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The computation of point-to-point shortest paths on 
time-dependent transportation networks has many 
practical applications. Finding the shortest path on 
transportation networks, taking into account prevail-
ing dynamic traffic conditions, can help solve the 
problem of traffic congestion in urban areas. This 
study presents a framework for implementation of the 
shortest path algorithm on static as well as time-
dependent city networks to identify the correct match 
between network complexity, computational require-
ments and scalability. Dijkstra, bidirectional A*, and 
A* with landmarks and triangle inequality (ALT)  
algorithms were selected and implemented based on 
their reported good performance in earlier studies. 
The algorithm implementation on both static and dy-
namic networks was tested on selected networks from 
Chennai city, India. Among the tested algorithms, 
ALT performed the best in terms of criteria used in 
this study. This algorithm is shown to be scalable and 
can be implemented for any other city network with 
ease, as demonstrated in this study. The study also 
discusses techniques for data extraction, cleaning and 
representation in addition to implementation and 
comparison of algorithms. 
 
Keywords: Dynamic networks, shortest path algo-
rithms, time-dependent city networks, transport planning, 
traffic engineering. 
 
WITH the increasing number of vehicles on the roads, 
traffic congestion and associated delays have become a  
serious problem, especially in urban areas, all over the 
world. While online commercial solutions that can sug-
gest best routes can help to an extent, they do not take  
into account time-dependent dynamic traffic conditions in 
a systematic way. 
 Shortest-path algorithms can be used to identify routes 
that cause least discomfort between origin and destina-
tion. There have been several studies on identifying the 
shortest path using static networks. However, a static 
transportation network does not exist, as traffic condi-
tions keep changing on the roads. One way to address this 
is by considering traffic networks as time-dependent.  
Also, time-dependent road networks are usually 

represented as weighted graphs, where the weight of a 
link depends on travel time which changes continuously. 
Real-time data sourced through Global Positioning Sys-
tem (GPS), Bluetooth, image-processing through video 
cameras, etc. can be used to efficiently estimate point-to-
point travel times for any two nodes in the network. With 
the advent of remote-sensing techniques such as GPS, 
collecting reliable real-time traffic data has become  
relatively easy. Using such real-time data, efficient time-
dependent systems can be implemented to solve the pro-
blem of finding the best route for a trip dynamically. 
 This study is aimed at solving the shortest path prob-
lem in a city network. The methodology developed to im-
plement shortest path algorithms can be applied to any 
traffic network, allowing it to be scalable and transfera-
ble. Different shortest path algorithms have been tested 
and compared in terms of their performance. The right 
mix of shortest path algorithms and speed-up techniques 
for real-time processing of a city-level network has been 
identified. The study also implements the selected algo-
rithm on a real city-level network and proves the compu-
tational efficiency without compromising on accuracy. 
The main contribution of this study is identification and 
implementation of the correct combination of shortest 
path algorithm and speed-up technique for an actual city-
level network under Indian traffic conditions. The study 
compares the performance of three algorithms, namely, 
A* with landmarks and triangle inequality (ALT) algo-
rithm, bidirectional Dijkstra’s algorithm and bidirectional 
A* algorithm. Comparison was made in terms of 
attributes such as ease of implementation, query times 
and accuracy of the solution. The performance of many 
popular algorithms depends on choice of the lower bound 
on the tentative distance between the node of interest and 
the destination. Many commercial car navigation systems 
use heuristic estimates such as layer concepts to speed-up 
processing times, which cannot guarantee reasonable so-
lutions1. Such issues have been addressed in the present 
study by systematically identifying the lower bounds us-
ing ALT approach. This study also analysed the nature of 
relationship between complexity of the system and com-
putational time, and showed that they are directly propor-
tional and must be balanced to yield good results. The 
complexity of the system was measured in terms of the 
number of nodes touched while searching for a shortest 
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path result, i.e. it represents how an algorithm moves 
through the search space to obtain the desired result.  
Details of the proposed methodology are discussed below 
after a brief literature review of reported studies in this 
area. 

