
REVIEW ARTICLES 
 

CURRENT SCIENCE, VOL. 119, NO. 1, 10 JULY 2020 44 

†Equally contributed. 

*For correspondence. (e-mail: s.rakshit@icar.gov.in) 

Invasion of fall armyworm (Spodoptera  
frugiperda) in India: nature, distribution,  
management and potential impact 
 
S. B. Suby1,†, P. Lakshmi Soujanya1,†, Pranjal Yadava1, Jagadeesh Patil2,  

K. Subaharan2, G. Shyam Prasad3, K. Srinivasa Babu3, S. L. Jat1, K. R. Yathish1,  

Jyothilakshmi Vadassery4, Vinay K. Kalia5, N. Bakthavatsalam2, J. C. Shekhar1  

and Sujay Rakshit1,* 
1ICAR-Indian Institute of Maize Research, Punjab Agricultural University Campus, Ludhiana 141 004, India 
2ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India 
3ICAR-Indian Institute of Millets Research, Hyderabad 500 030, India 
4DBT-National Institute of Plant Genome Research, New Delhi 110 067, India 
5ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India 

 

Fall armyworm (FAW; Spodoptera frugiperda (J. E. 
Smith)) is emerging as the most destructive pest of 
maize in India since its report in May 2018. Its rapid 
spread to more than 90% of maize-growing areas of 
diverse agro-ecologies of India within a span of 16 
months presents a major challenge to smallholder  
maize farmers, maize-based industry, as well as food 
and nutritional security. FAW has been reported from 
other crops as well like sorghum and millets with  
varied proportion of economic damage. In this review, 
the transboundary movement of FAW, role of ecology, 
its spread and damage are discussed. Management of 
FAW by developing and deploying various pest  
management tools is elaborated. The role of agro-
ecological measures for reducing FAW damage with 
African experiences has also been highlighted. 
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MAIZE (Zea mays L.) is the most important cereal crop 

being cultivated in an area of 180.63 m ha in 165 coun-

tries across the world with a production of 1134 million 

tonnes growing at an average annual rate of 3.46%  (ref. 

1). It is widely valued for its extensive use as feed, fodder 

and as raw material for a large number of industrial  

applications2. In India, maize is the third most important 

cereal after rice and wheat, both in terms of area and pro-

duction, registering maximum growth rate among food 

crops3. Though maize is emerging as an important indus-

trial crop in India, its productivity (3.1 tonne/ha) is much 

lower than the world average (5.62 tonne/ha)3. Besides 

socio-economic factors like low adoption of hybrids and 

lack of policy support to the maize farmers, biotic and  

abiotic stresses are significant bottlenecks in attaining 

fullest potential of the yield gains in maize. In India till 

recently three insect pests, viz. spotted stem borer (Chilo 

partellus Swinhoe), pink stem borer (Sesamia inferens 

Walker) and shoot fly (Atherigona spp.) were of major 

consequences. Since the report of the invasive pest fall  

armyworm (FAW; Spodoptera frugiperda J. E. Smith) in 

maize in May 2018, it has spread rapidly to all maize-

growing ecologies of India, except Himachal Pradesh, 

and Jammu and Kashmir within a span of 16 months, 

casting a shadow on maize production in the country. In 

this article, we discuss the ecology and behaviour, extent 

of the spread of this insect in India and beyond in the 

sub-continent, strategies to manage its potential impact 

on maize production. 

Transboundary movement of fall armyworm 

Fall armyworm (FAW) is native to tropical and subtropical 

Americas and is known as a sporadic pest in the United 

States since 1797. A severe outbreak of FAW on corn and 

millets was documented in 1912 (ref. 4). In Latin Ameri-

ca, FAW was observed to cause up to 73% yield loss in 

maize5. Outside Americas FAW first invaded Africa, as 

reported from Sao Tome, Nigeria, Benin and Togo in 

2016 (ref. 6). In India, its presence was confirmed in May 

2018 by the University of Agricultural and Horticultural 

Sciences, Shivamogga, Karnataka7. Since then, it has 

spread within the country and moved eastwards to coun-

tries bordering India, viz. Bangladesh (December 2018), 

Myanmar (December 2018), Sri Lanka (January 2019), 

China (January 2019) and Nepal, and to Thailand (De-

cember 2018), South Korea and Japan (July 2019). Tem-

poral spread of FAW within India has been documented8 

since its report from Karnataka in May 2018. FAW 

spread from peninsular India to the North and North East 

during 2018 and early 2019 respectively. With the 
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Figure 1. Temporal spread of fall armyworm (FAW) in India from May 2018 to August 2019, colouration of the states 
indicates reporting of FAW and does not indicate the intensity of damage (reproduced from Rakshit et al.) 

