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Hyperspectral data can find wide applications in clas-
sification and mapping of pure and mixed pixels in 
images of different land-cover types. Hyperspectral 
data of high spectral resolution enhance discrimina-
tion of target objects; but the low spatial resolution 
poses a challenge due to creation of mixed pixels. The 
cost of acquiring images at high resolution from  
sensors is high and rarely available. With images of 
coarser spatial resolution, it is difficult to identify the 
endmembers and their locations within the mixed  
pixel. This study utilizes the fractional abundance 
values of target endmembers obtained from linear 
spectral unmixing in locating the sub-pixels of a mixed 
pixel. The study illustrates the preparation of classi-
fied maps of finer spatial resolution by locating the 
sub-pixels through different mapping algorithms. A 
comparative analysis of these mapping algorithms, 
viz. attraction model-based sub-pixel mapping, simu-
lated annealing, neighbourhood connectivity, cosine 
similarity-based mapping and Markov random field-
based mapping has been made and an output generated. 
The algorithms have been implemented on standard 
hyperspectral datasets of Indian Pines having 200 
spectral channels, Pavia University of 103 spectral 
channels and Jasper Ridge of 198 spectral channels. It 
has been observed that simulated annealing-based 
mapping produces higher accuracy rate than the other 
algorithms, whereas in terms of execution time,  
attraction model takes lesser time. The accuracy has 
been validated with the ground reference map of 
available standard hyperspectral datasets on which 
each algorithm has been tested and analysed. 
 
Keywords: Hyperspectral data, mapping algorithms, 
pure and mixed pixels, spectral channels. 
 
THE advanced AVIRIS (airborne visible infrared imaging 
spectrometer) optical sensor has the ability to capture im-
ages that have a narrow spectral range and high spatial 
resolution. These sensors are presently used by only a 
few research organizations that restrict the availability of 
their applications to researchers working in the remote-
sensing field. Presently, one of the trending remote sens-
ing technologies, viz. hyperspectral imaging, utilizes a 

wide range of spectral variations to differentiate various 
land-cover classes with the huge amount of data present 
in it. One of the drawbacks of the hyperspectral image is 
its coarser resolution, which lacks detailed classification1. 
Due to this mixed pixels are encountered2 (presence of 
many land-cover classes within a pixel). To solve the 
problem of mixed pixels, classification at sub-pixel level 
has been attempted3,4. Pure pixels have higher presence of 
single land-cover class, whereas mixed pixels comprises 
of more than one class. Sub-pixel mapping (SPM) 
enables to discriminate the land-cover classes and their 
locations within each pixel. Sub-pixel classification algo-
rithm includes evaluation of the composition of classes in 
the pixel as well as their assignment to appropriate loca-
tions within the pixel. 
 Linear spectral unmixing model enables us to retrieve 
the fraction of class and assign the fractions to equivalent 
land-cover classes within each pixel. Based on the resolu-
tion, a zoom factor is assigned which breaks each pixel to 
sub-pixels with the fractional values per class. In recent 
decades there is increase in demand of high-resolution 
mapping from coarse images. As a result many algo-
rithms have been developed and used for SPM. It has 
been proposed linear optimization problem can be used 
for SPM through spatial interpolation using an isotropic 
variogram5. However, the outcomes of this process  
resulted in isolated sub-pixels. SPM using spatial depen-
dency attractive model has also been proposed that gene-
rates high spatial resolution as hard classification6,7. 
Three other improved pixel swapping techniques are avil-
able8, where soft classification has been used to formulate 
the spatial arrangements of land-cover classes. Sub-pixel 
shifts algorithm is a distinct algorithm with high/low  
accuracy rate and low processing time9. This method was  
used with multiple sub-pixel shifted mapping technique. 
Bayesian decision principle was used for the identifica-
tion of samples drawn from unknown classes, to obtain 
the solution to a problem where the efficiency of super-
vised classification gets accomplished with minimum  
errors in classification10. Some recent methods proposed 
such as super-resolution using neighbourhood regression 
with local structure prior describes neighbourhood rela-
tionship that combines hierarchical similarity and local 
structure priors5. Using clustering technique and regres-
sion method, this model produced better results in com-
parison to the existing methods. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 120, NO. 1, 10 JANUARY 2021 167

