and flood-
plain deposition in Ganga valley and gravel deposition in 
several western Indian rivers. The MIS-4 across India is 
represented by aridity as recorded in the aeolian deposi-
tion and calcrete records in western India and degradation 
of river floodplains and non-fluvial deposition in the 
Ganga plains. The early MIS-3 records a prolonged 
floodplain accumulation punctuated by pedogenic mod-
ification in the Ganga valley as well as in the western  
Indian rivers. A major change in the depositional environ-
ment was recorded in terms of discontinuities manifested as 
gullying and/or aeolian/lacustrine sedimentation in the 
Ganga plains during late MIS-3 and 2 whereas the river  
basins in western India record a mixed response (aggrada-
tion or degradation) depending upon their rainfall regime 
along a gradient. The Holocene monsoonal fluctuations are 
manifested as several periods of aggradation in the Ganga 
plains, cessation of major fluvial activity in NW India, and 
strong erosional events in western India. While most work-
ers have documented the cessation of large scale fluvial  
activity in NW India in early Holocene21,31,58–60, thereby re-
futing the sustenance of the Harappan civilization by a large 
river, a recent work89 suggests ‘reactivation’ of a large river 
between 9 and 4.5 ka that facilitated the development of 
Harappan settlements along its banks. High-resolution lake 
records from the Thar region as well as the Ganga plains 

show high lake levels during early Holocene and then a  
decline in summer monsoon strength is manifested in dry-
ing up of these lakes. 
 It is also important to note that the fluvial response in 
terms of aggradation or degradation primarily depends 
upon the sediment to water ratio and therefore aggrada-
tion may occur during wet as well as dry climate and this 
explains, in some cases, the differential responses of river 
systems across the different climatic regimes. Further, 
while sediment production in the hinterland is controlled 
by tectonic processes, its mobilization into the alluvial 
plains depends upon the water fluxes which is a function 
of climate. In western India, several river systems lie on 
the Thar desert margin and they are extremely sensitive 
to climate change during the late Quaternary period. This 
is reflected in frequent switching between the fluvial and 
aeolian modes of deposition as well as tectonic changes 
in fluvial styles at several sites. 
 Further, fluvial systems are inherently discontinuous in 
terms of their depositional records and preservation  
potential as manifested in the occurrence of major or minor 
discontinuities. It is often difficult to establish regional co-
herence across wide regions based on fluvial records and 
this is attributable to the region-specific river behaviour as 
having resulted from the combined effect of the existing 
climatic condition as well as geomorphic setting. 
 At shorter time scales, high-resolution records from 
fluvial cut off lakes and palaeoflood deposits remain  
potentially significant for palaeoclimatic reconstruction 
for the last millennium. Some recent studies90 have dem-
onstrated that the coupling of such proxy records with 
model simulations can significantly improve our under-
standing of short term climatic variability. It should, 
therefore, be a priority to augment this database on  
palaeofloods and palaeo discharge estimation for obtain-
ing a better process-based understanding of river  
response to climate change, particularly over the past few 
millennia. 
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