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Deep learning approaches have received major inte-
rest in the field of remote sensing. Hyperspectral  
imaging has rich data that are distributed in multi-
dimensions. It is challenging to apply deep learning 
algorithms due to the limited amount of labelled data. 
So, unsupervised feature extraction approaches are 
used to overcome this limitation. In this study, we 
propose an unsupervised feature learning approach 
using deep belief network (DBN). In the proposed 
framework, the input hyperspectral image is  
segmented using entropy rate superpixel segmentation 
and filtered by domain transform recursive filter 
which extracts spatial and spectral information effec-
tively. Then the features are learned by improved 
DBN. In the traditional methods, DBN is stacked with 
restricted Boltzmann machine (RBM) which is suita-
ble for only binary value data. In the proposed 
framework, we used Gaussian–Bernoulli RBM which 
was constructed for real value data such as images. 
The experiments were carried out using Pavia Univer-
sity dataset. The results show that the proposed  
network has good performance in terms of classifica-
tion accuracy and computation time. 
 
Keywords: Deep belief network, hyperspectral image, 
remote sensing, spatial–spectral classification, superpixel 
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IN recent years, hyperspectral imaging has received much 
attention in the field of computer vision. In hyperspectral 
imagery, the images are collected at visible or near-
infrared wavelength, which identifies objects that are not 
visible to the human eye. Hyperspectral images are col-
lected at hundreds of narrow and continuous spectral 
bands. Hyperspectral imaging shows better performance 
in target separation and identification compared to multi-
spectral imaging. Thus hyperspectral images are widely 
used in both military and civilian applications such as  
environment monitoring, fire tracking, vegetation, etc.1. 
 In traditional classification and detection algorithms, 
pixel-level analysis is used. It has been noted that when 
pixels are taken individually for analysis, they are sensi-

tive to intra-class variability and noise. To avoid this 
problem, the entire image is characterized as multiple  
local regions defined by a window or grid. These  
approaches can also affect the performance of classifica-
tion algorithms when there is a complex background. 
Thus, segmentation is preferred over fixed window repre-
sentation, as it has well-defined boundaries. Superpixel 
segmentation divides the image into spectrally similar  
regions consisting of several contiguous pixels2. Super-
pixels are widely used in image-processing techniques to 
reduce the complexity of images from thousands of pixels 
to few hundreds of superpixels. The superpixel algorithm 
segments an image into small, non-overlapping, homo-
geneous regions with adaptive shape and size. 
 In the past decade, many algorithms have been pro-
posed for superpixel segmentation in the hyperspectral 
domain. It is necessary to perform segmentation prior to 
endmember extraction while calculating region-specific 
endmembers. This technique provides true boundaries 
with the optimal feature vectors and is more compact than 
the original image. According to the techniques used to 
develop a superpixel, the superpixel segmentation  
algorithms can be classified into graph-based methods3,  
gradient-ascent-based methods4 and cluster-based  
methods5. Entropy rate superpixel segmentation (ERS)6 
and simple linear iterative clustering (SLIC)7 are the most 
widely used superpixel segmentation algorithms in the 
hyperspectral image processing. In this study, we have 
adopted ERS for superpixel segmentation. 
 Due to the high dimensionality of data, hyperspectral 
images lead to Hughes phenomenon8, which degrades the 
accuracy of classification algorithms. Feature extraction 
is an effective approach which reduces the dimension of 
the data. In particular, the hyperspectral image is pro-
jected onto another feature space and only important fea-
tures are maintained for classification. The most widely 
used feature extraction techniques are principal compo-
nent analysis (PCA)9, independent component analysis 
(ICA)10, linear discriminant analysis (LDA)11, and so on. 
PCA shows superior performance compared to the other 
methods as it holds the most significant spectral features 
of hyperspectral image (HSI) in a few principal compo-
nents (PCs). In ICA, the components are independent and 
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computation complexity is high when compared to PCA. 
LDA fails when the features between classes are nonli-
nearly separated in the input space. Moreover, these tech-
niques consider only the spectral features, whereas the 
spatial information is not included. The filtering tech-
niques are used to extract the features in HSI which  
consider both spatial and spectral information. Recently, 
many researchers have shown interest on the edge-
preserving filtering algorithms (EPF) in hyperspectral 
imaging12–15. In this study, we have adopted domain trans-
form recursive filter (DTRF) to extract the spatial and spec-
tral features. 
 Recently, many deep learning algorithms have been  
introduced for hyperspectral classification. Support  
vector machine (SVM) is a widely used classification  
algorithm which has good performance in terms of classi-
fication accuracy with few training samples, and it does 
not depend on spectral dimension16,17. The traditional 
classification methods have only one layer which will not 
extract the features potentially. The neural network mod-
els have achieved tremendous growth in the field of com-
puter vision. Convolutional neural networks (CNN) is an 
effective model to extract the deep features and shows 
remarkable performance in classification18. These deep 
learning models need huge training data to get good  
results, but hyperspectral imaging has only a limited 
number of labelled training data. Deep belief network 
(DBN) is a deep learning model which shows good  
performance with less number of training data19. Here, 
we adopt DBN with three hidden layers to extract the 
deep features. Softmax classifier is used for classifica-
tion. 
 In this study, the superpixel segmentation algorithm 
has been adopted to reduce the complexity of processing. 
Also, it helps retrieve the optimal features. DTRF is  
carried out to combine the spatial and spectral features. 
The deep spatial and spectral feature extraction architec-
ture based on DBN stacked with Gaussian–Bernoulli  
Restricted Boltzmann Machine (GBRBM) is proposed for 
efficient classification of hyperspectral imaging. The 
learned features are classified by the softmax classifier.  

