
RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 680

*For correspondence. (e-mail: lelitha@iitm.ac.in)

City-level route planning with time-dependent
networks

B. Anil Kumar1, Rony Gracious2, Chitrak Gangrade2 and Lelitha Vanajakshi2,*
1Department of Civil and Environmental Engineering, IIT Patna, Bihta 801 103, India
2Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

The computation of point-to-point shortest paths on
time-dependent transportation networks has many
practical applications. Finding the shortest path on
transportation networks, taking into account prevail-
ing dynamic traffic conditions, can help solve the
problem of traffic congestion in urban areas. This
study presents a framework for implementation of the
shortest path algorithm on static as well as time-
dependent city networks to identify the correct match
between network complexity, computational require-
ments and scalability. Dijkstra, bidirectional A*, and
A* with landmarks and triangle inequality (ALT)
algorithms were selected and implemented based on
their reported good performance in earlier studies.
The algorithm implementation on both static and dy-
namic networks was tested on selected networks from
Chennai city, India. Among the tested algorithms,
ALT performed the best in terms of criteria used in
this study. This algorithm is shown to be scalable and
can be implemented for any other city network with
ease, as demonstrated in this study. The study also
discusses techniques for data extraction, cleaning and
representation in addition to implementation and
comparison of algorithms.

Keywords: Dynamic networks, shortest path algo-
rithms, time-dependent city networks, transport planning,
traffic engineering.

WITH the increasing number of vehicles on the roads,
traffic congestion and associated delays have become a
serious problem, especially in urban areas, all over the
world. While online commercial solutions that can sug-
gest best routes can help to an extent, they do not take
into account time-dependent dynamic traffic conditions in
a systematic way.
 Shortest-path algorithms can be used to identify routes
that cause least discomfort between origin and destina-
tion. There have been several studies on identifying the
shortest path using static networks. However, a static
transportation network does not exist, as traffic condi-
tions keep changing on the roads. One way to address this
is by considering traffic networks as time-dependent.
Also, time-dependent road networks are usually

represented as weighted graphs, where the weight of a
link depends on travel time which changes continuously.
Real-time data sourced through Global Positioning Sys-
tem (GPS), Bluetooth, image-processing through video
cameras, etc. can be used to efficiently estimate point-to-
point travel times for any two nodes in the network. With
the advent of remote-sensing techniques such as GPS,
collecting reliable real-time traffic data has become
relatively easy. Using such real-time data, efficient time-
dependent systems can be implemented to solve the pro-
blem of finding the best route for a trip dynamically.
 This study is aimed at solving the shortest path prob-
lem in a city network. The methodology developed to im-
plement shortest path algorithms can be applied to any
traffic network, allowing it to be scalable and transfera-
ble. Different shortest path algorithms have been tested
and compared in terms of their performance. The right
mix of shortest path algorithms and speed-up techniques
for real-time processing of a city-level network has been
identified. The study also implements the selected algo-
rithm on a real city-level network and proves the compu-
tational efficiency without compromising on accuracy.
The main contribution of this study is identification and
implementation of the correct combination of shortest
path algorithm and speed-up technique for an actual city-
level network under Indian traffic conditions. The study
compares the performance of three algorithms, namely,
A* with landmarks and triangle inequality (ALT) algo-
rithm, bidirectional Dijkstra’s algorithm and bidirectional
A* algorithm. Comparison was made in terms of
attributes such as ease of implementation, query times
and accuracy of the solution. The performance of many
popular algorithms depends on choice of the lower bound
on the tentative distance between the node of interest and
the destination. Many commercial car navigation systems
use heuristic estimates such as layer concepts to speed-up
processing times, which cannot guarantee reasonable so-
lutions1. Such issues have been addressed in the present
study by systematically identifying the lower bounds us-
ing ALT approach. This study also analysed the nature of
relationship between complexity of the system and com-
putational time, and showed that they are directly propor-
tional and must be balanced to yield good results. The
complexity of the system was measured in terms of the
number of nodes touched while searching for a shortest

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 681

path result, i.e. it represents how an algorithm moves
through the search space to obtain the desired result.
Details of the proposed methodology are discussed below
after a brief literature review of reported studies in this
area.