 The availability of higher resolution image is not  
adequate; so the need of mapping a coarser image to a 
finer one solves the problem to classify an image at high 
resolution11. The intuition is to use SPM algorithm to get 
higher resolution mapping using a coarse image as the 
scope of availability of higher resolution image is low 
and cost is high. This study is a comparative analysis of 
SPM techniques, where each technique follows a differ-
ent method for mapping. The SPM algorithms imple-
mented here are sub-pixel attraction, simulated annealing, 
connectivity of pixels, Markov random field (MRF) and 
cosine similarity-based mapping. The perimeter estima-
tion of the connected sub-pixels is used as the cost func-
tion for retrieving the best map from the highly randomly 
generated map in simulated annealing. Attraction model 
estimates the raw attraction parameter between similar 
sub-pixels, and sub-pixels are arranged at a finer resolu-
tion using these parameters. Connectivity model of pixels 
estimates the parameters of the connected pixels at differ-
ent orders of connectivity (first, second, third,…) from 
randomly distributed SPM, where strong connectivity  
between the sub-pixels for all classes results in higher 
stability of mapping while weak connectivity produces a 
random map. Markov random field estimates the condi-
tional probability of configuration of pixels and then uses 
a classifier based on maximum a posteriori (MAP), which 
picks up the most likely super-resolution map among all 
possible generated sub-pixel maps. Cosine similarity esti-
mates the cosine distance measure similarity index which 
is used as the cost function to find the best output from 
the large set of randomly distributed maps. Each  
algorithm has its own method to allocate sub-pixels as 
well as classify and produce high-resolution maps. The 
standard hyperspectral datasets that have been used are 
Indian Pines, Pavia University and Jasper Ridge, which 
are widely used for classification. 

Methodology 

The hyperspectral image with its large number of spectral 
channels exhibits rich data. The large number of spectral 
channels offer enhanced features to analyse various land 
covers such as water, snow, glacier, terrain, etc. more  
efficiently and accurately in comparison to traditional 
imaging systems12,13. Images are classified using several 
sample classes, and are detected by the presence of pure 
endmembers within an image that can be obtained using 
N-FINDR algorithm14. In this study we have extracted 
pure endmembers using the NFINDR algorithm and then 
applied linear spectral unmixing to derive fractional abun-
dance values of sub-pixels for each land-cover class within 
a pixel15. The unmixing equation used is given below. 
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Here Z represents the fractional abundance of a given 
M × 1 column pixel vector, si (i = 1, 2, 3, …, L) the spec-
tra of endmembers, a the abundance coefficients for L × 1 
column vector, e error due noise in the spectral band, L 
the number of endmembers, and s (1, 2, 3, …, L) is an 
M × L endmember matrix of given M-dimensional spec-
tral band. 
 In the initial classification each pixel was considered to 
comprise 100% of a given endmember. To extract the 
map for mixed pixels, which comprises of more than one 
class, we divided the pixels into sub-pixels so that it  
reflects the percentage of composition within the pixel. 
SPM generally includes three steps: (i) Utilization and 
analysis of spectral mixture models to extract soft class 
fraction for a given coarse resolution for the original  
image. (ii) Breaking down of the original pixels of the 
coarse image into a series of sub-pixels, assuming that 
one sub-pixel only contains a specific class, and to obtain 
the number of sub-pixels for each class. (iii) Utilization 
of spatial distribution characteristics of classes and other 
prior knowledge, in order to map the sub-pixel spatial 
distribution (Figure 1). 
 To assign the number of subpixels in a given pixel we 
calculate 
 
 n = rounding off(abdi)/(1/N), 
 
where i is the class, abdi the fractional abundance within 
the pixel evaluated using fully constrained linear spectral 
unmixing and N represents the zoom factor. 
 In general, the SPM involves three steps: (i) Determi-
nation of fractional abundance of each pixel from the im-
age using fully constrained linear spectral unmixing 
(FLSU). (ii) Breaking each pixel area into sub-pixels with 
some factor where sum of area of all the sub-pixel equals 
s2. (iii) Allocation of sub-pixels based upon class depen-
dency or some specific criteria. 
 We have implemented five sub pixel mapping algo-
rithms to achieve our objective. 