Related work 

Entropy rate superpixel segmentation 

As the hyperspectral images have high dimensional data, 
it is necessary to adopt dimensionality reduction algo-
rithm prior to superpixel segmentation. PCA is performed 
to reduce the spectral dimension, which gives an optimal 
representation of the hyperspectral image. The first PC is 
used to build the superpixel map as it contains most of 
the hyperspectral image information20. 
 In ERS, the hyperspectral image is segmented using 
the graph optimization problem, so that it can preserve 

the boundaries. The image is mapped to the weighted 
graph G = (V, E), where V is the vector set that represents 
the first image components and E is the edge set that 
represents the pairwise similarities between adjacent  
pixels. The similarity between adjacent pixels is meas-
ured with the weight function which is defined using 
Gaussian kernel as 
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where d(vi, vj) is the intensity difference multiplied by the 
spatial distance, and σ is the kernel parameter. The main 
aim of this algorithm is to select the subset of edges 
A ` E, and the resulting graph GA = (V, A) has K  
connected subgraphs. Let us assume that every vertex in 
the graph has a self-loop. If the edge is not included in A, 
the edge weight of the self-loop of the associated vertices 
will increase. These subgraphs are considered as super-
pixels { }1 2, , , .

AN KS S S S= …  The objective function is a 
combination of the entropy rate and balancing function 
which results in compact, homogeneous and balanced 
clusters. These clusters are obtained by optimizing the 
objective function corresponding to the edge set. 
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subject to A ` E and NA = K, where H(A) is the entropy 
rate, B(A) the cluster distribution balancing term, K the 
number of superpixels and λ ≥ 0 is the weight of the  
balancing term. The objective function is submodular and 
increases monotonically as it is a linear combination with 
non-negative coefficients. The objective function can be 
optimized using iterative greedy algorithm. 

Edge preserving filter 

In recent years, edge preserving filters (EPFs) are widely 
used in feature extraction which incorporates the spatial 
information of hyperspectral images. Here, we have used 
DTRF, which is a real-time filter21. It has low computa-
tional complexity compared to bilateral filtering17,  
and shows significant improvement in classification accu-
racy14. In this filter, the input signal I is transformed to 
the domain transform Ωω. Then, the transformed coordi-
nate ct(xm) is computed for each pixel to calculate the  
distance between two pixels. The function ct(u) that  
defines the domain transform of the signal I(x) is given as 
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where I′(x) is the derivative of the input signal I(x), δs and 
δr are the spatial and range parameters, and Ωω is the  
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domain transform signal. The transformed signal is  
computed using recursive filter as follows 
 
 [ ] (1 ) [ ] [ 1],d dJ m c I m c J m= − + −  (4) 
 
where J[m] is the filter output result, c the feedback  
coefficient which is expressed as 
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and d is the distance between the neighbouring samples 
xm and xm–1 which is expressed as d = ct(xm) – ct(xm–1). 
The propagation chain will be stopped when d increases, 
which leads cd to zero. In this way, the edges are  
preserved and pixels on the same side of the edge will 
have the almost same output. In 2D images, 1D filtering 
operations are computed for each dimension. In this 
study, we have adopted three iterations of 1D filtering, 
which give satisfactory filtering results. 