Literature review

Studies on static networks

Shortest path algorithms have been extensively studied in
the past, especially under static conditions. Dijkstra’s
Algorithm is a classic algorithm that maintains an array
of the tentative distance to each node2. The algorithm vis-
its the nodes in the order of their distance from the source
node and is halted when the destination node is reached.
These types of algorithms with a single source node are
also called single-source problems. A simple improve-
ment to Dijkstra’s algorithm, known as the bidirectional
search, executes the search simultaneously from the
source and destination3. Dijkstra’s algorithm cannot be
used for large networks and is too slow for practical im-
plementations. The A* algorithm is similar to the
Dijkstra’s search, except that the next node is selected
based on the minimum tentative distance between the
source and the destination4. The performance of the A*
algorithm depends on the choice of the lower bounds on
the tentative distance between the node and destination.
In the bidirectional implementation, the route identified
upon encountering a common node may not necessarily
be the optimum one. Pohl5 observed that with feasible
lower bounds, the A* algorithm is synonymous with
Dijkstra’s algorithm, allowing the bidirectional imple-
mentation of A* and preserving optimality. These feasi-
ble lower bounds are calculated using reduced costs.
 A commercially available solution for car navigation is
based on heuristics and layer concepts. This heuristic
search, however, does not guarantee reasonable solu-
tions1. Various attempts at single-source problems have
been made6–9. However, these fall short when applied on
large datasets. Significant improvements have been
reported using preprocessed data based on geometric in-
formation and hierarchical decomposition of the network.
In addition, to expedite the process of finding the shortest
path for a given origin and destination, speed-up tech-
niques are used. Commonly used speed-up techniques in-
clude all pairs of shortest path (APSP)10, reduced costs5,
hierarchical techniques11–13, etc. Researchers have intro-
duced the use of ALT algorithm, in which after selecting
a small number of landmarks L, the distances between
every node and L are pre-computed and stored14–16. These
distances are used with the triangle inequality to produce
better lower bounds for the A* algorithm. The ALT algo-
rithm is reported to be highly effective and achieves sig-
nificant speed-up. The advantage of using this algorithm

is that it remains optimum even when the link weights in-
crease and does not require pre-processing to be repeated
for minor changes in the network.
 Pre-computed cluster distances (PCD) partition the
network into clusters and pre-compute the shortest dis-
tance between them11. While this approach exhibits good
query performance, the APSP computation is an expen-
sive step during pre-processing. Hierarchical algorithms
reduce the nodes searched by dividing the underlying
network into smaller segments and treating each segment
as an individual node. Gutman12 used an algorithm called
reach-based routing, in which the minima of the distance
of the node from the source and destination were used.
The study also reported that a shortest path search can be
pruned at nodes with a small reach. Due to inherent bidi-
rectional nature of these algorithms, hierarchical algo-
rithms can be applied only to static networks.
 Highway hierarchies classify nodes and links based on
their importance in the preprocessing step13. Highway
hierarchies can work efficiently with large networks as
they preserve optimality while the pre-processing can al-
so be done efficiently. However, pre-processing of high-
way hierarchies is not trivial, and is not recommended for
networks of moderate and large size. Transit node routing
identifies a set of nodes that are always encountered
when the shortest path is computed between two nodes
that are sufficiently far apart17. Goldberg et al.18 com-
bined an advanced version of Reach algorithm12 with
landmark-based A* search15. SHARC (SHortcuts+ARC-
flags) combined shortcuts and link flag methods to im-
prove query and pre-processing times19.
 Many studies have reported faster way to find the
shortest paths in large static networks with constant link
weights. However, in the real-world scenario, the net-
works are rarely static and link weights need to be
updated frequently. This motivates us to consider time-
dependent network system and the related literature is
presented below.

Studies on time-dependent networks

Traffic networks are dynamic in nature and hence it is
more meaningful to use dynamic algorithms. Cooke and
Halsey20 developed a recursive formula to establish the
minimum travel time to a given destination starting from
a source at a particular time t. Dreyfus21 attempted to
generalize Dijkstra’s algorithm for a time-dependent net-
work5. The initial attempts relied on re-optimization
techniques, and the effect of change in arc lengths on
existing networks was studied22,23. Golden and Ball24
developed a method to find the shortest path on a dyna-
mic network with Euclidean distances. Dean25 presented a
label-correcting algorithm, similar to Dijkstra’s algo-
rithm2, using cost functions instead of arc lengths. As this
cost function was dependent on time, node labels could

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 682

be changed with time. Nannicini et al.26 provided a
heuristic implementation of the highway hierarchies on
dynamic networks but the issues with this were that the
pre-processing turned obsolete after a few changes in the
network and re-computation of the pre-processed data
was found to be computationally expensive. Contraction
hierarchies are speed-up techniques for Dijkstra’s algo-
rithm, which use the concept of highway hierarchies to
reduce the search space for bidirectional Dijsktra27. Batz
et al.28 have described an extension of the contraction
hierarchies’ algorithm in a time-dependent scenario.
However, computational experiments were not con-
ducted. Kim et al.29 used three different algorithms
(Dijkstra’s algorithm with approximate buckets,
Dijkstra’s algorithm with double buckets and graph
growth algorithm with two queues) to find the one-to-one
time-dependent shortest path on real algorithms. Abdelg-
hany et al.30 introduced a parallel algorithm for the APSP
problem with a network decomposition approach by
decomposing the network into a set of independent aug-
mented directed acyclic networks.
 The A* algorithm can be applied effectively on a time-
dependent network as long as the potential function is a
valid lower bound on the distance between nodes at all
times. While Euclidian distances are generally the first
choice, Chabini and Lan10 considered a network with arc
lengths as the minimum cost of the arcs during a time
period t and computed shortest paths from a node to all
other nodes on this static network using them as lower
bounds. Delling and Wagner31 applied the ALT algorithm
on a time-dependent network in a unidirectional manner.
Nannicini et al.32 provided a novel method to implement
bidirectional ALT on a time-dependent network by in-
itiating the backward search using lower bounds on arc
costs to restrict the number of nodes to be explored by the
forward search. Delling33 advanced SHARC on the time-
dependent scenario. It is one of the fastest algorithms for
exact time-dependent shortest path computations on large
networks.
 Though this problem of time-dependent shortest path
can be solved theoretically with the help of classical algo-
rithms such as Djikstra’s algorithm, such methods turn
out to be computationally expensive for real-time field
implementation. Also, the literature survey shows that
there are multiple algorithms which can be implemented
to solve the time-dependent shortest path problem. How-
ever, not many have implemented dynamic algorithms for
time-dependent traffic networks using speed-up algo-
rithms and pre-processing of data to make them computa-
tionally efficient for real-time implementation. The
present study proposes a time-dependent algorithm, with
application of pre-processing and speed-up techniques, to
find the shortest path. The ALT algorithm, which can be
implemented using real-time data, is used for this pur-
pose. To summarize, this study focused on the specific
case of solving the shortest path problem on a selected

