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The main objective of the present study is to examine 
the impact of three-dimensional variational data as-
similation utilizing the multivariate background error 
covariance (BEC) estimates, in combination with the 
model calibration, for the simulations of seven tropi-
cal cyclones over the Bay of Bengal region. The study 
indicates that the utilization of multivariate BEC in 
assimilation influences the model forecasts in terms of 
wind speed at 10 m height, precipitation, cyclone tracks 
and cyclone intensity. The assimilation experiments 
conducted with a previously calibrated model com-
bined with the control variable option 6 (cv6) of BEC 
have reduced the overall root mean square error 
(RMSE) of 10 m wind speed by 17.02%, precipitation 
by 11.14%, cyclone track by 41.93% and the intensity 
by 25.5% when compared to the default model simula-
tions without assimilation. The best experimental set-
up is then used for the operational forecast of a recent 
cyclone Gulab. The results show an RMSE reduction 
of 18.61% in the cyclone track and 28.99% in intensity 
forecasts. These results also confirm that the utiliza-
tion of cv6 BEC in the assimilation of conventional and 
radiance observations on a calibrated model improves 
the forecast of tropical cyclones over the Bay of Bengal 
region. 
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TROPICAL cyclones are one of the most disastrous weather 

phenomena that affect millions of lives across the globe. 

The north Indian Ocean contributes to 6–7% of global 

tropical cyclones1, with the world’s deadliest tropical cy-

clones often originating from this region. Since the popu-

lation near coastal regions around the Bay of Bengal 

(BoB) is increasing, the potential for more damage to 

lives and property due to tropical cyclones is high2,3. In 

addition, the changing climate and global warming are 

likely to produce more intense tropical cyclones in the  

future, which may further result in greater damage to 

lives and property4,5. To mitigate the devastating effects 

of tropical cyclones, first an accurate prediction of the 

cyclone track, intensity and precipitation during landfall 

is required. 

 The use of numerical weather prediction (NWP) models 

for the prediction of tropical cyclones gained popularity 

in the late 1960s (ref. 6). From then, the NWP models 

have evolved to a great extent, and provided research and 

operational forecasts for a wide range of applications at a 

resolution of hundreds of kilometres to hundreds of metres. 

The Weather Research and Forecasting (WRF) model is a 

community-based NWP system, which has been extensi-

vely used for the prediction of tropical cyclones over the 

BoB region7–12. In spite of the significant improvements 

achieved in the NWP models, the forecast accuracy for 

severe weather events such as tropical cyclones still re-

mains a challenge. The poor performance of NWP models 

can be attributed to the poorly specified model parameter 

values13 and inaccuracy in providing the initial condi-

tions14. 

 The process of modifying the model parameters to 

match the model output with that of the observations is 

known as parameter calibration. The model parameter cali-

bration started as early as 2012 (ref. 15) and is gaining  

attention lately. Baki et al.16 calibrated the WRF model 

parameters for simulations of tropical cyclones over the 

BoB region and reported considerable improvement in 

wind speed, precipitation, cyclone track and intensity. In 

the present study, the calibrated model parameter values 

reported by Baki et al.16 are used in the short-term predic-

tions. 

 Developing appropriate initial conditions for the simu-

lations of tropical cyclones is a challenging task as these 

cyclones originate over the oceans, where direct in situ 

observations are limited. However, advancements achieved 

in computational methods and observational instruments 

have led to the use of superior data assimilation techniques. 

The available observations can be used in the model to 

generate accurate initial conditions. Several researchers 

have utilized the three-dimensional variational (3DVar) 

assimilation17–21, four-dimensional variational (4DVar) 

assimilation22,23 and hybrid assimilation24 techniques to 
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assimilate the in situ and satellite observations for predic-

tions of tropical cyclones over the BoB region, and reported 

considerable improvement in cyclone track and intensity 

forecasts. The variational technique aims to get the best 

approximation of the state of the atmospheric system by 

combining background and observation information and 

taking into consideration their respective error structures. 

As a result, an accurate representation of the error covari-

ances is critical in data assimilation systems25. Rakesh 

and Goswami26 have examined the role of background error 

statistics generated with global and regional models in 

3DVar assimilation for the simulations of tropical cyclones 

over the north Indian Ocean. They reported that the use 

of regional background error statistics in 3DVar assimila-

tion improved the cyclone track and intensity predictions 

significantly. Dhanya and Chandrasekar27 studied the  

impact of background error covariance (BEC) in 3DVar  

assimilation of SAPHIR radiances for the simulation of 

three tropical cyclones over the BoB region. They exami-

ned two covariance options, cv5 and cv6; the simulated 

cyclones showed high intensity when cv6 was used. 

Thiruvengadam et al.28 examined the impact of back-

ground error statistics of cv5, cv7 and ensemble methods 

in 3DVar radar data assimilation for the 2015 heavy pre-

cipitation event over Chennai. These studies show that 

the background error covariances affect data assimilation 

and the use of regional-specific BEC will improve the 

model forecasts. 

 So far, studies have used different background error 

statistics in advanced data assimilation techniques employ-

ing the default-built WRF model. However, the perfor-

mance of the calibration model with the application of 

multivariate background error statistics is yet to be evalu-

ated. The present study examines the impact of multivari-

ate background error covariances in 3DVar assimilation 

of conventional and radiance observations using the de-

fault and calibration models for simulations of tropical 

cyclones over the BoB region. To the best of the authors’ 

knowledge, no study has been conducted earlier to examine 

the impact of background error statistics in 3DVar as-

similation with the calibration model. 

Model description, calibration set-up and  
simulation events 

In the present study, the WRF model version 3.9.1 was 

used to perform numerical simulations of seven very severe 

cyclonic storms over the BoB region29. The WRF model 

is configured with a single domain of 12 km resolution 

consisting of 250  250 grid points in the horizontal di-

rection (Supplementary Figure 1) and 49 sigma levels in 

the vertical direction. Based on the study of Kutty et al.24, 

the 24th-hour forecasts from the National Centers for  

Environmental Prediction (NCEP) Global Forecast System 

(GFS) at 0.5 resolution have been used as initial and 

boundary conditions to drive the numerical simulations. 

The WRF model simulations were performed with a time 

step of 30 sec. The model physics schemes were adapted 

from Baki et al.16, viz. Kain–Fritsch for cumulus phy-

sics30, MM5 similarity scheme for surface layer physics31, 

WRF single-moment 6-class (WSM6) scheme for micro-

physics32, rapid radiative transfer model for longwave ra-

diation33, unified Noah land surface model for land 

surface physics34, Dudhia shortwave scheme for 

shortwave radiation35 and Yonsei University Scheme 

(YSU) for planetary boundary-layer physics36. 