Restricted Boltzmann machine 

Restricted Boltzmann machine (RBM) is a layerwise 
training network which has only two layers, viz. visible 
and hidden. In this network, the binary units are defined 
with an energy function. There is no connection between 
visible and visible layers as well as between hidden and 
hidden layer. The visible layer is connected only to the 
hidden layer. Figure 1 shows the structure of RBM. 
 RBM is an energy-based probabilistic model in which 
the global energy of the configuration of visible and  
hidden layers is given by 
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where vi are the units of visible layer i, hj the units of  
the hidden layer j, Wij the weight connecting the visible 
and hidden layers, and ai, bj are the biases of the visible 
and hidden layer respectively. The term θ = {Wij, ai, bj}  
defines the model parameters of RBM, and the total num-
ber of visible and hidden units is given as m and n respec-
tively. The probability distribution of the layers is 
represented with an energy function as follows. 
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where Z is the normalizing constant which is the partition 
factor in correspondence with physical systems. In spite 

of the distinct structure of RBM, the visible and hidden 
layers are conditionally independent, and the distributions 
are given by logistic functions 
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where σ (x) is the sigmoid function 
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The weights can be trained by the method called contras-
tive divergence (CD)22. The updated weight is given as 
 
 data model[ ]( ),[ ]ij ij i j i jw w E v h E v hε= + −  (10) 
 
where ε is a learning rate, data [ ]i jE v h  represents the  
data distribution and model[ ]i jE v h  represents the model 
distribution. The hidden layer holds information of the 
training data which represent the original data. This  
information is learnt as features from the input. 

Gaussian–Bernoulli RBM 

The classical RBM has been designed only for binary  
valued data. To solve this problem, the Gaussian–Bernoulli 
restricted Boltzmann machine (GBRBM) was introduced 
to process the real valued images23. The binary visible 
layer in classical RBM is replaced by the Gaussian  
 
 

 
 

Figure 1. Structure of Restricted Boltzmann Machine.
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visible layer, whereas the hidden layer can hold the  
binary-valued data. The energy function of GBRBM is 
given as 
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where 2

iσ  represents the variance of the visible layer. 
The probability distribution of the visible and hidden  
layers is computed as 
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where 2(. | , ).μ σN  presents the Gaussian probability 
density function with mean μ and variance σ 2. The learn-
ing process is carried out using the CD method which  
reduces the complexity of computing model distribution 
and also improves the learning performance. The updated 
weight of GBRBM after the training process is 
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To reduce the complexity of the model, σ  is considered 
as a constant (=1). 

Deep belief network 

DBN is the layer-by-layer learning system which is 
formed by stacking multiple RBMs. In DBN, the learning 
of deep features can be done by pre-training. The input is 
 
 

 
Figure 2. Structure of deep belief network. 

mapped into the first RBM and the output of first RBM is 
given as the input of the second RBM. The process is 
continued till the last RBM, and the features of the whole 
network are obtained from the last RBM. Figure 2 shows 
the architecture of DBN. 
 DBN is a probabilistic graphical model that learns to 
extract a deep feature of the training data24. DBN is 
formed by stacking RBMs that train in a greedy manner. 
The training process involves two stages. The first is the 
unsupervised feature learning in which the RBM learns 
by the greedy learning algorithm. The second stage is  
supervised fine tuning, which is done by back propaga-
tion algorithm. Here, we have used GBRBM instead of 
the classical RBM. 

Proposed approach 

The proposed approach consists of three steps: (i) Deve-
loping superpixels using ERS. (ii) Filtering using DTRF. 
(iii) Classification based on DBN. 
 Step (i): Initially, PCA algorithm is applied to the  
original image I to generate the PCs which reduce the 
spectral bands of HSI, and is represented as 
 
 p PCA( ),I I=  (15) 
 
where Ip is the dimension-reduced image and p is the  
reduced number of bands. Then applying ERS, 2D a  
superpixel map is generated with Sn superpixels. The  
pixels in each superpixel are linked to the same label. 
 
 s p( ),I ERS I=  (16) 
 
where Is is the superpixel map of the band reduced image. 
 Step (ii): DTRF is applied to the superpixels to extract 
the features and is represented as 
 
 

s r, s( ),DTRFQ Iδ δ=  (17) 
 
where δs and δr are the spatial and range standard  
deviations respectively, of the recursive filter and Q is the 
filtered image. 
 Step (iii): In the proposed framework, DBN stacked 
with GBRBM is used as a deep learning architecture. As 
there is limited number of training samples, the network 
should not be too deep because of the overfitting pro-
blem. So, in the proposed framework we have used three 
GBRBMs in our network. The spatial and spectral fea-
tures from DTRF are given as 1D vectors to the DBN 
network as training samples. The training samples  
are given to the first layer and the learned features are  
retained in first hidden layer. Then the visible layer of  
the second GBRBM uses these features as input and the 
learned features are maintained in second hidden layer. 
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Figure 3. Proposed framework for spatial–spectral hyperspectral classification. 

 

 
Figure 4. Relationship between the number of hidden neurons, num-
ber of hidden layers, learning rate, number of epochs and accuracy.
 