city network to identify the right mix of shortest path
algorithm and speed-up technique for providing real-time
routing information.
 Pre-processing and cleaning of the raw network and
representing it efficiently for optimum application of the
shortest path algorithm was first carried out, as discussed
below.

Data analysis

Network details

The road networks were sourced from OpenStreet Map
(OSM)34. The extracted OSM raw data contained infor-
mation about bus stops, traffic signals, etc. which are not
relevant to this study. Hence, parser data were developed
using imposm35, a Python library that helps extract the
required information from OSM data. The parser data
were used to extract all the nodes, and store the node ID,
and its latitude and longitude in a dictionary. The adja-
cent nodes were identified using the latitude and longi-
tude, and the distance between them was computed using
the Haversine formula14.
 Four test networks were extracted for the present study
(Figure 1 a–d). Network shown in Figure 1 a is the entire
Chennai city with all available routes, while the networks
shown in Figure 1 b–d are sample sub-networks from city
centre, which are in the order of decreasing size with in-
creasing density of nodes (number of nodes per unit
area). These were selected to understand the behaviour of
the algorithm over long distances and over dense networks.
Table 1 shows the properties of these test networks.
 From Figure 1, it can be observed that the network
contains unnecessary information which can be removed
to improve the performance of the algorithm. For this,
a data-cleaning operation was carried out as described
below.

Data cleaning

The first technique (step 1) used for cleaning up the net-
work identifies nodes with only two connected links and
removes them from the network as explained below. Let
A, B and C be three nodes connected in a series (Figure
2). As B is connected only to A and C, it is removed from
the network, and A and C are connected with the distance
between them as d(A, B) + d(B, C). This is because the
link characteristics cannot change without any other con-
nections in between. However, it should be ensured that
if A and C are also connected, the link with the minimum
total distance is taken as the distance between A and C.
This simple technique resulted in a reduction in the size
of the network by about 60%. Table 2 shows the proper-
ties of the test networks after initial data cleaning, i.e.
percentage reduction of network size (number of nodes in

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 683

Figure 1. Test networks: a, Chennai city; b, Chennai_1; c, Chennai_2; d, Chennai_3.

Table 1. Properties of the test networks

Network No. of nodes No. of links

Chennai city 184,208 199,803
Chennai_1 139,904 153,925
Chennai_2 99,282 110,324
Chennai_3 90,706 100,538

the network) after the first step of the data-cleaning
process.
 In the next step (step 2), nodes that are not accessible
through roads and streets in the network are removed.
These are present because OSM allows roads which are
not part of the city road network also to be added to it. To

clear them, an iterative search is run through the network,
generating a tree of all the nodes connected to each other.
The iterative search is continued until no more new nodes
can be reached. The set of nodes that were touched during
the search constitutes the new network. This methodolo-
gy results in an additional network size reduction of
about 10%. Table 3 shows the properties of the test net-
works after this step, i.e. cumulative reduction of size
compared to the initial network (reduction percentage
here is the decrease in percentage of nodes from the ini-
tial network size after both the steps).
 From Tables 2 and 3 it can be seen that after removing
non-essential information, the size of the network reduces
significantly, which in turn improves the performance of

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 684

the shortest path algorithms on this network. As a sample
case, Figure 3 a and b shows the complete Chennai net-
work before and after data cleaning. The figure depicts
the reduction in the number of nodes after the cleaning
process, showing the efficacy of the process.
 The networks once finalized were represented as adja-
cency array. The static network was extended to the
dynamic representation by expanding the link weights
across the time dimension. Different travel times were
considered across a link at different times. As authentic
real-time data were not available for time-dependent var-
iations in travel time for the entire network, field data ob-
tained for a corridor were extended to the entire network
by assigning weight functions proportional to the link
lengths, i.e. the present study considered only link length
as the influencing factor for the network other than the
corridor where data were available. We assume that
the temporal influencing factors would be spread through
the network weight. Dijkstra, bidirectional A* and ALT
algorithms were selected and implemented based on their
reported good performance in earlier studies. Here, we
provide a brief description of these three methods along
with modifications made and implementation details.