 Model calibration is a method of improving the per-

formance of a numerical model by tuning the model para-

meters when comparing with the observations. Baki et 

al.16 have shown that the calibration of eight sensitive para-

meters from the seven physics schemes of the WRF mod-

el has greatly improved the prediction of 10 m wind 

speed, precipitation, cyclone track and intensity. With a 

view to assess the performance of data assimilation with 

the calibration model, the parameter values obtained by 

Baki et al.16 were adopted in this study (Supplementary 

Table 1). Hereafter, the model with default parameter 

values is referred to as the default model and that with the 

calibration parameter values as the calibration model.  

 In the present study, seven tropical cyclones that origi-

nated over the BoB region under the very severe cyclonic 

storm category have been selected for numerical analysis. 

The selected cyclones originated during the post-monsoon 

season during the period 2011–18. The India Meteorolo-

gical Department (IMD) observed tracks of the selected 

cyclones are shown (Supplementary Figure 1) and Table 1 

presents the corresponding landfall times. 

Assimilation methodology, background error  
statistics and data 

Description of 3DVar assimilation system 

In the present study, the WRF–3DVar system developed 

using the WRF model was employed for assimilation ex-

periments. The 3DVar system performs minimization of a 

cost function J(x) to obtain the best estimate of the current 

state of the atmosphere when provided with the observa-

tions. The cost function is defined as14 
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where x represents the atmospheric state vector, xb the 

first guess of the state, yo the observational vector and H 

represents the observational operator which calculates the 

observation equivalents from the model variables and 
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Table 1. Overview of the tropical cyclones and corresponding simulation periods 

 

Index 

 

Cyclone 

 

Landfall 

Period of spin-up  

(6 h) 

Period of assimilation  

(four cycles) 

Period of free  

forecast (96 h) 
 

A VSCS Thane 01Z–02Z 30 December 2011 18Z 25th–00Z 26th 00Z 26th–18Z 26th 18Z 26th–18Z 30th 

B VSCS Leher 0830Z 28 November 2013 00Z 24th–06Z 24th 06Z 24th–00Z 25th 00Z 25th–00Z 29th 

C VSCS Madi 17Z 12 December 2013 06Z 8th–12Z 8th 12Z 8th–06Z 9th 06Z 9th–06Z 13th 

D VSCS Vardah 09Z–10Z 12 December 2016 00Z 8th–06Z 8th 06Z 8th–00Z 9th 00Z 9th–00Z 13th 

E VSCS Titli 00Z 11 October 2018 12Z 6th–18Z 6th 18Z 6th–12Z 7th 12Z 7th–12Z 11th 

F VSCS Hudhud 0630Z 12 October 2014 12Z 7th–18Z 7th 18Z 7th–12Z 8th 12Z 8th–12Z 12th 

G VSCS Gaja 19Z–20Z 15 November 2018 12Z 11th–18Z 11th 18Z 11th–12Z 12th 12Z 12th–12Z 16th 

 

 

maps them to the observation space. The deviation of the 

analysis from the first guess is characterized by the BEC 

matrix B and the deviation of the analysis from the  

observations is characterized by the observation error co-

variance matrix R. Though the equation seems simple, 

calculating the inverse of B with approximately 107 degrees 

of freedom is computationally impractical37. To overcome 

this, one uses the control variable transforms in which the 

cost function is optimized for the control variables. Con-

sider the control variables v defined by the equation 

Uv = x – xb and the transform vector U obtained through 

the background error covariance decomposition as 

B = UUT. The objective function is transformed into the 

control variables as follows 
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where d is the innovation vector that calculates the devia-

tion of observations from the first guess and H is the  

linearized observation operator. The present study uses 

four control variable transforms – cv3, cv5, cv6 and cv7 – 

for the assimilation experiments. Each of the transforms 

utilizes different control variables29 (Supplementary Table 

2). Since the control variables in each transform are dif-

ferent, BEC also needs to be evaluated for each method. 

Background error covariance estimation 

The cv3 BEC is provided with the original WRF model 

build source code, which is a global background error 

that can be used for any regional model. In contrast, the 

cv5, cv6 and cv7 covariances are region-specific and thus 

need to be estimated according to the model domain con-

figuration. The National Meteorological Center (NMC) 

method, one of the prominent methods developed by Par-

rish and Derber38 has been used to estimate BEC by tak-

ing the differences between the 24th and 12th-hour 

forecasts valid at the same time. 
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where xb represents the model atmospheric state, xt the 

true atmospheric state, xT+24 the 24th hour forecast of the 

regional model and xT+12 represents the 12th hour forecast 

of the regional model. No assimilation has been performed 

in calculating the BEC matrices. 

Data used for assimilation and model verification 

The conventional observations from sources such as land 

surface, marine surface, radiosonde, pibal and airplane 

reports from the Worldwide Telecommunications System 

as well as satellite winds are among the global surface 

and upper-air observations taken from NCEP in the prep-

bufr format39, that are assimilated in the present study. 

Along with the conventional observations, the radiance 

observations from various instruments on-board different 

satellites such as Advanced Microwave Sounding Unit-A 

(AMSU-A), Microwave Humidity Sounder (MHS), High 

resolution Infra-Red Sounder-4 (HIRS4), Infrared Atmos-

pheric Sounding Interferometer (IASI), Special Sensor  

Microwave/Imager (SSM/I) and Atmospheric Infra-Red 

Sounder (AIRS) have also been assimilated whenever 

available40. More details regarding the assimilated obser-

vations are presented in the Supplementary Table 3. 