Literature review 

Studies on static networks 

Shortest path algorithms have been extensively studied in 
the past, especially under static conditions. Dijkstra’s  
Algorithm is a classic algorithm that maintains an array 
of the tentative distance to each node2. The algorithm vis-
its the nodes in the order of their distance from the source 
node and is halted when the destination node is reached. 
These types of algorithms with a single source node are 
also called single-source problems. A simple improve-
ment to Dijkstra’s algorithm, known as the bidirectional 
search, executes the search simultaneously from the 
source and destination3. Dijkstra’s algorithm cannot be 
used for large networks and is too slow for practical im-
plementations. The A* algorithm is similar to the 
Dijkstra’s search, except that the next node is selected 
based on the minimum tentative distance between the 
source and the destination4. The performance of the A* 
algorithm depends on the choice of the lower bounds on 
the tentative distance between the node and destination. 
In the bidirectional implementation, the route identified 
upon encountering a common node may not necessarily 
be the optimum one. Pohl5 observed that with feasible 
lower bounds, the A* algorithm is synonymous with 
Dijkstra’s algorithm, allowing the bidirectional imple-
mentation of A* and preserving optimality. These feasi-
ble lower bounds are calculated using reduced costs. 
 A commercially available solution for car navigation is 
based on heuristics and layer concepts. This heuristic 
search, however, does not guarantee reasonable solu-
tions1. Various attempts at single-source problems have 
been made6–9. However, these fall short when applied on 
large datasets. Significant improvements have been  
reported using preprocessed data based on geometric in-
formation and hierarchical decomposition of the network. 
In addition, to expedite the process of finding the shortest 
path for a given origin and destination, speed-up tech-
niques are used. Commonly used speed-up techniques in-
clude all pairs of shortest path (APSP)10, reduced costs5, 
hierarchical techniques11–13, etc. Researchers have intro-
duced the use of ALT algorithm, in which after selecting 
a small number of landmarks L, the distances between 
every node and L are pre-computed and stored14–16. These 
distances are used with the triangle inequality to produce 
better lower bounds for the A* algorithm. The ALT algo-
rithm is reported to be highly effective and achieves sig-
nificant speed-up. The advantage of using this algorithm 

is that it remains optimum even when the link weights in-
crease and does not require pre-processing to be repeated 
for minor changes in the network. 
 Pre-computed cluster distances (PCD) partition the 
network into clusters and pre-compute the shortest dis-
tance between them11. While this approach exhibits good 
query performance, the APSP computation is an expen-
sive step during pre-processing. Hierarchical algorithms 
reduce the nodes searched by dividing the underlying 
network into smaller segments and treating each segment 
as an individual node. Gutman12 used an algorithm called 
reach-based routing, in which the minima of the distance 
of the node from the source and destination were used. 
The study also reported that a shortest path search can be 
pruned at nodes with a small reach. Due to inherent bidi-
rectional nature of these algorithms, hierarchical algo-
rithms can be applied only to static networks. 
 Highway hierarchies classify nodes and links based on 
their importance in the preprocessing step13. Highway 
hierarchies can work efficiently with large networks as 
they preserve optimality while the pre-processing can al-
so be done efficiently. However, pre-processing of high-
way hierarchies is not trivial, and is not recommended for 
networks of moderate and large size. Transit node routing 
identifies a set of nodes that are always encountered 
when the shortest path is computed between two nodes 
that are sufficiently far apart17. Goldberg et al.18 com-
bined an advanced version of Reach algorithm12 with 
landmark-based A* search15. SHARC (SHortcuts+ARC-
flags) combined shortcuts and link flag methods to im-
prove query and pre-processing times19. 
 Many studies have reported faster way to find the 
shortest paths in large static networks with constant link 
weights. However, in the real-world scenario, the net-
works are rarely static and link weights need to be  
updated frequently. This motivates us to consider time-
dependent network system and the related literature is 
presented below. 