Figure 2. Node deletion based on the number of connected nodes.

Table 2. Properties of the test networks after initial data cleaning

Network

No. of nodes

No. of links

Percentage
reduction in size

Chennai city 64,159 78,339 65.18
Chennai_1 55,857 68,701 60.08
Chennai_2 42,717 52,576 56.98
Chennai_3 38,801 47,447 57.23

Table 3. Properties of the test networks after step 2

Network

No. of nodes

No. of links

Percentage
reduction in size

Chennai city 52,094 71,185 71.73
Chennai_1 45,713 62,657 67.33
Chennai_2 34,337 47,508 65.42
Chennai_3 30,677 42,535 66.18

Methodology

The present study compares the performance of ALT
algorithm with a baseline approach, Dijkstra’s algorithm
and bidirectional A* algorithm. Though Dijkstra’s algo-
rithm has several limitations, it is one of the basic short-
est path solutions and hence was used for comparison.
Also, it is a known fact that Dijkstra’s algorithm though
time-consuming, guarantees optimal solution. These algo-
rithms were tested across four networks as explained ear-
lier. To begin with, the performance of the ALT
algorithm was evaluated on a static network. The perfor-
mance was measured across three parameters: time of
computation (time taken), number of nodes reached be-
fore computing the shortest path (nodes touched) and
length of the shortest path (distance). The ALT algorithm
was used with four landmarks obtained from the farthest
landmark selection method. The relationships among the
three parameters are shown in Figure 4 a–c for the entire
city network using ALT algorithm, where each data point
corresponds to a different test case of the algorithm.
 Figure 4 a shows the number of nodes the algorithm
had to go through to get the shortest path against distance
between the origin and destination and as expected, it is
directly proportional. Figure 4 b shows the time taken to
reach an optimal result versus distance between the origin
and destination. As expected, since it has to go through
more nodes to get the shortest path, time also increases
with distance. Thus, the intuitive assumption that compu-
tation time increases with increase in distance between
the nodes is verified. Figure 4 c shows the computation
time versus nodes touched by the algorithm, which is
shown to be directly proportional as expected. From Fig-
ure 4 c, it can be observed that there is a strong correla-
tion between time of computation and the number of
nodes the algorithm traverses before finding the shortest
path. It can be concluded that the efficiency of the algo-
rithm is proportional to the number of nodes it touches.
 The performance of ALT algorithm was then compared
with bidirectional Dijkstra’s algorithm and bidirectional
A* algorithm, the implementation of which is briefly
explained below. These algorithms were tested across all
four networks selected. The origin-destination (OD) pairs
were selected randomly from the network. For all the
algorithms, a sample set of 10,000 OD pairs was consi-
dered.

Dijkstra’s algorithm

Starting from the source node s as root, Dijkstra’s algo-
rithm grows a shortest path tree that contains shortest
path from s to all other nodes2. For the present study, bi-
nary heaps are used as priority queues for implementation
of Dijsktra’s algorithm36. A bidirectional version of
Dijkstra’s algorithm can be used to accelerate a shortest
path query from a given node s to a given node t. For this,

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 685

Figure 3. Representation of Chennai network (a) before and (b) after data cleaning.

Figure 4. Relationship among three parameters for the ALT algorithm. a, Distance versus nodes touched, b, Time of computa-
tion versus distance, c, Time of computation versus nodes touched.

two Dijkstra’s searches are executed in parallel: one
search from the source node s towards the destination
node t, while the second search starts from the destination
node t towards source node s. The bidirectional version
significantly reduces the search space of the algorithm,
halving it on an average. The algorithm can be extended to
the time-dependent case on a first-in-first-out network by
a simple modification in the arc relaxation procedure37.
 Let l[u] be the distance label, i.e. the distance from
the source to a node u. If t0 is the departure time from

the source node, for a link (u, v), we check if
l[v] > l[u] + du,v(t0 + l[u]). Here, dij(t) is extracted from D,
the set of time-dependent link travel times for nodes i, j.
This bidirectional Dijkstra’s algorithm was implemented
for all the selected networks. Table 4 shows the perfor-
mance of the algorithm.
 From Table 4, it can be observed that the Chennai city
network took an average computing time of 9.07 sec and
a maximum of 74.24 sec with a standard deviation of
12.03 sec to identify a path. As evident from the table,

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 686

Table 4. Performance of bidirectional Dijkstra over four static test networks

 Bidirectional Dijkstra Chennai city Chennai_1 Chennai_2 Chennai_3

Average performance Time (s) 9.06 5.85 3.00 2.82
 Distance (km) 16.59 13.06 9.92 9.32
 Nodes touched 16,462 14,620 11,063 9,759
Standard deviation Time (s) 12.03 7.47 3.70 3.43
Worst performance Time (s) 74.24 41.21 20.34 19.07
 Distance (km) 60.49 27.23 19.16 19.24
 Nodes touched 44,316 38,622 26,926 24,308