 The IMD observations of cyclone track and intensity 

have been utilized to validate the model forecasts. The  

Integrated Multi-satellitE Retrievals for GPM (IMERG) 

dataset available at 0.1  0.1 resolution was employed 

to validate the precipitation forecasts41. The Indian Mon-

soon Data Assimilation and Analysis (IMDAA) data avail-

able at 0.12  0.12 resolution was used to validate wind 

speed42. 
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Table 2. Details of numerical experiments performed for each cyclone 

Experiment Description 
 

Default Simulations performed with the default model without data assimilation  

Default + cv3_assimilation Simulations performed with the default model and data assimilation using cv3 BEC 

Default + cv5 assimilation Simulations performed with the default model and data assimilation using cv5 BEC 

Default + cv6 assimilation Simulations performed with the default model and data assimilation using cv6 BEC 

Default + cv7 assimilation Simulations performed with the default model and data assimilation using cv7 BEC 

Calibration  Simulations performed with the calibration model without data assimilation 

Calibration + cv3 assimilation  Simulations performed with the calibration model and data assimilation using cv3 BEC 

Calibration + cv5 assimilation  Simulations performed with the calibration model and data assimilation using cv5 BEC 

Calibration + cv6 assimilation  Simulations performed with the calibration model and data assimilation using cv6 BEC 

Calibration + cv7 assimilation Simulations performed with the calibration model and data assimilation using cv7 BEC 

 

 

Design of experiments 

The objective of the present study was to assess the impact 

of multivariate BEC assimilation using the conventional 

and radiance observations with the default and calibration 

models. For this, BEC corresponding to cv5, cv6 and cv7 

need to be estimated before hand, whereas BEC of cv3 is 

provided along with the WRF–3DVar build system. As 

mentioned earlier, the NMC method has been adopted to 

estimate BEC of cv5, cv6 and cv7, which requires the 

24th and 12th-hour model forecasts that are valid at the 

same time. The tropical cyclones have been selected for 

the experiments such that they all occurred in the post-

monsoon (October–December) period between 2011 and 

2018. To calculate BEC, a two-month period from 15 Oc-

tober to 15 December 2016 was chosen to represent the 

climatology of the post-monsoon period43,44. The 24 and 

12-h forecasts using the default and calibration models 

were performed over the selected period. Using the NMC 

method, BEC values of cv5, cv6 and cv7 were estimated 

for the default and calibration models. 

 Once the BEC values were estimated, a total of 10 exper-

iments were conducted for the simulations of the seven 

tropical cyclones (Table 2). The domain configuration 

and resolution used in the data assimilation experiments 

were the same as that of the WRF model simulations. It 

has been assumed that the observations are statistically 

independent of one another. Thus, the observational error 

covariance matrix is diagonal. The observations were 

thinned with a threshold of 30 km before assimilating. 

The Supplementary Table 4 presents the total number of 

conventional and radiance observations that have been 

assimilated during the last assimilation cycle, for all the 

cyclones. To illustrate the distribution of conventional 

observations, a scatter plot of the same for cyclone Var-

dah is presented in the Supplementary Figure 2. Table 1 

shows the duration of simulation of each cyclone for the 

experiments. Each assimilation experiment has been ini-

tialized with the model forecast simulated for the spin-up 

period and four assimilation cycles were carried out. The 

assimilation experiments were conducted in a continuous 

mode, such that the wrfout files from the last 6 h of simu-

lations were provided as background or first guess for the 

next 6 h of the assimilation cycle. After the assimilation 

cycles, a free forecast of 96 h was carried out for all the 

experiments, which implies the assimilation experiments 

were simulated for a total of 126 h, whereas experiments 

without assimilation were simulated for a total of 96 h. 

Finally, a total of 70 numerical simulations were per-

formed in the present study. 

 The performance of the model forecasts was validated 

against the observations for the variables such as wind 

speed at 10 m height, precipitation, cyclone tracks and the 

central sea level pressure (CSLP). The simulated variables 

were extracted at 6 h intervals, and the root means square 

error (RMSE) between the model simulations and obser-

vations was considered as the verification metric. 
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where I and J represent the number of grid points in hori-

zontal space, K the number of time intervals, L the num-

ber of cyclones, sim the simulated value and obs is the 

observed value. Equation (6) was used to estimate RMSE 

values of each variable for the individual cyclones, whereas 

eq. (7) was used to estimate the overall RMSE of all the 

cyclones together. The RMSE values of each experiment 

were compared with that of the default experiment, and 

the gain or loss per cent was estimated using eq. (8). In 

addition to the RMSE value, visualization of the spatial 

structures of the variables was also done to assess the  

impact of assimilation in combination with model calibra-

tion. 
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Table 3. Root mean square error (RMSE) values of 10 m wind speed (m/s) obtained with all the experiments for the simulations  

  of selected events 

Experiment Thane Leher Madi Vardah Titli Hudhud Gaja Overall 
 

Default 2.518392 3.325867 2.829489 1.943036 3.769595 5.206273 2.324268 3.2929 

Default + cv3 2.797652 3.307635 2.798626 1.809836 3.924218 3.621974 2.285098 3.0146 

 (–11.09%) (0.55%) (1.09%) (6.86%) (–4.1%) (30.43%) (1.69%) (8.45%) 

Default + cv5 2.702016 3.054904 2.74938 1.948609 3.629611 4.765588 2.262552 3.1395 

 (–7.29%) (8.15%) (2.83%) (–0.29%) (3.71%) (8.46%) (2.66%) (4.66%) 

Default + cv6 2.620374 3.125547 2.697757 2.029305 3.776702 4.553418 2.29121 3.1231 

 (–4.05%) (6.02%) (4.66%) (–4.44%) (–0.19%) (12.54%) (1.42%) (5.16%) 

Default + cv7 2.762355 3.0193 2.868379 1.796751 3.739866 5.310015 2.251376 3.2832 

 (–9.69%) (9.22%) (–1.37%) (7.53%) (0.79%) (–1.99%) (3.14%) (0.29%) 

Calibration 2.402599 3.155955 2.536693 1.943326 3.218292 4.363365 2.403766 2.9549 

 (4.6%) (5.11%) (10.35%) (–0.01%) (14.62%) (16.19%) (–3.42%) (10.26%) 

Calibration + cv3 3.113613 3.073021 2.516863 1.720061 3.136423 3.54398 2.300585 2.8315 

 (–23.63%) (7.6%) (11.05%) (11.48%) (16.8%) (31.93%) (1.02%) (14.01%) 

Calibration + cv5 2.764063 3.101451 2.546504 1.785002 3.101872 3.805947 2.424715 2.8515 

 (–9.76%) (6.75%) (10%) (8.13%) (17.71%) (26.9%) (–4.32%) (13.4%) 

Calibration + cv6 2.616491 3.245237 2.527597 1.789947 3.137858 3.158915 2.337378 2.7323 

 (–3.9%) (2.42%) (10.67%) (7.88%) (16.76%) (39.32%) (–0.56%) (17.02%) 

Calibration + cv7 2.655447 3.180668 2.57116 1.770802 3.088611 4.298706 2.29033 2.9321 

 (–5.44%) (4.37%) (9.13%) (8.86%) (18.07%) (17.43%) (1.46%) (10.96%) 

The percentage value indicates the reduction in RMSE value of the corresponding experiment when compared to the default 

experiment. 