Studies on time-dependent networks 

Traffic networks are dynamic in nature and hence it is 
more meaningful to use dynamic algorithms. Cooke and 
Halsey20 developed a recursive formula to establish the 
minimum travel time to a given destination starting from 
a source at a particular time t. Dreyfus21 attempted to  
generalize Dijkstra’s algorithm for a time-dependent net-
work5. The initial attempts relied on re-optimization 
techniques, and the effect of change in arc lengths on  
existing networks was studied22,23. Golden and Ball24  
developed a method to find the shortest path on a dyna-
mic network with Euclidean distances. Dean25 presented a 
label-correcting algorithm, similar to Dijkstra’s algo-
rithm2, using cost functions instead of arc lengths. As this 
cost function was dependent on time, node labels could 
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be changed with time. Nannicini et al.26 provided a  
heuristic implementation of the highway hierarchies on  
dynamic networks but the issues with this were that the 
pre-processing turned obsolete after a few changes in the 
network and re-computation of the pre-processed data 
was found to be computationally expensive. Contraction 
hierarchies are speed-up techniques for Dijkstra’s algo-
rithm, which use the concept of highway hierarchies to 
reduce the search space for bidirectional Dijsktra27. Batz 
et al.28 have described an extension of the contraction 
hierarchies’ algorithm in a time-dependent scenario. 
However, computational experiments were not con-
ducted. Kim et al.29 used three different algorithms 
(Dijkstra’s algorithm with approximate buckets, 
Dijkstra’s algorithm with double buckets and graph 
growth algorithm with two queues) to find the one-to-one 
time-dependent shortest path on real algorithms. Abdelg-
hany et al.30 introduced a parallel algorithm for the APSP 
problem with a network decomposition approach by  
decomposing the network into a set of independent aug-
mented directed acyclic networks. 
 The A* algorithm can be applied effectively on a time-
dependent network as long as the potential function is a 
valid lower bound on the distance between nodes at all 
times. While Euclidian distances are generally the first 
choice, Chabini and Lan10 considered a network with arc 
lengths as the minimum cost of the arcs during a time  
period t and computed shortest paths from a node to all 
other nodes on this static network using them as lower 
bounds. Delling and Wagner31 applied the ALT algorithm 
on a time-dependent network in a unidirectional manner. 
Nannicini et al.32 provided a novel method to implement 
bidirectional ALT on a time-dependent network by in-
itiating the backward search using lower bounds on arc 
costs to restrict the number of nodes to be explored by the 
forward search. Delling33 advanced SHARC on the time-
dependent scenario. It is one of the fastest algorithms for 
exact time-dependent shortest path computations on large 
networks. 
 Though this problem of time-dependent shortest path 
can be solved theoretically with the help of classical algo-
rithms such as Djikstra’s algorithm, such methods turn 
out to be computationally expensive for real-time field 
implementation. Also, the literature survey shows that 
there are multiple algorithms which can be implemented 
to solve the time-dependent shortest path problem. How-
ever, not many have implemented dynamic algorithms for 
time-dependent traffic networks using speed-up algo-
rithms and pre-processing of data to make them computa-
tionally efficient for real-time implementation. The 
present study proposes a time-dependent algorithm, with 
application of pre-processing and speed-up techniques, to 
find the shortest path. The ALT algorithm, which can be 
implemented using real-time data, is used for this pur-
pose. To summarize, this study focused on the specific 
case of solving the shortest path problem on a selected 

city network to identify the right mix of shortest path  
algorithm and speed-up technique for providing real-time 
routing information. 
 Pre-processing and cleaning of the raw network and 
representing it efficiently for optimum application of the 
shortest path algorithm was first carried out, as discussed 
below. 

Data analysis 

Network details 

The road networks were sourced from OpenStreet Map 
(OSM)34. The extracted OSM raw data contained infor-
mation about bus stops, traffic signals, etc. which are not 
relevant to this study. Hence, parser data were developed 
using imposm35, a Python library that helps extract the 
required information from OSM data. The parser data 
were used to extract all the nodes, and store the node ID, 
and its latitude and longitude in a dictionary. The adja-
cent nodes were identified using the latitude and longi-
tude, and the distance between them was computed using 
the Haversine formula14. 
 Four test networks were extracted for the present study 
(Figure 1 a–d). Network shown in Figure 1 a is the entire 
Chennai city with all available routes, while the networks 
shown in Figure 1 b–d are sample sub-networks from city 
centre, which are in the order of decreasing size with in-
creasing density of nodes (number of nodes per unit 
area). These were selected to understand the behaviour of 
the algorithm over long distances and over dense networks. 
Table 1 shows the properties of these test networks. 
 From Figure 1, it can be observed that the network 
contains unnecessary information which can be removed 
to improve the performance of the algorithm. For this,  
a data-cleaning operation was carried out as described  
below. 