 

 

progression of the 2019 monsoon, FAW incidence has 

been reported from the northern and northwestern parts of 

the country as well (Figure 1). 

Host preference and economic damage 

FAW is a polyphagous pest reported to attack 353 plant 

species belonging to 76 plant families9. However, it is 

primarily a pest of grasses, preferring maize the most. 

Besides, it can also cause economic damage to other  

cereals and millets. FAW attacks maize from seedling 

emergence to ear development stage. The female lays 

over a thousand eggs in single or multiple clusters. Upon 

hatching, the early instar secretes silken thread and is 

dispersed through wind (Figure 2  a). The first and second 

instar larvae found on the upper surface of the leaves 

scrape the epidermis resulting in elongated papery win-

dows all over the leaves (Figure 2 a and b). Third instar 

onwards, the larvae settle in the whorl and their feeding 

renders a series of holes and faecal matter in the unfurl-

ing leaves. Their feeding rate increases with growth; thus, 

the size of holes and amount of faecal matter also  

increase (Figure 2 c). The sixth instar larvae defoliate 

heavily and leave a large amount of faecal matter in the 

plant whorl. Older larvae sometimes bore the developing 

internodes of early whorl stage of maize and cause plant 

death (Figure 2d). The larvae may attack tassel (Figure 

2 e) and developing ears (Figure 2f ) as well. First to third 

instar larvae of FAW are quiet small and eat 2% of the  

total foliage consumed in their life cycle, while it is 

4.7%, 16.3% and 77.2% for the fourth, fifth and sixth  

instars which heavily defoliate the crop10. Besides maize, 

FAW incidence was closely monitored in sorghum and 

other millet fields during both kharif 2018 and rabi 2018–

19. Based on the whorl damage, sorghum was found to be 

the most preferred host among millets (60.1%), followed 

by pearl millet (41.4%), barnyard millet (22.9%) and  

finger millet (10.2%)11. 

 FAW consists of two strains, viz. corn strain ‘C’ which 

feeds predominantly on maize, sorghum and cotton, and 

rice strain ‘R’ which prefers rice and turf grass12. Mo-

lecular genetic diversity studies suggest that the FAW  

population in India belongs to the ‘R’ strain based on  

polymorphisms in the Cytochrome oxidase subunit I gene 

(COI)13. Later, using other markers the Indian FAW pop-

ulation was found to be predominantly ‘C’ type by Tpi 

and ‘R’ type by COI, which strongly indicates inter-strain 

hybrids of FAW in Africa and India, arising from a com-

mon small founder population14. The FAW genome, as 

sequenced from Sf21 cell line, is 358 Mb in size with 

11,595 genes and shares significant homology with that 
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Figure 2. (a) Dispersal of FAW 1st instar larvae through ballooning (arrow marks), (b, c) damage of maize foliage, (d) dead maize plants by 
FAW boring into the developing stalk, (e) tassel damage and ( f ) cob damage. 

 

 

of the silkworm genome 15. However, FAW genome from 

Sf9 cell line reported 451 Mb genome size. The genomes 

of both C and R strains as sequenced are 438 and 371 Mb 

respectively16. The C strain contains 21,700 protein cod-

ing genes, whereas the R strain is predicted to have 

26,329 genes. Significant expansions of genes associated 

with chemosensation and detoxification were found in 

FAW. These expansions are largely attributable to  

tandem duplications, a possible adaptation mechanism 

enabling polyphagy. Recently, two chromosome-level 

FAW genomes were reported using one male and one  

female adult moth collected from the Yunnan Province, 

China17. The genome size was found to be 542.42 Mb for 

male and 530.77 Mb for female with 22,201 predicted 

genes in the male genome. A notable expansion of  

cytochrome P450 and glutathione S-transferase gene 

families often associated with pesticide detoxification and 

tolerance was found. 