 

 

 Once the performance of the assimilation experiments 

and the calibration model was evaluated, the best experi-

mental set-up was used to simulate the recent cyclone 

Gulab to represent the operational forecast. This cyclone 

occurred during the end of the monsoon of 2021, under 

the category of a cyclonic storm and brought heavy rain-

fall over the Visakhapatnam coast during landfall. The 

model simulations were initialized at 1800 UTC of 24 

September 2021 and simulated till 0000 UTC of 27  

September 2021, with the same experimental set-up. The 

cyclone track and intensity were compared with observa-

tions, and the robustness of the best experimental set-up 

was verified. 

Results and discussion 

In this section, results from the simulation experiments 

mentioned in Table 2 are discussed in detail. The RMSE 

values of the simulated model variables such as 10 m 

wind speed, precipitation, cyclone track and intensity 

were evaluated against the observations for all the events 

using eq. (6) (Tables 3–6). The percentage values shown 

in each table represent the gain or loss of each experiment 

when compared to the default experiment and have been 

calculated using eq. (8). The time evolution of the cy-

clone tracks and their intensities are presented in Figure 

1. Apart from the RMSE values, the spatial structures of 

essential variables such as precipitation, wind speed, rela-

tive humidity, mean ascent, and potential vorticity were 

also examined for cyclones Vardah and Hudhud (Figures 

2–6 and Supplementary Figures 3–7). With the obtained 

best experimental set-up, cyclone Gulab was simulated and 

the model forecasts were compared with the observations 

(Supplementary Figure 8). 

Assessment of assimilation experiments with the  
default model 

Table 3 presents a comparison of RMSE values of the 

10 m wind speed for simulations of seven tropical cyclones 

obtained by the assimilation experiments with the default 

model. The results show that the assimilation indeed im-

proved the 10 m wind speed forecast, and the improve-

ment varies with the adopted BEC. The cv3 assimilation 

experiments showed a reduction in the RMSE value rang-

ing from 0.55% for cyclone Leher to 30.43% for cyclone 

Hudhud, and an overall reduction of 8.45%. Even though 

the assimilation increased the RMSE for cyclones Thane 

and Titli, a good overall reduction was seen with cv3 assim-

ilation. The overall reduction in the RMSE values obtained 

with the cv5, cv6 and cv7 assimilation experiments were 

4.66%, 5.16% and 0.30% respectively. The cv7 assi-

milation experiments yielded the least reduction and in-

creased the RMSE values for cyclones Thane, Madi and 

Hudhud. These results indicate that the 3DVar assimila-

tion of conventional and radiance observations with the 

cv3 BEC yields a higher reduction of RMSE in the 10 m 

wind speed compared to the remaining BEC experiments. 

 Similar to Table 3, a comparison of precipitation RMSE 

values is shown in Table 4 for the assimilation experiments 

https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
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Table 4. RMSE values of precipitation (mm/day) obtained with all the experiments for the simulations of select ed events 

Experiment Thane Leher Madi Vardah Titli Hudhud Gaja Overall 
 

Default 5.646609 8.564379 6.318636 7.121049 9.334765 12.21196 6.912598 8.2801 

Default + cv3 6.185905 7.76018 5.795774 7.362394 9.209872 11.28624 6.937319 7.9876 

 (–9.55%) (9.39%) (8.27%) (–3.39%) (1.34%) (7.58%) (–0.36%) (3.53%) 

Default + cv5 6.694844 7.659243 5.688378 7.427496 9.070935 10.6987 6.222384 7.8054 

 (–18.56%) (10.57%) (9.97%) (–4.3%) (2.83%) (12.39%) (9.98%) (5.73%) 

Default + cv6 6.371046 7.221573 5.613238 7.675553 9.277752 10.3808 6.581964 7.749 

 (–12.83%) (15.68%) (11.16%) (–7.79%) (0.61%) (14.99%) (4.78%) (6.41%) 

Default + cv7 6.877731 8.030886 6.153779 7.903815 9.607932 11.94079 6.425834 8.352300 

 (–21.8%) (6.23%) (2.61%) (–10.99%) (–2.93%) (2.22%) (7.04%) (–0.87%) 

Calibration 5.455867 8.092178 5.792993 6.878628 8.552558 11.67931 6.60843 7.8317 

 (3.38%) (5.51%) (8.32%) (3.4%) (8.38%) (4.36%) (4.4%) (5.42%) 

Calibration + cv3 6.728626 7.194079 5.424164 6.805307 8.268903 10.37094 5.949652 7.4075 

 (–19.16%) (16%) (14.16%) (4.43%) (11.42%) (15.08%) (13.93%) (10.54%) 

Calibration + cv5 6.208499 7.456908 5.784012 7.224377 8.300693 10.74274 5.51987 7.5078 

 (–9.95%) (12.93%) (8.46%) (–1.45%) (11.08%) (12.03%) (20.15%) (9.33%) 

Calibration + cv6 5.875585 7.703748 5.563658 7.166390 8.346104 10.10776 5.558631 7.3573 

 (–4.06%) (10.05%) (11.95%) (–0.64%) (10.59%) (17.23%) (19.59%) (11.14%) 

Calibration + cv7 6.171494 8.484735 5.912846 7.506289 8.4571 10.90779 5.996292 7.8179 

 (–9.3%) (0.93%) (6.42%) (–5.41%) (9.4%) (10.68%) (13.26%) (5.58%) 

The percentage value indicates the reduction in RMSE value of the corresponding experiment when compared to the default experiment. 