Data cleaning 

The first technique (step 1) used for cleaning up the net-
work identifies nodes with only two connected links and 
removes them from the network as explained below. Let 
A, B and C be three nodes connected in a series (Figure 
2). As B is connected only to A and C, it is removed from 
the network, and A and C are connected with the distance 
between them as d(A, B) + d(B, C). This is because the 
link characteristics cannot change without any other con-
nections in between. However, it should be ensured that 
if A and C are also connected, the link with the minimum 
total distance is taken as the distance between A and C. 
This simple technique resulted in a reduction in the size 
of the network by about 60%. Table 2 shows the proper-
ties of the test networks after initial data cleaning, i.e. 
percentage reduction of network size (number of nodes in 
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Figure 1. Test networks: a, Chennai city; b, Chennai_1; c, Chennai_2; d, Chennai_3. 
 
 

Table 1. Properties of the test networks 

Network  No. of nodes No. of links 

Chennai city  184,208 199,803 
Chennai_1  139,904 153,925 
Chennai_2   99,282 110,324 
Chennai_3   90,706 100,538 

 
 
the network) after the first step of the data-cleaning 
process. 
 In the next step (step 2), nodes that are not accessible 
through roads and streets in the network are removed. 
These are present because OSM allows roads which are 
not part of the city road network also to be added to it. To 

clear them, an iterative search is run through the network, 
generating a tree of all the nodes connected to each other. 
The iterative search is continued until no more new nodes 
can be reached. The set of nodes that were touched during 
the search constitutes the new network. This methodolo-
gy results in an additional network size reduction of 
about 10%. Table 3 shows the properties of the test net-
works after this step, i.e. cumulative reduction of size 
compared to the initial network (reduction percentage 
here is the decrease in percentage of nodes from the ini-
tial network size after both the steps). 
 From Tables 2 and 3 it can be seen that after removing 
non-essential information, the size of the network reduces 
significantly, which in turn improves the performance of 
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the shortest path algorithms on this network. As a sample 
case, Figure 3 a and b shows the complete Chennai net-
work before and after data cleaning. The figure depicts 
the reduction in the number of nodes after the cleaning 
process, showing the efficacy of the process. 
 The networks once finalized were represented as adja-
cency array. The static network was extended to the  
dynamic representation by expanding the link weights 
across the time dimension. Different travel times were 
considered across a link at different times. As authentic 
real-time data were not available for time-dependent var-
iations in travel time for the entire network, field data ob-
tained for a corridor were extended to the entire network 
by assigning weight functions proportional to the link 
lengths, i.e. the present study considered only link length 
as the influencing factor for the network other than the 
corridor where data were available. We assume that  
the temporal influencing factors would be spread through 
the network weight. Dijkstra, bidirectional A* and ALT 
algorithms were selected and implemented based on their 
reported good performance in earlier studies. Here, we 
provide a brief description of these three methods along 
with modifications made and implementation details. 
 
 

 
 

Figure 2. Node deletion based on the number of connected nodes. 
 
 
 

Table 2. Properties of the test networks after initial data cleaning 

 
Network  

 
No. of nodes 

 
No. of links 

Percentage  
reduction in size 

Chennai city  64,159 78,339 65.18 
Chennai_1  55,857 68,701 60.08 
Chennai_2  42,717 52,576 56.98 
Chennai_3  38,801 47,447 57.23 
 
 
 

Table 3. Properties of the test networks after step 2 

 
Network  

 
No. of nodes 

 
No. of links 

Percentage  
reduction in size 

Chennai city  52,094 71,185 71.73 
Chennai_1  45,713 62,657 67.33 
Chennai_2  34,337 47,508 65.42 
Chennai_3  30,677 42,535 66.18 
 