Strategies adopted for management 

Host plant resistance 

Host plant resistance (HPR) to herbivorous insects is 

widely involved in crop protection against insect pests. A 

number of maize germplasm sources of temperate and 

tropical background have been reported as sources of  

resistance to FAW due to low foliar damage 

(Supplementary Table 1). First reported FAW resistant 

lines were selected from Antigua 2D  (B10  B14) and 

Texas Experimental Hybrid 6417 (ref. 18). Classical plant 

breeding efforts over the years by researchers from 

USDA-ARS on germplasm of Caribbean origin, particu-

larly Antigua, yielded a number of temperate maize  

inbred lines combining resistance to FAW and south-

western corn borer. Resistant lines developed are present-

ed in the Supplementary Table 1 (refs 19–32). Since the 

onset of FAW attack in India, a large set of diverse maize 

germplasms are being screened for FAW resistance at the 

Winter Nursery Centre of ICAR-IIMR, Hyderabad under 

natural infestation, assured with early planting of suscep-

tible lines all around the field. In this process, seven 

promising maize lines, viz. DMR E63/CML 287-4-14-2B, 

DMR E63/CML 287-2-3-2, DMR E63/CML 

287-3-3-, DMR E63/CML 287-4-14-3B, DMR 

E63/CML 287-4-89-4B, DMR E63/CML 287-5-4-1B and 

P31C4S5B-85-##-1-4-5-B*5-1-B-1 have been identified 

as resistant to FAW, which needs further confirmation. 

 Resistant sources against FAW have been reported  

in sorghum at various crop growth stages33,34. Sorghum 

accession, plant introduction (PI) 147573 was resistant to 

https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
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FAW over MP 708 (resistant check), but at 14 days after 

infestation all the 9 sorghum accessions were as resistant 

as MP 708 with significantly less damage than AB24E 

(susceptible check). This suggests that sorghum possesses 

induced resistance in the whorl35. FAW resistance in 

pearl millet was also reported in Tifton no. 153 and  

Tifton no. 240, and antibiosis was attributed to be the  

resistance mechanism36. 

Mechanisms of host plant resistance 

Plants combat herbivorous insects by means of physio-

logical, morphological and biochemical defence mechan-

isms. Mophological features attributed to FAW resistance 

include leaf toughness37, trichome density38 and thicker 

cell wall complex of epidermal layer39 which acts as a 

barrier to prevent insect feeding. The biochemical traits, 

viz. abundance of crude and acid detergent fibre40 were 

reported to confer FAW resistance in maize. Higher con-

centration of amino acids, viz. aspartic acid and tyrosine41 

confers FAW resistance in maize, whereas higher concen-

trations of total nitrogen was highly correlated with FAW 

resistance in sorghum34. Higher amounts of leaf cuticular 

lipids41, polyphenol compounds maysin and chlorogenic 

acid42 and benzoxazinoids (BXs) play a crucial role  

in maize defence against insect herbivores43. The FAW 

resistant Antiguan inbred MP 708 contains elevated  

defensive proteins44; higher levels of JA45 and (E)--

caryophyllene-JA responsive indirect defence volatile46. 

 The myriad mechanisms of FAW resistance reported 

above in diverse maize germplasms suggest the quantita-

tive nature of resistance. The key genomic regions were 

identified on chromosomes 1, 5, 7 and 9 in MP 704 and 

MP 708 (refs 47, 48; these have combined resistance to 

both FAW and southwestern corn borer). Subsequently, 

using composite interval mapping (CIM) and multiple  

interval mapping (MIM), 24 QTLs explaining up to 

26.5% of the total phenotypic variation, and 36 QTLs and 

10 interactions for FAW leaf-feeding damage in MP 704 

were identified49. However, no resistance gene (R gene) 

has been identified to confer tolerance against chewing 

herbivores in maize or any other crop plant so far. 

Transgenics 

The advent of transgenic maize expressing Bt proteins 

was a significant progress in insect–pest management. In 

maize, a total of 179 events have been commercially  

approved for cultivation with lepidopteran insect resis-

tance trait across 13 countries. All these events harbour 

one or more combinations of 13 different cry genes 

(Supplementary Table 2). Out of the 13 cry genes, 7 have  

been specifically identified for conferring FAW resis-

tance. These are vip3Aa20, cry1F, cry1Fa2, cry1A.105, 

cry2Ab2, cry1Ab and mocry1F. The plant-expressed Bt 

proteins confer resistance to lepidopteran insects by se-

lectively damaging their midgut lining. Bt maize, espe-

cially with Cry1F was found to reduce more than 50% of 

the FAW population50. In the last few years, field-

evolved resistance to Cry1F and Cry1Ab expressing 

maize has been reported in some FAW populations from 

Puerto Rico, Florida and North Carolina51,52, Brazil53 and 

Argentina54. Field observations showed that Cry1Ab  

maize provided partial control of Spodoptera frugiperda 

in field trials conducted with drought-tolerant Bt maize 

varieties in East Africa55. The emerging scenario of 

breakdown of resistance of Bt transgenics against some 

populations of FAW points to the need of greater atten-

tion to insect resistance management strategies at the 

field level. 