 

 
Table 5. RMSE values of cyclone track (km) obtained with all the experiments for the simulations of selected events 

Experiment Thane Leher Madi Vardah Titli Hudhud Gaja Overall 
 

Default 177.8693 290.5611 71.1377 221.0327 351.6559 176.0321 240.616 233.7656 

Default + cv3 147.0173 343.2250 226.3518 76.5605 223.4351 223.3987 199.219 219.0996 

 (17.35%) (–18.12%) (–218.1%) (65.36%) (36.46%) (–26.91%) (17.2%) (6.27%) 

Default + cv5 338.8340 189.2105 100.7656 107.5682 308.5161 113.8616 196.6394 213.524 

 (–90.5%) (34.88%) (–41.6%) (51.33%) (12.27%) (35.32%) (18.28%) (8.66%) 

Default + cv6 342.9835 186.7771 105.1982 97.3254 253.1801 81.0791 221.7702 204.5616 

 (–92.83%) (35.72%) (–47.8%) (55.97%) (28%) (53.94%) (7.83%) (12.49%) 

Default + cv7 424.2700 167.9303 113.7120 138.9702 345.9909 149.1574 145.1022 240.0778 

 (–138.5%) (42.2%) (–59.8%) (37.13%) (1.61%) (15.27%) (39.7%) (–2.7%) 

Calibration 196.2511 236.3334 101.6199 192.4481 292.1468 157.6208 272.4421 215.8537 

 (–10.33%) (18.66%) (–42.8%) (12.93%) (16.92%) (10.46%) (–13.23%) (7.66%) 

Calibration + cv3 223.3174 276.4801 186.5811 96.1979 364.2464 166.2352 142.2946 223.9055 

 (–25.55%) (4.85%) (–162.2%) (56.48%) (–3.58%) (5.57%) (40.86%) (4.22%) 

Calibration + cv5 130.3011 123.9356 196.4045 98.7521 177.6817 112.4912 174.7763 149.0143 

 (26.74%) (57.35%) (–176.0%) (55.32%) (49.47%) (36.1%) (27.36%) (36.25%) 

Calibration + cv6 99.5716 88.1652 153.8382 79.9539 215.2142 104.4018 154.9971 135.7452 

 (44.02%) (69.66%) (–116.2%) (63.83%) (38.8%) (40.69%) (35.58%) (41.93%) 

Calibration + cv7 165.0091 131.3842 184.1514 140.4442 164.4443 99.763 141.6624 148.8954 

 (7.23%) (54.78%) (–158.8%) (36.46%) (53.24%) (43.33%) (41.13%) (36.31%) 

The percentage value indicates the reduction in RMSE value of the corresponding experiment when compared to the default experiment. 

 
 

with the default model. The RMSE values indicate that 

the assimilation experiments with cv3, cv5 and cv6 yield 

an overall reduction of 3.63%, 5.73% and 6.41% respec-

tively. In contrast, the cv7 assimilation experiments dete-

riorated the precipitation forecast with an increase in the 

RMSE value of 0.87%. The RMSE values are increased 

for two cyclones in the cv6 and cv5 assimilation experi-

ments, whereas they increased for three cyclones in the 

cv3 assimilation experiments. These assimilation experi-

ments show a general trend of RMSE reduction for cv5 

and cv6 experiments, with cv6 having the highest reduc-

tion. Table 5 shows a similar comparison to that of Table 3, 

but for the cyclone track RMSE. Here too, the cv6 assimila-

tion experiments yield a higher reduction of 12.49%  

compared to the remaining experiments, and the cv7 as-

similation experiments show an increase in the RMSE of 

2.70%. Similar to precipitation, the cv5 and cv6 experi-

ments show a general trend of RMSE reduction for five 
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Table 6. RMSE values of central sea level pressure (CSLP) (hPa) obtained with all the experiments for the simulations of selected even ts 

Experiments Thane Leher Madi Vardah Titli Hudhud Gaja Overall 
 

Default 17.9413 12.14526 8.821471 12.66976 5.555528 18.34348 15.70185 13.7406 

Default + cv3 13.69911 10.28307 2.819863 5.743091 9.249365 7.727607 11.05876 9.2729 

 (23.64%) (15.33%) (68.03%) (54.67%) (–66.49%) (57.87%) (29.57%) (32.51%) 

Default + cv5 19.53979 7.098686 2.129566 9.446058 7.796382 16.92346 11.03969 11.9225 

 (–8.91%) (41.55%) (75.86%) (25.44%) (–40.34%) (7.74%) (29.69%) (13.23%) 

Default + cv6 19.99536 7.744434 1.929001 7.138514 11.40703 13.75173 11.37618 11.7298 

 (–11.45%) (36.23%) (78.13%) (43.66%) (–105.3%) (25.03%) (27.55%) (14.63%) 

Default + cv7 21.42595 3.35923 3.02491 8.254278 9.896218 23.14418 10.41792 13.5739 

 (–19.42%) (72.34%) (65.71%) (34.85%) (–78.13%) (–26.17%) (33.65%) (1.21%) 

Calibration 18.24191 8.613636 5.024959 12.30818 10.72628 18.08974 14.55525 13.298 

 (–1.68%) (29.08%) (43.04%) (2.85%) (–93.07%) (1.38%) (7.3%) (3.22%) 

Calibration + cv3 10.78801 10.41273 4.66364 8.200301 14.92930 9.370005 10.94832 10.3119 

 (39.87%) (14.27%) (47.13%) (35.28%) (–168.7%) (48.92%) (30.27%) (24.95%) 

Calibration + cv5 12.13384 6.141888 3.177584 7.916072 14.21136 17.78974 12.34541 11.5174 

 (32.37%) (49.43%) (63.98%) (37.52%) (–155.8%) (3.02%) (21.38%) (16.18%) 

Calibration + cv6 13.56174 6.131842 3.404819 8.549292 13.64922 10.778 11.17147 10.2363 

 (24.41%) (49.51%) (61.4%) (32.52%) (–145.6%) (41.24%) (28.85%) (25.5%) 

Calibration + cv7 14.23129 8.717669 4.61051 11.12899 14.84735 23.86141 10.44912 13.74580 

 (20.68%) (28.22%) (47.74%) (12.16%) (–167.2%) (–30.08%) (33.45%) (–0.04%) 

The percentage value indicates the reduction in RMSE value of the corresponding experiment when compared to the default experiment. 

 

 

cyclones, whereas the cv3 experiments show a reduction 

for four cyclones. Though the cv7 experiments also show 

a reduction for five cyclones, the RMSE value for cy-

clone Thane is very large, which leads to an increase in 

the overall RMSE. 

 Table 6 shows the RMSE comparison of cyclone inten-

sity in terms of Central sea level pressure (CSLP), for the 

assimilation experiments with the default model. The cv3 

assimilation experiments show the highest reduction of 

32.51%, improving the intensity forecast for all cyclones, 

except Titli. The assimilation experiments of cv5 and cv6 

also show a general trend of cyclone track forecast im-

provement with an overall RMSE reduction of 13.23% 

and 14.63% respectively. In contrast, the experiments of 

cv7 show an RMSE increase for three cyclones, and the 

overall RMSE reduction is also less. These results indi-

cate that the assimilation experiments with cv3, cv5 and 

cv6 BEC values generally improve the model forecasts of 

10 m wind speed, precipitation, cyclone track and intensity. 