Table 5. Performance of bidirectional A* with reduced costs over four static test networks

 Bidirectional A* with reduced costs Chennai city Chennai_1 Chennai_2 Chennai_3

Average performance Time (s) 2.83 2.38 1.37 0.83
 Distance (km) 16.84 13.25 10.04 9.46
 Nodes touched 3934 3501 2590 2238
Standard deviation Time (s) 4.77 3.8429 2.20 1.21
Worst performance Time (s) 42.81 35.25 24.59 13.37
 Distance (km) 101.20 40.90 44.60 20.90
 Nodes touched 18,324 16,082 13,573 10,567

query times for bidirectional Dijkstra are very high to be
applied practically and hence the A* algorithm was used
next.

A* algorithm

The efficiency of Dijkstra’s algorithm can be improved
by guiding the direction of the search towards the desti-
nation node. A* sorts the priority queue based on the
function Fu = Lu + π (u), where Fu is the sum of the (i)
tentative distance between the source s and node u, i.e. Lu
and (ii) the potential function, π (u)38. It can be seen that
if the potential function is selected as π (u) = 0, Fu is the
same as that of Dijkstra’s algorithm and thus it is a
special case of the A* algorithm. Furthermore, if
π (u) = d (u, t), the search only selects the nodes on the
shortest path. Hence the efficiency of the algorithm
depends on the accuracy with which the potential func-
tion can replicate d (u, t).
 In addition, a bidirectional search can be implemented
to improve query times of A*. However, the identified
solution when the forward search and backward search
intersect, may not be the best possible shortest path. With
the use of reduced costs, A* algorithm can be modelled
as Dijkstra’s algorithm, ensuring optimality in a bidirec-
tional search while improving the performance of the
algorithm. Bidirectional A* can be implemented with the
use of reduced costs, translating the A* algorithm into
Dijkstra’s algorithm. The Dijkstra’s algorithm using link
length l′ modified as in eq. (1) is equivalent to the A*
algorithm using the original link length d (u, v) and π as
the potential function. This has been proven by Pohl5.

1 1(,) (,) (() ()) (() ()).
2 2s s l ll u v d u v v u u vπ π π π′ = + − + − (1)

Table 5 presents the results obtained after implementation
of the bidirectional A* using reduced costs and Euclidian
distances as potential function. From the table it can be
observed that bidirectional A* algorithm with reduced
costs reduced the average computing time to 2.83 sec and
a maximum of 42.82 sec with a standard deviation of
4.77 sec. Next, ALT algorithm was implemented as dis-
cussed below.

ALT algorithm

Very few speed-up techniques for route planning have
been proven to work in a dynamic scenario. For most of
these techniques, the pre-processed information must be
updated every time the underlying graph is changed.
However, goal-directed search based on landmarks (ALT
algorithm) performs well as long as a link weight does
not drop below its initial value14–16.
 One can solve the point to point problem only for a
small portion of the graph. The ALT algorithm does this
by pruning the search space of the A* algorithm with the
use of landmarks. In bidirectional search, when the two
searches intersect, it is not necessary that the intersecting
node will lie on the shortest path. This problem can be
solved by changing the termination criteria or using consis-
tent potential functions. In this study, consistent approach
was utilized for bidirectional ALT implementation.
 The ALT algorithm obtains the potential function by
computing the static shortest path distance of all the
nodes from certain preselected landmarks in the network.
Lower bounds are computed using these distances in
combination with the triangle inequality15. Let L be a
landmark and d(L, u) be the distance of u from L. Then,
by triangle inequality, d(L, u) – d(L, v) ≤ d(u, v). Thus,

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 687

the difference between the distances of the node from the
landmark serves as a lower bound. For tighter lower
bounds, one can take the maximum for all landmarks over
these bounds. For time-dependent networks, for all
(i, j) ∈ A, let dmi

ij
n = min{dij(t)}, i.e. based on historic data/

predicted link travel times, the lower bound can be taken
as the minimum travel time on a link recorded over a time
T. A virtual static network is created using dmi

ij
n as the link

travel time. The lower bounds are then computed on this
virtual network.
 To illustrate the working of ALT algorithm, an exam-
ple is detailed below. Figure 5 shows a sample network
with nine nodes and 13 links. Here, S represents source, T
represents terminal and E represents landmark. In Figure
5, values on links represent distance and values on the
left side of the nodes represent pre-calculated distance
from the landmark for each node. To start with, ALT
algorithm calculates the potential function for any node
as sum of distance from source and the absolute differ-
ence between distance from landmark and distance of
destination from landmark. Table 6 shows the corres-
ponding priority queue moves for the given network.
 Here, proper landmark selection is important for quality
for lower bounds. The preprocessing entails carefully
choosing a small number of landmarks, then computing