Table 1. Classes and samples in the Pavia University dataset 

 
Class  

 
Samples 

Training  
samples 

Testing  
samples 

 

Asphalt 6,631 663 5,968 
Meadows 18,649 1,865 16,784 
Gravel 2,099 210 1,889 
Trees 3,064 306 2,758 
Painted metal sheets 1,345 135 1,211 
Bare soil 5,029 503 4,526 
Bitumen 1,330 133 1,197 
Self-blocking bricks 3,682 368 3,314 
Shadows 947 95 852 
Total 42,776 4,278 38,498 

 
This will be followed by the third GBRBM. This learning 
process is considered as the pre-training stage which uti-
lizes the greedy learning procedure. In the fine-tuning 
stage, the classification is carried out along with the 

softmax layer. Figure 3 shows the proposed framework 
for hyperspectral image classification. 

Results and discussion 

In this study, we have used Pavia University dataset for 
validating the performance of the proposed framework. 
The experiments have been implemented using Matlab 
R2018a and the operating system is Win10 with 64-bit 
CPU Intel Core i5 processor. 

Dataset description 

The Pavia University image was collected using the  
reflective optics system imaging spectrometer (ROSIS) 
sensor. It has 103 spectral bands after removal of noise 
bands and consists of 610 × 340 pixels. The spatial reso-
lution is 1.3 m with wavelength ranging from 0.43 to 
0.86 μm. The nine classes of this image scene are asphalt, 
meadows, gravel, trees, painted metal sheets, bare soil, 
bitumen, self-blocking bricks and shadows (Table 1)25. 

Evaluation criteria 

To evaluate the performance of the proposed framework, 
the quantitative metrics used are overall accuracy (OA), 
average accuracy (AA) and kappa coefficient. OA is de-
fined as the ratio of the number of correctly classified 
pixels to the total number of samples. AA is defined  
as the ratio of the sum of accuracies per class to the total 
number of classes. Kappa coefficient compares the dif-
ference between the classification map and ground truth. 
 In the experimental analysis, the parameters that are 
tuned for better classification results are the number of 
hidden layers, number of hidden neurons, epoch and the
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Figure 5. Results of the proposed framework: a, RGB image of Pavia University. b, Ground truth. c, Result of  
entropy rate superpixel segmentation. d, Results of domain transform recursive filter filtering. e, Classification map 
of the proposed framework. 

 
Table 2. Classification results using the Pavia University dataset 

Model Linear SVM Super BF SVM DBN CNN DBN network 
 

Overall accuracy (%) 89.78 93.30 89.82 94.14 95.65 
Average accuracy (%) 85.33 92.78 91.65 93.47 94.93 
Kappa statistics 0.80 0.91 0.90 0.91 0.94 
Time (sec) 2.43 12.17 0.75 54.72 0.17 

 
learning rate. The number of hidden neurons and the 
number of layers are the key parameters to improve clas-
sification performance and are selected in such a way that 
the features are not over-trained. The parameter learning 
rate governs the learning process. If the learning rate is 
too small, the training process will take a long time and  
if it is too large, the training process will produce an  
unstable output. So, it is important to select a proper learn-
ing rate for the training process to improve the perfor-
mance. 

 Figure 4 shows the relationship between the various 
parameters that are tuned in experimental analysis and 
accuracy. The number of hidden neurons chosen for the 
DBN network is 200, which gives a high accuracy value 
0.958. The number of hidden layers in the proposed 
framework is three, which ensures that the features are 
not over-trained. The learning rate used in the DBN  
model is 0.1 and the number of epochs is 300. 
 Figure 5 a shows the RGB image of Pavia University. 
Figure 5 b shows the ground truth of Pavia University 
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with nine classes. Figure 5 c shows the superpixels using 
ERS segmentation algorithm. Figure 5 d shows the fil-
tered image using DTRF algorithm and Figure 5 e shows 
the classification map of the proposed framework. 

Comparative analysis 

To verify the performance of the proposed algorithm,  
linear SVM, Superpixel-based Bilateral Filtering-SVM, 
DBN and CNN were used for analysis. Table 2 shows the 
classification results of these algorithms. In the experi-
mental analysis, we used Compute Unified Device Archi-
tecture to reduce the training time. From Table 2, it can 
be seen that the prediction time is less in the proposed 
framework when compared with other algorithms. The 
overall accuracy of the proposed framework is 95.65%, 
which is better than other algorithms. 

Conclusion 

Here, we propose a novel framework for extraction of 
spatial and spectral features based on DBN. The frame-
work includes superpixel segmentation, which is a  
powerful tool to retrieve spatial and spectral information 
of hyperspectral images. The superpixels are filtered  
using EPF, which improves the classification accuracy. 
The proposed DBN model stacked with GBRBM learns 
the deep features by unsupervised pre-training and super-
vised fine-tuning. The softmax classifier is added to the 
framework for the classification of learned features. The 
proposed model is compared and analysed with the other 
popular classifiers. The proposed model performs better 
than these classification techniques in terms of accuracy. 
Moreover, the prediction time is less compared to the 
other algorithms. In future work, we will concentrate on 
the optimization of parameters used in deep learning 
framework.  
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