Attraction model-based sub-pixel mapping 

The allocation of sub-pixels within each pixel in this  
approach is based upon the distance between similar 
classes. Euclidian distance is measured between pixels 
and sub-pixels for the entire image with a given window 
of pixel size. Pixels are divided into constituent  
sub-pixels of given zoom factor and abundance fraction 
of the pixel. The distance between similar sub-pixels of a 
pixel with respect to its neighbouring pixel and within the 
pixel is measured. In order to properly allocate sub-pixels 
at an appropriate location, we need to assign all  
sub-pixels with certain conditions and constraints. The  
attraction values are estimated for each sub-pixel with re-
spect to every other sub-pixel within the window of given
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Figure 1. Steps of sub-pixel mapping.
 
 

 
Figure 2. a, Demonstration of 4, 8 neighbourhood pixels. b, Distance measure between sub-pixel and neighbouring pixel.

 
 
size16,17. Attraction values are calculated for each sub-
pixel based upon the distance between the sub-pixels of 
both similar and dissimilar classes having abundance 
fraction of each pixel for the window frame (Figure 2 a 
and b). 
 The attraction value estimation uses the following equ-
ation 
 
 pa,b(c) = Avg{Pi,j(c)/d(pa,b,Pi,j)|Pi,jNt[pa,b]}, (2) 
 
where pa,b is the attraction value of the sub-pixel, Pi,j the 
factional abundance value and d(pa,b, Pi,j) is the distance 
of the connected sub-pixels with its neighbourhood. 
 If an image has M × N dimensions, we consider a 3 × 3 
window, i.e. nine pixels of the image. Then each pixel is 

broken down into constituent sub-pixels with the given 
zoom factor. The central pixel is used to allocate  
sub-pixels based on attraction values. Hence each pixel is 
processed by moving the given window size. The attrac-
tion values thus calculated using the above steps are  
assigned sub-pixels in increasing order per class, allocat-
ing each sub-pixel, and thus the finer resolution map is 
generated. 

Simulated annealing model-based sub-pixel  
mapping 

After extracting the fractional abundance values from  
linear spectral unmixing, each pixel of the image is divi-
ded into the sub-pixels with zoom factor (z) assigning 
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each sub-pixel to a class using fractional value of class in 
the given pixel. Window of M × N pixel with a given 
zoom factor composed of (M × N) × z2 sub-pixels is  
chosen and initially the sub-pixels within each pixel are 
randomly allocated2. 
 Based upon the concept that similar class sub-pixels 
will be closer than the dissimilar class sub-pixels, we fur-
ther re-arrange the sub-pixels to allocate them. For this 
allocation we follow cost estimation of perimeter of  
sub-pixel within its neighbourhood. The cost of sub-
pixels belonging to the same class within the window 
frame is calculated. To get the allocation of sub-pixels at 
an optimal state, random perturbation of the sub-pixel in 
the given window frame is carried out and the cost is  
calculated per class. The cost function is the area of simi-
lar sub-pixel and we select the cost where area of similar 
sub-pixel of a given class is minimum (eq. (3)). 
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Here C is the cost function, P the perimeter of the ith 
class with jth sub-pixel, i the class and j is the number of 
sub-pixels. If we consider a 3 × 3 pixel window with a 
sub-pixel zoom factor of 3, the sub-pixels having more 
than 90% of similar endmembers are pure pixels, whereas 
sub-pixels with endmembers less than 90% similarality 
are considered as mixed pixels. 
 