Table 6. Priority queue moves for the
 sample network using ALT algorithm

Step Queue

0 S0
1 A8, B10, C11
2 B10, C11, D17
3 C11, E16, D17
4 E16, D17, F19
5 G16, D17, F19
6 T16

Figure 5. Working of ALT algorithm.

and storing shortest path distances between all vertices
and each of these landmarks. The simplest way of choos-
ing landmarks is to select landmark nodes at random.
While this approach works reasonably well, better tech-
niques can be devised. The farthest landmark selection
approach is one such technique, which picks a vertex and
finds the farthest vertex v1 from it15. Then v1 is added to
the set of landmarks. This is repeated iteratively finding
the next landmark farthest away from the rest of the
selected landmarks. In this study, the farthest landmark
selection strategy is used because of its small computa-
tion time.
 For bidirectional implementation of ALT algorithm to
solve time-dependent shortest path problem, backward
search cannot be applied in a conventional sense as the
arrival time is not known in advance. Hence, backward
search is used to reduce the search space of the forward
search. A backward search is run on a static network,
weighted by the lower bounds computed using land-
marks. Once the two searches intersect, the forward
search runs only on the nodes explored by the backward
search. Table 7 shows the performance of this algorithm
for the four test networks.
 From Table 7, it can be observed that the Chennai city
network took an average computing time of 0.59 sec and
a maximum of 1.43 sec with a standard deviation of
0.36 sec to identify a path on static networks, which is
much faster and less varying than the previous two me-
thods. In order to compare the performance of the above
algorithms, a box plot of computation times for the static
networks was made (Figure 6). From Figure 6, it can be
observed that the unidirectional ALT algorithm has
the least average and spread of computation time in all
the four networks, whereas Dijkstra’s algorithm has the
highest average computing time and spread.
 It is evident from Tables 4, 5 and 7, and Figure 6 that
the ALT algorithm is far superior to the other algorithms
tested. On an average, it can be seen that the ALT algo-
rithm is twice as fast as the bidirectional A* algorithm
and four times as fast as the bidirectional Dijkstra’s algo-
rithm. Another advantage of the ALT algorithm over
the others is the low variability in performance metrics.
The worst-case performance of ALT goes up to 1.45 sec
(< three times the average), while for Dijkstra’s it goes up
to 12 times the average performance.
 As ALT provides the best performance on the static
network, analysis of performance of two variants of the
ALT algorithm, unidirectional and bidirectional over four
time-dependent networks was conducted. Both variants
used four landmarks obtained from the farthest selection
method. Table 8 shows the performance of these two
algorithms for all the networks under consideration.
 It can be seen that on the time-dependent network, the
unidirectional ALT algorithm performs better than the
bidirectional ALT algorithm. This is counterintuitive as
the bidirectional algorithm is traditionally used to

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 688

Figure 6. Box plots of computation time for three different algorithms over the four static study networks.

Table 7. Performance of unidirectional ALT algorithm over four static test networks

 Unidirectional ALT algorithm Chennai city Chennai_1 Chennai_2 Chennai_3

Average performance Time (s) 0.60 0.54 0.41 0.36
 Distance (km) 16.62 12.98 9.97 9.40
 Nodes touched 25,737 22,580 16,970 15,135
Standard deviation Time (s) 0.37 0.32 0.24 0.21
Worst performance Time (s) 1.43 1.42 0.94 0.86
 Distance (km) 31.66 20.44 15.12 19.45
 Nodes touched 50,287 43,592 34,071 30,238

Table 8. Performance of unidirectional and bidirectional ALT algorithms over four time-dependent test networks

 Unidirectional ALT algorithm Chennai city Chennai_1 Chennai_2 Chennai_3

Average performance Time (s) 0.34 0.31 0.24 0.21
 Distance (km) 33.89 26.87 21.62 20.90
 Nodes touched 24,495 21,267 16,292 14,430
Worst performance Time (s) 1.20 1.10 0.85 0.74
 Distance (km) 31.00 22.38 18.29 35.17
 Nodes touched 51,411 43,042 32,531 30,292

 Bidirectional ALT algorithm Chennai city Chennai_1 Chennai_2 Chennai_3

Average performance Time (s) 0.73 0.61 0.45 0.38
 Distance (km) 19.78 13.54 10.04 9.92
 Nodes touched 29,842 24,210 17,293 15,533
Worst performance Time (s) 1.38 1.45 0.95 0.86
 Distance (km) 30.43 21.32 17.32 20.58
 Nodes touched 48,793 44,930 35,247 31,367

improve computational efficiency. This anomaly may be
due to the increasing network density, referring to the
number of nodes per unit area. As the network under con-
sideration is a city-level network, it is dense with thou-
sands of nodes in a few square kilometres of area. As a
result, the combined number of nodes touched by both
the forward and backward searches is higher than the
nodes touched by the unidirectional variant. The compu-
tational overhead caused by additional operations in the
bidirectional search may be further adding to the compu-
tational complexity.
 The drawback of using ALT is its high memory con-
sumption for storing distances39. Once the landmarks are

selected in ALT, the distance between landmarks and the
nodes is computed, and then estimation of distances with-
in the graph, i.e. between individual nodes, is carried out
using triangle inequality. These two sets of distances
have to be stored in order to find the shortest path in the
network, leading to high memory consumption.