Assessment of calibration model 

So far, we have examined the experiments conducted 

with the default model. However, the robustness of the 

calibration model must also be evaluated before examin-

ing the impact of the assimilation experiments conducted 

with it. For this, the RMSE values of 10 m wind speed, 

precipitation, cyclone track and intensity that are obtained 

with the calibration experiments were evaluated (Tables 

3–6). The results indicate a general trend of RMSE reduc-

tion for all the variables, with an overall reduction of 

10.27% for 10 m wind speed, 5.42% for precipitation, 

7.66% for cyclone track and 3.22% for CSLP. The RMSE 

values of precipitation had reduced for all the cyclones, 

ranging from 8.38% for the cyclone Titli to 3.38% for cy-

clone Thane. Similarly, the RMSE values of 10 m wind 

speed had reduced for five cyclones, ranging from 16.19% 

for cyclone Hudhud and 4.60% for cyclone Thane. The 

RMSE values of the cyclone track had reduced for four 

cyclones and RMSE values of the intensities had reduced 

for five cyclones. The calibration methodology adopted 

by Baki et al.16 minimizes the 10 m wind speed and pre-

cipitation forecasts simultaneously. Thus, the calibration 

experiments showed a good improvement for the 10 m 

wind speed and precipitation forecasts, whereas the im-

provements were seen in the cyclone track and the CSLP 

forecasts were considered to be the secondary gain. Baki 

et al.16 used the NCEP FNL data at 1 resolution as the 

initial and boundary conditions for the numerical simula-

tions. In contrast, the present study uses the NCEP-GFS 

data at 0.5 resolution as initial and boundary conditions. 

Thus, the difference in the model forecasts post the cali-

bration experiments is attributed to the difference in the 

adopted initial and boundary conditions. Overall, the cali-

bration model is seen to be robust in improving the model 

forecasts. 

Assessment of assimilation experiments with the  
calibration model 

Table 3 presents a comparison of RMSE values of the 

10 m wind speed for simulations of seven tropical cyclones 

obtained by the assimilation experiments using the cali-

bration model. The results show that assimilation with the 
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Figure 1. Illustration of (a–g) cyclone tracks and (h–n) time evolution of intensities, simulated with the default model without assimilation and 
calibration model with assimilation, in comparison with the IMD observations, for the simulations of (a, h) cyclone Thane; (b, i) cyclone Leher;  
(c, j) cyclone Madi; (d, k) cyclone Vardah; (e, l) cyclone Titli; ( f, m) cyclone Hudhud; (g, n) cyclone Gaja. 

 

 

calibration model shows a general trend of improvement 

for the 10 m wind speed forecast. The cv6 assimilation 

experiment shows the highest overall RMSE reduction of 

17.02%, whereas the assimilation experiments with cv3, 

cv5 and cv7 show 14.01%, 13.4% and 10.96% reduction 

respectively. The cv6 assimilation experiments deterio-

rated the 10 m wind speed forecast slightly for cyclones 

Thane and Gaja with an RMSE increase of –3.9% and  

–0.56% respectively, whereas the cv5 experiments showed 

an RMSE increase of –9.76% and –4.32% respectively 

for the two cyclones. The cv3 assimilation experiments 

deteriorated the forecast of 10 m wind speed for cyclone 

Thane with an RMSE increase of –23.63%, whereas the 

cv7 experiments showed an RMSE increase of 5.44% for 

the cyclone. Though the cv6 assimilation experiments  

deteriorated the forecast of the two cyclones, their reduc-

tion was minimal, leading to the highest overall gain. 

 Table 4 presents the RMSE values of precipitation ob-

tained from the assimilation experiments with the calibra-

tion model. The results show that the cv3 assimilation 

experiments improved the precipitation forecast for all the 

cyclones, with an overall RMSE reduction of 10.54%, 

except cyclone Thane, for which the RMSE increased by 

19.16%. The assimilation experiments of cv5, cv6 and 

cv7 showed an overall RMSE reduction of 9.33%, 

11.14% and 5.58% respectively, but deteriorated the pre-

cipitation forecast for cyclones Thane and Vardah. The 

cv6 assimilation experiment showed the least loss for the 

two cyclones, leading to the highest overall gain compared 

to the remaining experiments. 

 Similar to the 10 m wind speed and precipitation, Table 5 

presents the RMSE values of the cyclone track obtai- 

ned from the assimilation experiments with the calibra-

tion model. The results show that the cv3 assimilation 
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Figure 2. Illustration of daily precipitation shown for the simulation of cyclone Vardah (a–c) depict observations from days 1–3 respectively;  
(d–f ) depict simulations using the default model without assimilation, and (g–i) depict simulations using the calibrated model with assimilation.  

 

 

experiments deteriorated the track forecast for cyclones 

Thane, Madi, and Titli, leading to the least overall RMSE 

reduction of 4.22% compared to the remaining experi-

ments. The cv5, cv6 and cv7 assimilation experiments 

showed a consistent RMSE reduction for all the cyclones 

with an overall reduction of 36.25%, 41.93%, 36.31% re-

spectively, but deteriorated the track forecast for cyclone 

Madi. Among all the experiments, the cv6 experiments 

had the highest overall RMSE reduction. 

 Finally, Table 6 presents the RMSE values of cyclone 

intensity in terms of CSLP obtained from the assimilation 

experiments with the calibration model. The results show 

that the assimilation experiments of cv3, cv5 and cv6  

indeed improve the cyclone intensity forecast for all the 

cyclones, except cyclone Titli, with an overall RMSE  

reduction of 24.95%, 16.18% and 25.5% respectively. In 

contrast, the cv7 assimilation experiments deteriorated 

the intensity forecast for cyclones Titli and Hudhud, lead-

ing to the overall deterioration. Among the experiments, 

cv6 showed the highest RMSE reduction, whereas the 

cv7 showed no improvement. 

 The results from the RMSE comparison of 10 m wind 

speed, precipitation, cyclone track, and intensity indicate 

that the assimilation experiments with the calibration 

model show consistent improvement compared to the as-

similation experiments with the default model, implying  
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Figure 3. Illustration of winds at 500 hPa level for the simulation of cyclone Vardah (a–c) depict observations at the end of days 1–3 respectively; (d–f ) 
depict simulations using the default model without assimilation, and (g–i) depict simulations using the calibrated model with assimilation. 
 