 
 

 
Figure 3. Steps of simulated annealing model based sub-pixel map-
ping. 

 Figure 3 underlines these steps. The approach will pro-
duce output with good allocation of sub-pixels for which 
cost function is to be minimized. The iteration for random 
perturbations is set to a maximum. At each iteration, cost 
of the function is measured with its previous optimal 
cost. If any iteration produces a state having lesser cost, 
the state is stored and if it gives higher cost, the iteration 
is continued. That is, if the cost function increases, it  
rejects the configuration and if cost is less the state is  
selected. In this study we have set counter value 100 as 
rejection, i.e. if continuously 100 times the function does 
not find the low cost preceding the iteration, it will  
terminate the iteration and select the last low configured 
state cost of the sub-pixel allocation. 
 Thus each pixel is processed with a window frame and 
output is obtained with finer resolution image. 

Neighbourhood connectivity-based sub-pixel  
mapping 

Fractional abundance of coarse image with zoom factor is 
used to break each pixel of the image into sub-pixels  
after which initially all the sub-pixels are randomly allo-
cated. Then we assign the position of each sub-pixel 
based on the concept that identical class sub-pixels are 
mostly associated together. The allocation of sub-pixels 
depends on their neighbour connectivity. Basically, there 
are three types of connectivity of pixels: four-connected 
neighbours, eight-connected neighbours and m-connected 
neighbours. So for a given image, pixel to pixel connec-
tivity can be determined using the connectivity criteria. 
Each pixel of an image can be classified as strongly con-
nected pixel as well as pixels of weak connectivity. 
Strongly connected pixels can be easily identified by  
estimating the number of pixels connected to their neigh-
bours, more the number of connected pixel, stronger is 
the connectivity in the neighbourhood system18. 
 Value assigned to a pixel at the ‘centre’ position is a 
function of its neighbourhood system and a set of window 
functions (eq. (4)). 
 
 1 2 3 4 5 6 7 8( )p w b w b w b w b w b w b w b w b= + + + + + + +  
 

  ,i iw f=∑   (4) 

 
where wi is the weight of the connected sub-pixel and b is 
the sub-pixel in the neighbourhood within the window. 
This technique can also be used at the sub-pixel level too. 
For a good arrangement we initially make random alloca-
tion of the sub-pixel in a given window frame and move 
the window in the entire image. The weight of connec-
tivity is determined for each class of each pixel. Then all 
the sub-pixels are rearranged using random allocation and 
weight of the new connectivity is obtained. A complete 
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iteration makes the image with updated sub-pixel alloca-
tion and connectivity value of each class is calculated in 
this state. The process is to be repeated for a given num-
ber of iteration values and the state in which weight of 
connectivity is maximum; the sub-pixel are thus in the 
strongest state. The image generated at the strongest state 
produces a good arrangement of sub-pixels and a com-
parative analysis can be made between the coarse resolu-
tion image and newly generated high resolution image. 
The connectivity is assumed to be checked up to fifth  
order of connected sub-pixels. Increase in the order of 
connectivity yields more accuracy in mapping. Figure 
4 a–c shows the order of connectivity. 
 The second-order connectivity is used in this study 
with zoom factor 3 and a 3 × 3 window frame. 
 The output is used in the analysis for accuracy with 
other methods of classification of finer resolution map-
ping. 

Sub-pixel mapping based on Markov random field 

The coarse spatial resolution image Y with M × N pixels 
where each pixel has an area a, generates a fine resolu-
tion image X having aM × aN pixels. Assume that the 
coarse spatial image contains L number of classes of land 
cover that consist of mixed pixels. In the coarse spatial 
image each pixel may or may not be pure and can be a 
mixture of different classes of land cover, whereas pixels 
of finer spatial resolution image are pure representing a 
single class of land cover. 
 All sites (pixels) belonging to SRM are denoted by a 
set T. The coarser resolution image (hyperspectral image) 
has a large number of bands (K). Each pixel in the SRM 
is considered as pure with the configuration x(t) denoting 
a single land-cover class (x(t) ∈ {1, ..., L}. This means 
La2MN dissimilar super-resolution maps x(T) can be gen-
erated with each having different class assignments in at 
least one pixel. 
 Considering that Super Resolution Mapping (SRM) has 
MRF property, i.e. the conditional probability for a pixel 
with respect to its configuration of entire image  
excluding the pixel that we are considering is equivalent 
to the conditional probability of the pixel’s configuration 
to its neighbouring pixels. 
 