Management of fall armyworm 

Since the occurrence of FAW, chemical insecticides have 

been widely used for its management in maize. The effi-

cacy of selected synthetic insecticides was tested against 

FAW in maize56. Control of FAW in early instar is more 

effective than attempting controlling at late stages when 

they are stronger to resist control measures and the dam-

age caused is also more significant. Therefore, monitor-

ing activities together with need-based application of 

insecticides is necessary for sustainable management  

of FAW. Currently, in India, the Central Insecticide 

Board and Registration Committee (CIB and RC) has 

recommended the insecticides, namely chlorantraniliprole 

18.5 SC @ 0.4 ml/l, spinetoram 11.7 % SC @ 0.5 ml/l, 

thiamethoxam 12.6% + lambda cyhalothrin 9.5% ZC @ 

0.25 ml/l for minimizing the damage in maize. The Gov-

ernment of India (GoI) has recently recommended the use 

of cyantraniliprole 19.8% + thiamethoxam 19.8% FS @ 

6 ml/kg seed as seed treatment against FAW. 

Biorational pesticides 

Integrated use of various non-chemical management  

options significantly reduces dependence on chemical 

pesticides for the management of insect pests. Various 

options available to manage FAW are discussed below. 

 

Entomopathogenic microbes, nematodes and viruses: 

Entomopathogens such as fungi, bacteria, nematodes and 

viruses have shown potential for the control of FAW57–62 

(Supplementary Table 3). Among the naturally occurring 

insect viruses, multiple nucleopolyhedrovirus (SfMNPV) 

has potential for use in the management of FAW63.  

Natural epizootics of Metarrhizium rileyi (Figure 3) were 

reported to cause significant larval mortality ranging 

from 1.87% to 18.30% in Karnataka64. It was observed 

that entomofungal pathogen Nomuraea rileyii caused 10–

15% larval infection65,66. 

https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
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Parasitoids and predators  

Surveys have documented large numbers of parasitoids 

and predator species emerging from FAW larvae from 

various studies65–71. Larval parasitoids Coccygidium 

melleum, Eriborus sp., Exorista sorbillans and predators 

Harmonia octomaculata, Coccinella transversalis were 

reported65. Other parasitoid species that emerged from 

FAW were egg parasitoids Telenomus sp., Trichogramma 

sp., gregarious larval parasitoid Glyptapanteles creatono-

ti and solitary larval parasitoid Campoletis chloridae66; 

other than these predators Forficula was also reported66. 

Solitary endo-parasitoids Cotesia marginiventris (Cres-

son) and Chelonus insularis Cresson. were reported from 

FAW larvae69,70 (Supplementary Table 4). Egg larval  

parasitoid Chelonus sp. was found predominant, which 

has a potential for biological control of FAW71. Other 

common FAW predators observed in maize are penta-

tomid bugs, spiders, predatory wasps, ladybird beetles,  

mirid bugs, earwigs and rove beetles71. 

Botanicals 

Plant-derived pesticides are attractive alternatives to syn-

thetic insecticides and constitute an affordable tool for in-

sect pest management. Several plant species have shown 

insecticidal properties against FAW72–74 (Supplementary 

Table 5). Extracts of neem, Azadirachta indica, boldo Peu-

mus boldus Molina75, Schinnus molle, Phytolacca dodec-

andra56, Argemone ochroleuca Sweet (Papaveraceae)76, 

garlic + neem77 showed efficacy against FAW larvae. At 

present, potent botanicals against FAW have to be identi-

fied. Multi-location field studies and compatibility of  

botanical pesticides with other pest management options 

should be conducted to assess their efficacy. 