 

that assimilation with calibration indeed improves the 

forecasts. The cv6 assimilation experiments with the cali-

bration model showed the greatest improvement for all the 

variables compared to the remaining experiments, implying 

that this is the best experimental set-up. Figure 1 shows 

the time evolution of cyclone tracks and the correspond-

ing CSLP simulated with the default experiments and the 

best experiment, and compared with the IMD observations 

for all the cyclones. The figure shows that cyclone tracks 

simulated with the best configuration closely followed the 

IMD observations for all cyclones, except the cyclone 

Madi, which is again confirmed by Table 5. However, for 

cyclone Hudhud, the best configuration closely followed 

the observed track till the end of the second day and de-

viated thereafter, whereas the default experiments failed to 

simulate landfall. In contrast, the tracks from the default 

experiments showed large deviation from the observa-

tions for cyclones Thane, Leher, Vardah and Titli, which 

can be confirmed by Table 3. Figure 1 shows a similar 

comparison of the time evolution of cyclone intensity in 

terms of CSLP for all the cyclones. Except for cyclone Ti-

tli, the best experiments simulated the time evolution of 

CSLP quite closely to that of the observations for all the 

cyclones. The default experiments underestimated the in-

tensity for cyclones Thane and Vardah, whereas they over-

estimated the intensity for cyclones Madi, Hudhud and 

Gaja. In contrast, the best experiments underestimated the 

intensity for cyclones Thane, Vardah and Gaja, but per-

formed better than the default experiments. These results 

indicate that the assimilation of conventional and radiance 

observations with the cv6 BEC using the calibration model 

results in better performance than experiments using the 

default model without assimilation. 

Discussion on model forecasts of cyclone Thane 

For cyclone Thane, the RMSE values of surface wind 

speed and precipitation reveal that the calibration model
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Figure 4. For the simulation of cyclone Vardah, the 500 hPa level vertical velocity (mean ascent) at the end of 
days 1, 2 and 3 are illustrated. Simulations using the default model without assimilation are shown in (a–c), while 
simulations using the calibrated model with assimilation are shown in (d–f ). 

 

 

improved the forecasts by 4.6% and 3.38% respectively, 

compared to the default model, indicating that the cali-

brated model is robust for surface wind speed and precip-

itation forecasts. In contrast, the default and calibration 

models have underestimated the cyclone intensity and 

have shown a large deviation in the cyclone track com-

pared to the IMD observations. Similar results have been 

reported by other researchers20,21, showing that the WRF 

model simulations with the GFS initial conditions have 

landfall over the Machilipatnam coast, with an underes-

timated cyclone intensity. These results indicate that the 

GFS initial and boundary conditions themselves have an 

error, which further deteriorates the forecasts with the cali-

bration model. Chandrasekhar and Balaji11 have reported 

that the 3DVar assimilation of conventional and radiance 

observations with cv3 BEC matrix improved the track 

forecasts, whereas it deteriorated the wind speed fore-

casts. The same has been observed in Default + cv3  

experiments in the present study, indicating that the as-

similation failed to improve the model forecasts of some 

variables. In contrast, the assimilation experiments of the 

calibration model with the cv6 BEC matrix have improved 

the model forecasts of all variables compared to the same 

assimilation configuration with the default model, indi-

cating that the calibration and assimilation with the cv6 

BEC matrix positively contributed to the model forecasts.  

Verification of model forecasts for cyclone Vardah 

The impact of the assimilation using the calibration model 

in combination with cv6 BEC on atmospheric variables, 

namely precipitation, surface wind speed, vertical velocity, 

potential vorticity and relative humidity were examined 

for cyclone Vardah (Figures 2–6). The IMERG dataset 

was used for precipitation verification, whereas the 

IMDAA dataset was used for verification of the remain-

ing variables. The spatial distribution of 24 h accumulat-

ed precipitation at the end of the first, second and third 

days shown in Figure 2, indicates that the default experi-

ment and best experimental set-up have overestimated 

precipitation at the end of the first day, whereas it has 

been underestimated at the end of the second and third 

days. Though the intensities are far less than those ob-

served, the best experimental set-up shows relatively bet-

ter performance than the default experiment at the end of 

the second and third days. However, overestimation of 

precipitation at the end of the first day is large enough to 

suppress the improvement on the second and third days, 

which leads to the overall increase in RMSE. 

 Figure 3 shows a comparison of the velocity field at 

500 hPa level obtained from the best experiment and  

default experiment. In comparison with the observations, 

the default experiment simulated a less intense cyclonic
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Figure 5. For the simulation of cyclone Vardah, the 500 hPa level potential vorticity at the end of days 1, 2 and 3 are illustrated. Simulations  
using the default model without assimilation are shown in (a–c), while simulations using the calibrated model with assimilation are shown in (d–f ). 

 

circulation at the end of the first and second days, and an 

unorganized circulation was seen at the end of the third 

day. In contrast, the best experimental set-up simulated a 

more intense cyclonic circulation at the end of the first 

day and less intense circulations at the end of the second 

and third days compared to the observations. This can also 

be seen in Figure 1 k, where the observations lie between 

default and best experiments at the end of the first day. A 

comparison of velocity and precipitation shows that the 

assimilation of conventional and radiance observations 

using the calibration model in combination with cv6 BEC 

improved the precipitation forecast. 

 An inter-comparison of the prominent meteorological 

variables such as mean ascent, potential vorticity and rel-

ative humidity was carried out between the default and 

best experimental set-up to further examine the impact of 

assimilation. The mean ascent (vertical velocity in the 

upward direction) at 500 hPa level was used as a proxy 

for the deep convection, which directly correlated to the 

intensity of a tropical cyclone45–47. Figure 4 shows that 

the best experimental set-up resulted in huge spatial cov-

erage of mean ascent with higher values at the end of 

days 1, 2 and 3, when compared to the default experi-

ments. This analogy is strengthened by Figure 1  k, where 

the cyclone intensity produced by the best experimental 

set-up is much higher than the default experiment at the 

end of days 1, 2 and 3. Figure 5 shows the potential vorti-

city at the end of days 1, 2 and 3, which indicates that the 

best experimental set-up simulated more localized poten-

tial disturbances compared to the default experiment.  