Methodology 

The present study compares the performance of ALT  
algorithm with a baseline approach, Dijkstra’s algorithm 
and bidirectional A* algorithm. Though Dijkstra’s algo-
rithm has several limitations, it is one of the basic short-
est path solutions and hence was used for comparison. 
Also, it is a known fact that Dijkstra’s algorithm though 
time-consuming, guarantees optimal solution. These algo-
rithms were tested across four networks as explained ear-
lier. To begin with, the performance of the ALT 
algorithm was evaluated on a static network. The perfor-
mance was measured across three parameters: time of 
computation (time taken), number of nodes reached be-
fore computing the shortest path (nodes touched) and 
length of the shortest path (distance). The ALT algorithm 
was used with four landmarks obtained from the farthest 
landmark selection method. The relationships among the 
three parameters are shown in Figure 4 a–c for the entire 
city network using ALT algorithm, where each data point 
corresponds to a different test case of the algorithm. 
 Figure 4 a shows the number of nodes the algorithm 
had to go through to get the shortest path against distance 
between the origin and destination and as expected, it is 
directly proportional. Figure 4 b shows the time taken to 
reach an optimal result versus distance between the origin 
and destination. As expected, since it has to go through 
more nodes to get the shortest path, time also increases 
with distance. Thus, the intuitive assumption that compu-
tation time increases with increase in distance between 
the nodes is verified. Figure 4 c shows the computation 
time versus nodes touched by the algorithm, which is 
shown to be directly proportional as expected. From Fig-
ure 4 c, it can be observed that there is a strong correla-
tion between time of computation and the number of 
nodes the algorithm traverses before finding the shortest 
path. It can be concluded that the efficiency of the algo-
rithm is proportional to the number of nodes it touches. 
 The performance of ALT algorithm was then compared 
with bidirectional Dijkstra’s algorithm and bidirectional 
A* algorithm, the implementation of which is briefly  
explained below. These algorithms were tested across all 
four networks selected. The origin-destination (OD) pairs 
were selected randomly from the network. For all the  
algorithms, a sample set of 10,000 OD pairs was consi-
dered. 

Dijkstra’s algorithm 

Starting from the source node s as root, Dijkstra’s algo-
rithm grows a shortest path tree that contains shortest 
path from s to all other nodes2. For the present study, bi-
nary heaps are used as priority queues for implementation 
of Dijsktra’s algorithm36. A bidirectional version of 
Dijkstra’s algorithm can be used to accelerate a shortest 
path query from a given node s to a given node t. For this, 
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Figure 3. Representation of Chennai network (a) before and (b) after data cleaning. 
 
 

 
 

Figure 4. Relationship among three parameters for the ALT algorithm. a, Distance versus nodes touched, b, Time of computa-
tion versus distance, c, Time of computation versus nodes touched. 

 
 
two Dijkstra’s searches are executed in parallel: one 
search from the source node s towards the destination 
node t, while the second search starts from the destination 
node t towards source node s. The bidirectional version 
significantly reduces the search space of the algorithm, 
halving it on an average. The algorithm can be extended to 
the time-dependent case on a first-in-first-out network by 
a simple modification in the arc relaxation procedure37. 
 Let l[u] be the distance label, i.e. the distance from  
the source to a node u. If t0 is the departure time from  

the source node, for a link (u, v), we check if 
l[v] > l[u] + du,v(t0 + l[u]). Here, dij(t) is extracted from D, 
the set of time-dependent link travel times for nodes i, j. 
This bidirectional Dijkstra’s algorithm was implemented 
for all the selected networks. Table 4 shows the perfor-
mance of the algorithm. 
 From Table 4, it can be observed that the Chennai city 
network took an average computing time of 9.07 sec and 
a maximum of 74.24 sec with a standard deviation of 
12.03 sec to identify a path. As evident from the table, 
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Table 4. Performance of bidirectional Dijkstra over four static test networks 

    Bidirectional Dijkstra Chennai city Chennai_1 Chennai_2 Chennai_3 

Average performance Time (s)  9.06 5.85 3.00 2.82 
  Distance (km)  16.59 13.06 9.92 9.32 
  Nodes touched  16,462 14,620 11,063 9,759 
Standard deviation Time (s)  12.03 7.47 3.70 3.43 
Worst performance Time (s)  74.24 41.21 20.34 19.07 
  Distance (km)  60.49 27.23 19.16 19.24 
  Nodes touched  44,316 38,622 26,926 24,308 
 