Summary

This study describes a technique to find the shortest path
between two nodes on a large-scale time-dependent city-
level network. It has identified the right mix of shortest

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 689

path algorithms and speed-up techniques for providing
real-time routing information to users in a city. To reduce
the size of the network, two techniques were imple-
mented, which resulted in shrinking of the network by
about 70%. The first technique reduced the size of the
network by pruning the nodes that are connected to only
two links. Such nodes were removed from the network
resulting in a sparse intersection-to-intersection network.
The second method involved removal of nodes that are
not accessible from the main network. These nodes con-
sisted of ways that are not part of the road network of the
city and cannot be accessed by regular users.
 The algorithms selected were first tested using a static
network. The algorithms selected were bidirectional
Dijkstra’s algorithm, bidirectional A* algorithm, and
ALT algorithm. A comparison showed better perfor-
mance by the ALT approach than the other methods.
Once the algorithm gave satisfactory results on the static
network, it was extended to the time-dependent case.
Two variations of the ALT algorithm, bidirectional and
unidirectional, were tested. It was found that the unidirec-
tional version was better suited for a city-level network
than the bidirectional variant. This may be because city
networks are dense and the bidirectional approach may
not really improve on the search. The additional overhead
for added operations also contributes to the computation-
al pressure on the algorithm. On the other hand, the
unidirectional variant was found to be space-efficient and
showed an average query time of about 0.35 s.
 The promising results show that the methodology pro-
posed in this study can be directly used to implement
real-time routing suggestions to end-users across any
city. As the framework is flexible and does not depend on
the underlying network, it can be scaled to other cities as
well. This information can be relayed to the end-user
through multiple channels ranging from SMS service to
websites and mobile applications.

1. Lauther, U., An extremely fast, exact algorithm for finding short-
est path in static networks with Geographical background. Geoin-
formation und Mobilität–von der Forschung zur praktischen
Anwendung (eds Raubal, M., Sliwinski, A. and Kuhn, W.), 2004,
vol. 22, pp. 219–230.

2. Dijkstra, E. W., A note on two problems in connection with
graphs. Num. Math., 1959, 1(1), 269–271.

3. Luby, M. and Ragde, P., A bidirectional shortest-path algorithm
with good average case behavior. Lect. Notes Comput. Sci., 1985,
194, 394–403.

4. Hart, P. E., Nilsson, N. J. and Raphael, B., A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst.
Sci. Cybern., 1968, 4(2), 100–107.

5. Pohl, I., Bi-directional search. Mach. Intell., 1971, 6, 124–
140.

6. Cherkassky, B. V., Goldberg, A. V. and Radzik, T., Shortest path
algorithms: theory and experimental evaluation. In Proceedings of
the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM Press, Arlington, USA, 1971, pp. 516–525.

7. Gallo, G. and Pallottino, S., Shortest path algorithms. Ann. Oper.
Res., 1988, 13, 3–79.

8. Goldberg, A. V., Shortest path algorithms: engineering aspects.
LNCS, 2001, 2223, 230–241.

9. Zhan, F. B. and Noon, C. E., Shortest path algorithms: an evalua-
tion using real road networks. Transp. Sci., 1998, 32(1), 65–73.

10. Chabini, I. and Lan, S., Adaptations of the A* algorithm for the
computation of fastest paths in deterministic discrete-time dynamic
networks. IEEE Trans. Intell. Transp. Syst., 2002, 3(1), 60–74.

11. Maue, J., Sanders, P. and Matijevic, D., Goal directed shortest
path queries using precomputed cluster distances. LNCS, 2006,
4007, 316–327.

12. Gutman, R., Reach-based routing: a new approach to shortest path
algorithms optimized for road networks. In Proceedings of the 6th
Workshop on Algorithm Engineering and Experiments
(ALENEX), Society for Industrial and Applied Mathematics, Phil-
adelphia, USA, 2004, pp. 100–111.

13. Sanders, P. and Schultes, D., Highway hierarchies hasten exact
shortest path queries. LNCS, 2005, 3669, 568–579.

14. Goldberg, A. V. and Harrelson, C., Computing the shortest path:
A* meets graph theory. Microsoft Research Technical Report,
Vancouver, Canada, MSR-TR-2004-24, 2004.

15. Goldberg, A. V. and Harrelson, C., Computing the shortest path:
A∗ meets graph theory. In Proceedings of 16th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), Philadelphia, USA,
2005, pp. 156–165.

16. Goldberg, A. V. and Werneck, R. F., Computing point-to-point
shortest paths from external memory. In Proceedings of the 7th
workshop on Algorithm Engineering and Experiments (ALENEX).
SIAM, Philadelphia, USA, 2005, pp. 26–40.