According to Ma and Tan et al.48 and Baki et al.12 the en-

ergy disturbances that are not consumed by convection 

may contribute to cyclone intensification. From Figure 5, 

it is evident that the best experimental set-up simulated 

higher intensity at the end of days 1, 2 and 3, compared 

to the default experiment. Relative humidity is an im-

portant factor for rapid intensification and helps in the at-

tainment of maximum intensity49–51. The spatial distribution 

of relative humidity shown in Figure 6 reveals that the best 

experimental set-up simulated huge spatial coverage with 

higher values at the end of days 1, 2 and 3, indicating that 

the best experimental set-up produced higher cyclone inten-

sities compared to the default experiment. These results  

indicate that the assimilation of conventional and radiance 

observations using the calibration model in combination 

with cv6 improved the cyclone intensity forecast through 

improvement of mean ascent, potential vorticity and rela-

tive humidity forecasts. 

Verification of model forecasts for cyclone Hudhud 

Similar to cyclone Vardah, the impact of the assimilation 

using the calibration model in combination with the cv6 

BEC on atmospheric variables were examined for cy-

clone Hudhud (Supplementary Figures 3–7). The spatial 

patterns of precipitation show that the default and the best 

https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
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Figure 6. For the simulation of cyclone Vardah, the 500 hPa level relative humidity at the end of days 1, 2 and 3 are illustrated. Simulations using 
the default model without assimilation are shown in (a1–a3), while simulations using the calibrated model with assimilation are shown in (b1–b3). 

 

experimental set-up overestimated the precipitation inten-

sity (Supplementary Figure 3). However, the best experi-

mental set-up simulated precipitation with a good spatial 

accuracy, which led to a reduction in the RMSE values 

compared to the default experiment (Table 4). Similar to 

Figure 3, the velocity field at 500 hPa for cyclone 

Hudhud, at the end of days 1, 2 and 3, are presented in 

the Supplementary Figure 4. The default and the best ex-

perimental set-up have simulated similar cyclonic circula-

tion intensities at the end of day 1, whereas the default 

experiment has overestimated the cyclonic circulation in-

tensity at the end of days 2 and 3. The same can be ob-

served in Figure 1 m, where the default and the best 

experimental set-up have the same intensity at the end of 

day 1, and the default experiment overestimates thereaf-

ter. From these results, it is evident that the simulations 

with the best experimental set-up indeed improve the 

forecasts of precipitation and velocity. 

 The model forecasts of mean ascent, potential vorticity 

and relative humidity were spatially visualized to examine 

further the differences between the default and the best 

experimental set-up. The Supplementary Figure 5 shows 

that the default experiment resulted in huge spatial cover-

age of mean ascent with higher values at the end of all 

three days, compared to the best experimental set-up. This 

is inconsistent with the analogy that higher mean ascent 

will have high cyclone intensity, and this can be observed 

in Figure 1 m. Similar to Figure 5 for potential vorticity, 

the Supplementary Figure 6 shows that the default exper-

iment simulated intense vorticity disturbances at the end 

of all days, whereas the best experimental set-up simulat-

ed less intense vorticity disturbances. The Supplementary 

Figure 7 shows the spatial coverage of relative humidity, 

which also confirms the overestimation of cyclone inten-

sity by the default experiment, whereas the best experi-

mental set-up does it better. From these results, it is 

evident that the best experimental set-up not only in-

creases or decreases the intensity for all cyclones, but 

closely follows the observations by improving the fore-

casts of precipitation, wind speed, mean ascent, potential 

vorticity and relative humidity. 

Track and intensity predictions of cyclone Gulab 

To further examine the robustness of the best experi-

mental set-up, the cyclone track and intensity forecasts of 

a cyclone Gulab, simulated by the default and the best 

experimental set-up, are presented in the Supplementary 

Figure 8. The results show that the cyclone track and inten-

sity forecasts of the default and the best experimental set-up 

have a close resemblance. However, the default experi-

ment does not show landfall and underestimates the cy-

clone intensity. In contrast, the best experimental set-up 

had landfall with time delay and higher intensity than the 

default experiment. The RMSE values show that the best 

experimental set-up has a gain of 18.6% in cyclone  

https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
https://www.currentscience.ac.in/Volumes/122/05/0569-suppl.pdf
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track forecast and 29% in cyclone intensity forecast. 

These results reveal that the best experimental set-up is 

robust compared to the default experiments from the 

viewpoint of several metrics. 

Conclusion 

This study examined the impact of multivariate BEC in 

the 3DVar assimilation system combined with the model 

calibration for the simulations of tropical cyclones over 

the BoB region. Seven tropical cyclones that originated 

during the post-monsoon period between 2012 and 2018 

were selected for the experiments. The calibration model 

from Baki et al.16 was to examine its performance with 

data assimilation. The multivariate BEC values of cv5, 

cv6, and cv7 were estimated using the 24th and 12th-hour 

forecasts simulated during the two-month period from 15 

October to 15 December of 2016. The conventional and 

radiance observations were assimilated using the 3DVar 

system that provides the default and calibration models 

utilizing the multivariate BEC. The model forecasts of 

10 m wind speed, precipitation, cyclone track and cyclone 

intensity were validated against observations. An inter-

comparison of spatial structures of the prominent vari-

ables such as precipitation, 500 hPa-level velocity field, 

500 hPa-level mean ascent, 500 hPa-level potential vorti-

city, and 500 hPa-level relative humidity was also done 

for cyclones Vardah and Hudhud. The main conclusions 

drawn from this study are summarized as follows: 
 

 The assimilation experiments conducted with different 

BEC values showed variations in the RMSE values of 

the considered variables for all cyclones. The experi-

ments of cv3, cv5 and cv6 showed consistent RMSE 

reduction for most of the cyclones; cv6 showed the 

best performance among all the experiments, whereas 

cv7 showed poor performance. 

 The assimilation of conventional and radiance obser-

vations resulted similar yield to the default and cali-

bration experiments. However, the calibration model 

provided an additional yield with assimilation. 

 The assimilation experiments of the calibration model 

in combination with the cv6 BEC produced the least 

RMSE values compared to the remaining experiments. 

This was considered as the best experimental set-up. 

 The results from the spatial structures indicate that the 

best experimental set-up simulated the cyclone inten-

sity close to the observations by improving the predic-

tions of wind speed, mean ascent, potential vorticity 

and relative humidity. 
 

The robustness of the best experimental set-up was veri-

fied by simulating cyclone Gulab in an operational fore-

cast. The RMSE values obtained for cyclone track and 

intensity confirmed the superiority of the best experi-

mental set-up. 
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