 

Table 5. Performance of bidirectional A* with reduced costs over four static test networks 

     Bidirectional A* with reduced costs Chennai city Chennai_1 Chennai_2 Chennai_3 

Average performance  Time (s) 2.83 2.38 1.37 0.83 
  Distance (km)  16.84 13.25 10.04 9.46 
  Nodes touched  3934 3501 2590 2238 
Standard deviation Time (s)  4.77 3.8429 2.20 1.21 
Worst performance Time (s)  42.81 35.25 24.59 13.37 
  Distance (km)  101.20 40.90 44.60 20.90 
  Nodes touched  18,324 16,082 13,573 10,567 
 
 
query times for bidirectional Dijkstra are very high to be 
applied practically and hence the A* algorithm was used 
next. 

A* algorithm 

The efficiency of Dijkstra’s algorithm can be improved 
by guiding the direction of the search towards the desti-
nation node. A* sorts the priority queue based on the 
function Fu = Lu + π (u), where Fu is the sum of the (i) 
tentative distance between the source s and node u, i.e. Lu 
and (ii) the potential function, π (u)38. It can be seen that 
if the potential function is selected as π (u) = 0, Fu is the 
same as that of Dijkstra’s algorithm and thus it is a  
special case of the A* algorithm. Furthermore, if 
π (u) = d (u, t), the search only selects the nodes on the 
shortest path. Hence the efficiency of the algorithm  
depends on the accuracy with which the potential func-
tion can replicate d (u, t). 
 In addition, a bidirectional search can be implemented 
to improve query times of A*. However, the identified 
solution when the forward search and backward search 
intersect, may not be the best possible shortest path. With 
the use of reduced costs, A* algorithm can be modelled 
as Dijkstra’s algorithm, ensuring optimality in a bidirec-
tional search while improving the performance of the  
algorithm. Bidirectional A* can be implemented with the 
use of reduced costs, translating the A* algorithm into 
Dijkstra’s algorithm. The Dijkstra’s algorithm using link 
length l′ modified as in eq. (1) is equivalent to the A*  
algorithm using the original link length d (u, v) and π as 
the potential function. This has been proven by Pohl5. 
 

1 1( , ) ( , ) ( ( ) ( )) ( ( ) ( )).
2 2s s l ll u v d u v v u u vπ π π π′ = + − + −  (1) 

Table 5 presents the results obtained after implementation 
of the bidirectional A* using reduced costs and Euclidian 
distances as potential function. From the table it can be  
observed that bidirectional A* algorithm with reduced 
costs reduced the average computing time to 2.83 sec and 
a maximum of 42.82 sec with a standard deviation of 
4.77 sec. Next, ALT algorithm was implemented as dis-
cussed below. 

ALT algorithm 

Very few speed-up techniques for route planning have 
been proven to work in a dynamic scenario. For most of 
these techniques, the pre-processed information must be 
updated every time the underlying graph is changed. 
However, goal-directed search based on landmarks (ALT 
algorithm) performs well as long as a link weight does 
not drop below its initial value14–16. 
 One can solve the point to point problem only for a 
small portion of the graph. The ALT algorithm does this 
by pruning the search space of the A* algorithm with the 
use of landmarks. In bidirectional search, when the two 
searches intersect, it is not necessary that the intersecting 
node will lie on the shortest path. This problem can be 
solved by changing the termination criteria or using consis-
tent potential functions. In this study, consistent approach 
was utilized for bidirectional ALT implementation. 
 The ALT algorithm obtains the potential function by 
computing the static shortest path distance of all the 
nodes from certain preselected landmarks in the network. 
Lower bounds are computed using these distances in 
combination with the triangle inequality15. Let L be a 
landmark and d(L, u) be the distance of u from L. Then, 
by triangle inequality, d(L, u) – d(L, v) ≤ d(u, v). Thus, 
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the difference between the distances of the node from the 
landmark serves as a lower bound. For tighter lower 
bounds, one can take the maximum for all landmarks over 
these bounds. For time-dependent networks, for all 
(i, j) ∈ A, let dmi