 

 
Figure 4. First (a), second (b) and fifth (c) orders of connectivity.

That can be represented as follows. 
 
 Pr(x(t)|X(T\t)) = Pr(x(t)|X(Nt)), (5) 
 
where T\t is the set of all pixels of T, excluding pixel t, Nt 
is set of the neighbouring pixels of the given pixel t. That 
is, land cover class associated to neighbouring  
pixels are more likely to occur closer to the similar  
land-cover class pixels rather the isolated pixels. The 
conditional probability density function depends on the 
condition if a pixel has a configuration similar to its 
neighbouring pixels, it takes the form of Gibbs distribu-
tion as in eq. (6). 
 
 Pr( ) (1/ ) exp ( )cX Z V X C Tζ⎡ ⎤= −⎣ ⎦∑  (6) 

 
where normalizing constant is denoted by Z, C represents 
a clique, and Vc(X) represents the Gibbs potential func-
tion. A clique is any subset of T or a singleton of T or 
whose two peculiar elements are mutually neighbours. 
Cliques can be four and eight neighbourhood systems. 
Gibbs potential function yields values depending upon 
the configuration of cliques and the entire SRM. 
 Further assume a finer spatial resolution image in 
which each pixel is specified with one class only, having 
a normal distribution. The PDF with mean vector μi and 
covariance matrix ∑i for each land-cover class is given by 
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where the finer spatial resolution image can be 
represented as vector z where a × a pixels of the finer 
resolution image represent one pixel in the coarse image. 
Thus the observed vector y(s) of the coarser spatial  
resolution image having PDF is also assumed to be  
normally distributed with mean vector and a covariance 
matrix 
 

 
1

( ) ( ) ,
L

i i
l

s b sμ μ
=

=∑  and 
1

( ) ( ),
L

l
l

s b s
=

=∑ ∑  (8) 

 
where bl(s) is the percentage of land-cover class-l present 
in Ts such that 
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in addition, we presume that a pixel at coarse spatial  
resolution has a number of pure pixels at fine spatial 
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resolution and the distribution of pixels is independent, 
since the mean vector and covariance matrix from the  
observed data at coarser spatial resolution are the direc-
tional sum of mean vectors and covariance matrices of the 
pixel at fine spatial resolution respectively. 
 Therefore, conditional PDF for the coarse resolution 
image observed can be written as 
 
 Pr( | ) Pr( ( )| ( )),Y X y s b s=∏  (9) 

 
where b(s) = [b1(s) … BL(s)]T. 
 The classifier based on MAP picks up the most  
likely SRM among all possible ones given the observed 
image. 
 The map criterion is expressed as follows 
 
 Xopt = arg{maxx[Pr(X|Y)]}, (10) 
 
where Pr(X|Y) represents the posterior probability of the 
SRM when a coarser spatial resolution observed image is 
available. 
 That is, 
 
 Xopt = arg{minx[E(X|Y)]}. (11) 
 