17. Bast, H., Funke, S., Matijevic, D., Sanders, P. and Schultes, D., In
transit to constant time shortest-path queries in road networks. In
Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments (ALENEX), SIAM, Philadelphia, USA, 2007, pp.
46–59.

18. Goldberg, A. V., Kaplan, H. and Werneck, R. F., Better landmarks
within reach. Lect. Notes Comput. Sci., 2007, 4525, 38–51.

19. Bauer, R. and Delling, D., SHARC: Fast and robust unidirectional
routing. In Proceedings of the 10th Workshop on Algorithm Engi-
neering and Experiments (ALENEX). SIAM, Philadelphia, USA,
2008, pp. 13–26.

20. Cooke, K. and Halsey, E., The shortest route through a network
with time dependent inter-nodal transit times. J. Math. Anal.
Appl., 1966, 14(3), 493–498.

21. Dreyfus, S., An appraisal of some shortest-path algorithms. Oper.
Res., 1969, 17(3), 395–412.

22. Murchland, J. D., A fixed matrix method for all shortest distances
in a directed graph and for the inverse problem, Ph D thesis, Uni-
versity of Karlsruhe, Germany, 1970.

23. Nepal, K. P., Park, D. and Choi, C. H., Upgrading arc median
shortest path problem for an urban transportation network. J.
Transp. Eng., 2009, 135(10), 783–790; doi:10.1061/(ASCE)0733-
947X(2009)135:10(783)

24. Golden, B. L. and Ball, M., Shortest paths with Euclidean dis-
tances: an explanatory model. Networks, 1978, 8, 297–314.

25. Dean, B. C., Continuous-time dynamic shortest path algorithms,
Master’s thesis, Massachusetts Institute of Technology, USA,
1999.

26. Nannicini, G., Baptiste, P., Barbier, G., Krob, D. and Liberti, L.,
Fast paths in large-scale dynamic road networks. Comput. Optim.
Appl., 2010, 45(1), 143–158.

27. Geisberger, R., Sanders, P., Schultes, D. and Delling, D., Contrac-
tion hierarchies: faster and simpler hierarchical routing in road
networks. LNCS, 2008, 5038, 319–333.

28. Batz, V., Geisberger, R. and Sanders, P., Time dependent contrac-
tion hierarchies – basic algorithmic ideas, Technical report, ITI
Sanders, Faculty of Informatics, Universitat Karlsruhe (TH), Ger-
many, 2008; http://arxiv.org/pdf/0804.3947v1.pdf (accessed on 24
March 2017).

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 119, NO. 4, 25 AUGUST 2020 690

29. Kim, T., Haghani, A. and Kim, H., Algorithms for one-to-one time
dependent shortest path on real networks. In 92nd Annual Meeting
of the Transportation Research Board, Washington, DC, USA,
2004.

30. Abdelghany, K., Hashemi, H. and Alnawaiseh, A., Parallel all-
pairs shortest path algorithm network decomposition approach.
Transp. Res. Rec.: J. Transp. Res. Board, 2016, 2567, 95–104.

31. Delling, D. and Wagner, D., Landmark-based routing in dynamic
graphs. LNCS, 2007, 4525, 52–65.

32. Nannicini, G., Delling, D., Schultes, D. and Liberti, L., Bidirec-
tional A* search on time-dependent road networks. Networks,
2012, 59(2), 240–251.

33. Delling, D., Time-dependent SHARC-routing. Lect. Notes Com-
put. Sci., 2008, 5193, 332–343.

34. OSM, The OpenStreet Map Project; https://www.openstreetmap.
org/ (accessed on 24 March 2017).

35. Imposm.parser 1.0.7 documentation, Open Street Map XML/PBF
parser for Python; http://imposm.org/docs/imposm.parser/latest/
(accessed on 24 March 2017).

36. Goldberg, A. V. and Tarjan, R. E., Expected performances of
Dijkstra’s shortest-paths algorithm, Technical Report 96-062,

NEC Research Institute, Inc., Princeton University, Princeton, NJ,
1996.

37. Biswas, S. S., Alam, B. and Doja, M. N., Generalization of
Dijkstra’s algorithm for extraction of shortest paths in directed
multigraphs. J. Comput. Sci., 2013, 9(3), 377–382.

38. Zeng, W., Church, R. L., Finding shortest paths on real road
networks: the case for A*. Int. J. Geogr. Inf. Sci., 2009, 23(4),
531–543.

39. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes,
D. and Wagner, D., Combining hierarchical and goal-directed
speed-up techniques for Dijkstra’s algorithm. LNCS, 2008, 5038,
303–318.

ACKNOWLEDGEMENTS. We thank the Ministry of Electronics and
Information Technology, Government of India for supporting this
research through the project ‘InTranSE-II – Departure Time Planner
using V2V and V2I Communication’.

Received 27 December 2018; revised accepted 10 June 2020

doi: 10.18520/cs/v119/i4/680-690

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