ij
n = min{dij(t)}, i.e. based on historic data/ 

predicted link travel times, the lower bound can be taken 
as the minimum travel time on a link recorded over a time 
T. A virtual static network is created using dmi

ij
n as the link 

travel time. The lower bounds are then computed on this 
virtual network. 
 To illustrate the working of ALT algorithm, an exam-
ple is detailed below. Figure 5 shows a sample network 
with nine nodes and 13 links. Here, S represents source, T 
represents terminal and E represents landmark. In Figure 
5, values on links represent distance and values on the 
left side of the nodes represent pre-calculated distance 
from the landmark for each node. To start with, ALT  
algorithm calculates the potential function for any node 
as sum of distance from source and the absolute differ-
ence between distance from landmark and distance of 
destination from landmark. Table 6 shows the corres-
ponding priority queue moves for the given network. 
 Here, proper landmark selection is important for quality 
for lower bounds. The preprocessing entails carefully 
choosing a small number of landmarks, then computing 
 
 

Table 6. Priority queue moves for the  
  sample network using ALT algorithm 

Step  Queue 

0  S0 
1  A8, B10, C11 
2  B10, C11, D17 
3  C11, E16, D17 
4  E16, D17, F19 
5  G16, D17, F19 
6  T16 
 

 

 
 

Figure 5. Working of ALT algorithm. 

and storing shortest path distances between all vertices 
and each of these landmarks. The simplest way of choos-
ing landmarks is to select landmark nodes at random. 
While this approach works reasonably well, better tech-
niques can be devised. The farthest landmark selection 
approach is one such technique, which picks a vertex and 
finds the farthest vertex v1 from it15. Then v1 is added to 
the set of landmarks. This is repeated iteratively finding 
the next landmark farthest away from the rest of the  
selected landmarks. In this study, the farthest landmark 
selection strategy is used because of its small computa-
tion time. 
 For bidirectional implementation of ALT algorithm to 
solve time-dependent shortest path problem, backward 
search cannot be applied in a conventional sense as the 
arrival time is not known in advance. Hence, backward 
search is used to reduce the search space of the forward 
search. A backward search is run on a static network, 
weighted by the lower bounds computed using land-
marks. Once the two searches intersect, the forward 
search runs only on the nodes explored by the backward 
search. Table 7 shows the performance of this algorithm 
for the four test networks. 
 From Table 7, it can be observed that the Chennai city 
network took an average computing time of 0.59 sec and 
a maximum of 1.43 sec with a standard deviation of 
0.36 sec to identify a path on static networks, which is 
much faster and less varying than the previous two me-
thods. In order to compare the performance of the above 
algorithms, a box plot of computation times for the static 
networks was made (Figure 6). From Figure 6, it can be 
observed that the unidirectional ALT algorithm has  
the least average and spread of computation time in all 
the four networks, whereas Dijkstra’s algorithm has the  
highest average computing time and spread. 
 It is evident from Tables 4, 5 and 7, and Figure 6 that 
the ALT algorithm is far superior to the other algorithms 
tested. On an average, it can be seen that the ALT algo-
rithm is twice as fast as the bidirectional A* algorithm 
and four times as fast as the bidirectional Dijkstra’s algo-
rithm. Another advantage of the ALT algorithm over  
the others is the low variability in performance metrics. 
The worst-case performance of ALT goes up to 1.45 sec 
(< three times the average), while for Dijkstra’s it goes up 
to 12 times the average performance. 
 As ALT provides the best performance on the static 
network, analysis of performance of two variants of the 
ALT algorithm, unidirectional and bidirectional over four 
time-dependent networks was conducted. Both variants 
used four landmarks obtained from the farthest selection 
method. Table 8 shows the performance of these two  
algorithms for all the networks under consideration. 
 It can be seen that on the time-dependent network, the 
unidirectional ALT algorithm performs better than the  
bidirectional ALT algorithm. This is counterintuitive as 
the bidirectional algorithm is traditionally used to 
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Figure 6. Box plots of computation time for three different algorithms over the four static study networks. 
 