Since the possibility of SRM generation is too large for 
reducing the execution time simulated annealing (SA)  
algorithm might be employed to generate sequence of 
(Xp}, p = 1, 2, 3, …. SA allows the best solution for eq. 
(5). 
 Overall, two major steps are involved: (i) Initialization 
is performed for the determination of a fairly good initial 
assessment of the SRM. (ii) Iteration is done for determi-
nation of the best SRM. 
 Here, the maximum likelihood estimation (MLE)-
derived probabilities are used to perform the sub-pixel 
classification and generate fraction images. These frac-
tion images are further induced into a super-resolution 
map generator in order to get an initial resolution map at 
fine spatial resolution based on the following process. 
The pixels represented in coarse resolution image is in simi-
lar proportions to pixels corresponding to the finer resolu-
tion image9,19,20. If a fraction image of class A has a value 
of 0.5 in pixel sj, there are 0.5 a2 pixels out of a2 in the 
set j belonging to class A in the SRM. A similar proce-
dure is adopted for each fraction image and pixels in the 
set j are then randomly labelled with all the classes. This 
is implied as the initial SRM. It is expected for the initial 
SRM to have a large amount of isolated pixels in con-
junction with the neighbouring pixels belonging to differ-
ent land-cover classes. For the iteration phase initial SRM 
is exploited as starting input for the search process. An 
appropriate outset is likely to result in quicker rate of 
convergence for the SA algorithm. Consistently, the 
count of isolated pixel numbers in the SRM is reduced 

because the contextual information present in the Gibbs 
potential functions VC forces the SA algorithm to itera-
tively generate a new SRM, which leads closer to the  
solutions MAP criterion which is the desired best SRM. 
The iteration condition set to a phase when 0.1% pixels 
positions are unchanged. 

Cosine similarity-based sub-pixel mapping 

Cosine similarity measures the similarity between two 
vectors of an inner product space. It is measured by  
the cosine of the angle between two vectors and deter-
mines whether they are pointing in roughly the same  
direction. 
 The cosine of two non-zero vectors is calculated using 
the Euclidean dot product formula 
 
 A•B = ||A|| ||B||cos θ. 
 
For the given two vectors of attributes A and B, the  
cosine similarity cos(θ ) is represented using a dot pro-
duct and magnitude as follows 
 

 Similarity cos( )
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 (12) 
 
The results thus produced can be categorized as the range 
of similarity index from –1 to 1, where –1 denotes lesser 
similarity, 0 as the same order of similarity and 1 consi-
dered as maximum similarity21. 
 The cosine distance measure similarity index was used 
as the cost function in order to select the best output from 
the large set of randomly generated possible outcomes 
from random distributed sub-pixels at finer resolution 
mapping. 

Results and discussion 

Lesser availability of higher resolution hyperspectral  
image has led to the implementation of various algo-
rithms in this study to generate sub-pixel level mapped 
images. Application of SPM algorithms on an image of 
coarse spatial resolution generates a higher spatial resolu-
tion image that is then classified and compared with 
ground data. The accuracy level of the mapped image 
signifies prioritization of SPM methods for application on 
coarse hyperspectral images. The fractional abundance 
generated for each pixel using linear spectral unmixing  
is fed into the mapping model that produces a finer  
image which is compared and tested with the ground  
reference map of the datasets under study, namely
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Table 2. Sub-pixel mapping analysis with Jasper Ridge dataset 

 
Method 

 
Dataset 

 
Ground truth 

 
Output image 

Overall  
accuracy (%) 

 

Attraction model 

 

90 

Connected pixel classification 

 

92 

Simulated annealing 

 

95 

MRF model 

 

91 

Cosine similarity-based classification 

 

92 

 
Class and legend used for Jasper Ridge dataset 

Class/legend 1 2 3 4 
 

Class sample Tree Water Road Soil 
Legend 

 
Indian Pines dataset (Table 1), Pavia University (Table 2) 
and Jasper Ridge image (Table 3). 
 Pavia University dataset is the scene over Pavia, north-
ern Italy and the study imagery has 610 × 310 dimensions 
with 103 spectral bands and nine identified endmembers. 
The Indian Pines dataset with 145 × 145 dimension and 

200 spectral bands has 16 identified endmembers, of 
which 15 were used to classify images consisting of agri-
culture, forest, some built-up structures and crop. One 
endmember was eliminated as it had less presence and the 
breakdown process to constituent sub-pixels was not 
possible. The Jasper Ridge dataset has four endmembers
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Table 3. Sub-pixel mapping analysis with Pavia dataset 