Semiochemicals 

The pheromone composition of FAW females has been 

identified as a major and two minor components. (Z)-9- 

 

 
 

Figure 3. Nomuraea rileyi infected FAW larva. 

tetradecenyl acetate (Z9-14 : OAc) was a major compo-

nent of the sex pheromone of FAW females78 and the 

same has been identified from the moths collected from 

India. FAW pheromone has been recommended for moni-

toring and mass trapping. Efforts are being made to uti-

lize the pheromone blends for mating disruption in FAW. 

The field efficacy of the lures ranges from 20 to 30 days 

and warrants frequent replacement, which adds to the cost 

of lure and labour for replacing them. The efficacy and 

dissipation of the release matrix is to be evaluated across 

the maize-growing tracts of India. 

Agro-ecological interventions for management  

Agro-ecological interventions are a core component of 

IPM integrating with breeding for pest resistance, biologi-

cal control and safer pesticides. Cultural practices  

improve crop health, reduce pest population, and also 

provide shelter and alternative food sources to natural en-

emies of FAW, thus facilitating natural control79. Details 

of cultural and landscape management options are pro-

vided in the Supplementary Table 6 (refs 80–83). 

 In habitat management through ‘push–pull’ techno-

logy, pest-repelling legumes like Desmodium spp. or 

Tephrosia planted as intercrop ‘push’ the insect outside 

crop areas, while on the border pest-attractive trap plant  

species such as napier grass or Brachiaria spp. are plant-

ed to ‘pull’ the pest towards them. Intercropping with 

Tephrosia and Desmodium was found to reduce the num-

ber of FAW eggs laid on maize84. Identifying the  

location-specific intercropping/mixed cropping systems 

suited to varied agro-ecological regions for India could be 

the most sustainable technology, especially for smallholder 

farmers. Similarly, managing FAW by crop rotation,  

nutrient and water management needs standardization in 

the Indian conditions. 

Integrated pest management strategy for  
management  

An IPM package for FAW in maize was made by ICAR-

IIMR in collaboration with ICAR-NBAIR and communi-

cated to various stakeholders. Infestation threshold for 

the crop growth stages and spray schedule have been  

documented8. 

Intensity in India and possible impact on maize 
production 

The cumulative data published by the Department of Ag-

riculture Cooperation and Farmers Welfare, GoI on 25 

June 2019, indicate that Karnataka has the highest area 

affected with FAW (211,300 ha), followed by Telangana 

(24,288 ha), Maharashtra (5144 ha) and others8. FAW has 

https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
https://www.currentscience.ac.in/Volumes/119/01/0044-suppl.pdf
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been reported to cause economic damage in Tamil Nadu, 

Karnataka, Andhra Pradesh, Telangana and Maharashtra 

during rainy and post-rainy seasons of 2018 and 2019; 

Tripura during the last week of March 2019 and Mizoram 

in May 2019. With the behaviour of FAW, the pest may 

not establish or cause economic damage where the tem-

perature drops below 10C and rises beyond 40C. This 

may be the reason for the mild infestation of FAW in 

northern Rajasthan, Haryana and Punjab. FAW may not 

be a threat to the temperate northern hill zone as well, 

where the temperature drops well below 10C during 

winter months. However, effective awareness campaigns 

coordinated with control measures could effectively con-

tain the damage caused by the insect8. FAW is predicted 

to cause 21–53% loss in annual maize production in the 

absence of control measures85, while conservative esti-

mates show yield reduction of 14.3–22.7% (ref. 86). 

However, rough estimates within India do not suggest 

damage of more than 5–10% (based on field experience). 

Good rainfall and better management compensate the  

initial damage caused by the pest in majority of cases. 

However, if 5–10% loss in production is assumed in the 

affected maize areas, this amounts to reduction in total 

maize output by 37,000–75,000 tonnes in India. The es-

timate may increase or decrease depending on further 

spread or containment of FAW. This needs to be studied 

in detail in different agro-climatic zones of India. 

Conclusion 

FAW with its remarkable dispersal ability and preference 

for warmer temperature has spread from its tropical  

and subtropical habitat of the Americas. With the initial 

onslaught of FAW, GoI initiated timely strategies at poli-

cy level by establishing High Powered Committees both 

at Central and State levels in the FAW-affected states,  

extending label claims on insecticides against control of 

FAW. The research institutes, network projects and agri-

cultural universities under the National Agricultural Re-

search System, GoI, played a proactive role towards 

creation of awareness and management of FAW. India 

has taken a major role in managing FAW, which may be 

extended to other countries in the region under South–

South collaboration. 
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