 

Table 7. Performance of unidirectional ALT algorithm over four static test networks 

   Unidirectional ALT algorithm Chennai city Chennai_1 Chennai_2 Chennai_3 

Average performance Time (s)  0.60 0.54 0.41 0.36 
  Distance (km)  16.62 12.98 9.97 9.40 
  Nodes touched  25,737 22,580 16,970 15,135 
Standard deviation Time (s)  0.37 0.32 0.24 0.21 
Worst performance Time (s)  1.43 1.42 0.94 0.86 
  Distance (km)  31.66 20.44 15.12 19.45 
  Nodes touched  50,287 43,592 34,071 30,238 
 
 

Table 8. Performance of unidirectional and bidirectional ALT algorithms over four time-dependent test networks 

    Unidirectional ALT algorithm Chennai city Chennai_1 Chennai_2 Chennai_3 

Average performance Time (s)  0.34 0.31 0.24 0.21 
  Distance (km)  33.89 26.87 21.62 20.90 
  Nodes touched  24,495 21,267 16,292 14,430 
Worst performance Time (s) 1.20 1.10 0.85 0.74 
  Distance (km)  31.00 22.38 18.29 35.17 
  Nodes touched  51,411 43,042 32,531 30,292 

    Bidirectional ALT algorithm Chennai city Chennai_1 Chennai_2 Chennai_3 

Average performance Time (s)  0.73 0.61 0.45 0.38 
  Distance (km)  19.78 13.54 10.04 9.92 
  Nodes touched  29,842 24,210 17,293 15,533 
Worst performance Time (s)  1.38 1.45 0.95 0.86 
  Distance (km)  30.43 21.32 17.32 20.58 
  Nodes touched  48,793 44,930 35,247 31,367 
 
 
improve computational efficiency. This anomaly may be 
due to the increasing network density, referring to the 
number of nodes per unit area. As the network under con-
sideration is a city-level network, it is dense with thou-
sands of nodes in a few square kilometres of area. As a 
result, the combined number of nodes touched by both 
the forward and backward searches is higher than the 
nodes touched by the unidirectional variant. The compu-
tational overhead caused by additional operations in the 
bidirectional search may be further adding to the compu-
tational complexity. 
 The drawback of using ALT is its high memory con-
sumption for storing distances39. Once the landmarks are 

selected in ALT, the distance between landmarks and the 
nodes is computed, and then estimation of distances with-
in the graph, i.e. between individual nodes, is carried out 
using triangle inequality. These two sets of distances 
have to be stored in order to find the shortest path in the 
network, leading to high memory consumption. 

Summary 

This study describes a technique to find the shortest path 
between two nodes on a large-scale time-dependent city-
level network. It has identified the right mix of shortest 
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path algorithms and speed-up techniques for providing 
real-time routing information to users in a city. To reduce 
the size of the network, two techniques were imple-
mented, which resulted in shrinking of the network by 
about 70%. The first technique reduced the size of the 
network by pruning the nodes that are connected to only 
two links. Such nodes were removed from the network 
resulting in a sparse intersection-to-intersection network. 
The second method involved removal of nodes that are 
not accessible from the main network. These nodes con-
sisted of ways that are not part of the road network of the 
city and cannot be accessed by regular users. 
 The algorithms selected were first tested using a static 
network. The algorithms selected were bidirectional 
Dijkstra’s algorithm, bidirectional A* algorithm, and 
ALT algorithm. A comparison showed better perfor-
mance by the ALT approach than the other methods. 
Once the algorithm gave satisfactory results on the static 
network, it was extended to the time-dependent case. 
Two variations of the ALT algorithm, bidirectional and 
unidirectional, were tested. It was found that the unidirec-
tional version was better suited for a city-level network 
than the bidirectional variant. This may be because city 
networks are dense and the bidirectional approach may 
not really improve on the search. The additional overhead 
for added operations also contributes to the computation-
al pressure on the algorithm. On the other hand, the  
unidirectional variant was found to be space-efficient and 
showed an average query time of about 0.35 s. 
 The promising results show that the methodology pro-
posed in this study can be directly used to implement 
real-time routing suggestions to end-users across any 
city. As the framework is flexible and does not depend on 
the underlying network, it can be scaled to other cities as 
well. This information can be relayed to the end-user 
through multiple channels ranging from SMS service to 
websites and mobile applications. 
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