 
Method 

 
Dataset 

 
Ground truth 

 
Output image 

Overall  
accuracy (%) 

Kappa  
coefficient

 

Attraction model 92 0.89 

Connected pixel classification 93 0.91 

Simulated annealing 97 0.94 

MRF model 94 0.93 

Cosine similarity-based classification 91 0.90 

 
 
 

Class and legends used for Pavia dataset 

Class/legend 1 2 3 4 5 6 7 8 9 
 

Class sample Alphalt Meadows Gravel Tree Painted metal sheet Bare soil Bitumen Self-blocking bricks Shadows 
Legend 
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which have been used for classification with 100 × 100 
dimension and 198 spectral bands. 
 All the three datasets were implemented to obtain the 
resultant map. Sixteen sample classes were chosen to test 
on the Indian Pines dataset. The dataset was downscaled 
and the algorithms were applied to produce a map at reso-
lution similar to a containing ground data. Since we have 
downscaled the image dataset, it is easier to map the out-
put with its ground reference. Similarly, Pavia University 
dataset was also compared with the available ground  
reference map. Jasper Ridge dataset already had fraction-
al abundance values as ground truth and was directly  
considered for SPM. 
 The accuracy assessment signifies that SA-based map-
ping produces higher accuracy rate than the other two, 
whereas attraction model uses lesser time than the other 
models (Table 1–3). The cost estimation parameters for 
SA-based mapping depend upon the number of classes in 
a given image. In our test case, it was found that after set-
ting the number of iterations to 1000, the minimum peri-
meter of the connected pixel was obtained. Setting of 
iteration is an important factor for achieving good results. 
SA yields good output in less time if number of classes 
and image dimension are less. Attraction model is effi-
cient for high-resolution images with greater number of 
classes as the model computes position in terms of attrac-
tion, which takes less computation time. MRF model 
enables us to map the sub-pixels, provided the images 
have a large number of pure pixels. Due to variation in 
pixel properties and abundance ratio, it is difficult to  
estimate the solution for which the model continues to 
move to infinite random maps. One of the quickest  
method to find the mapping of sub-pixels is the similarity 
index, as it takes less computational time, but one of the 
drawbacks is to predict the degree of accuracy level. A 
comparative analysis of all the four models suggests that 
SA is the most preferred in terms of accuracy, whereas to 
produce a map in lesser time, the attraction model is pre-
ferred. It is also observed that connectivity-based maps 
have greater accuracy than those of the attraction model. 
The MRF produces quite high accuracy than connectivity 
model but it is lower than that of SA model. 

Conclusion 

This study compares four SPM algorithms for enhancing 
spatial resolution of coarse hyperspectral images. We uti-
lized the results of linear spectral unmixing as input for 
determination of spatial distribution of sub-pixels for the 
datasets of Pavia, Jasper and Indian Pines within a mixed 
pixel area. The sub-pixel locations were determined using 
SA algorithm, attraction model, connectivity-based model, 
MRF model and cosine similarity-based model. We have 
successfully reproduced an accurate classified map of 
finer spatial resolution. The SA algorithm is found to be 

the most accurate when matched with the ground truth 
data available with standard datasets. The attraction mod-
el takes the lowest execution time to generate maps. In 
the algorithms implemented, two key factors that affect 
the classification precision of pixels and sub-pixels are 
the threshold used to govern the purity of a pixel and the 
number of endmembers measured as input for classifica-
tion. If more number of endmembers are measured, it 
may so happen that a specific endmember may not essen-
tially be spatially close to the selected pixel. Hence,  
including such endmembers for sub-pixel classification 
would introduce useless information, thus affecting clas-
sification precision. Furthermore, increasing the zoom 
factor leads to an increase in possible sub-pixel mixtures, 
which would in turn escalate the computational weight 
exponentially. 
 The methods discussed here help overcome the draw-
backs of low spatial resolution of hyperspectral data by 
enhancing spatial details using the implemented SPM  
algorithms. 
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