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We propose a risk measure and construct an infectious 
diseases hazard map for India. Given an outbreak  
location, a hazard index is assigned to each city using 
an effective distance that depends on inter-city mobili-
ties instead of geographical distance. We demonstrate 
its utility using an SIR model augmented with air, rail 
and road data among the top 446 cities. Simulations 
show that the effective distance from outbreak loca-
tion reliably predicts the time of arrival of infection in 
other cities. The hazard index predictions compare 
well with the observed spread of SARS-CoV-2. This 
hazard map can be used in other outbreaks as well. 
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AS of July 2021, more than 19 crore people – about one 

in every 40 humans – have been infected by SARS-CoV-

2, and about 39 lakh people have died1. COVID-19 has 

escalated from a cluster of cases in China in the late 2019 

into an unprecedented global public health crisis. In  

India, starting with a few cases in February 2020, the in-

fection had spread to about 65 lakh people in a span of 

about eight months when the first wave peaked. With the 

resurgence of the second wave in India since March 

2021, the number of infections and deaths has witnessed 

a steep increase2. 

 The Spanish flu of 1918 was one of the biggest pan-

demics to hit India, arriving in Bombay with the British-

Indian army returning from the First World War in  

Europe3. The then Annual Report of the Sanitary Com-

missioner to the Government of India observed that 

‘There is ample evidence during the first epidemic of the 

introduction of infection into a locality from another in-

fected locality. The railway played a prominent part, as 

was inevitable. During the panic caused by the epidemic, 

the trains were filled with emigrants from infected cen-

tres, many of them being ill. The Post office also was an 

important agency in disseminating infection, also very 

largely through the Railway Postal Service. Lucknow, 

Lahore, Simla and other cities are said to have been  

infected in this manner’4. Further, the Report states that 

‘there is ample evidence to prove that infection in India 

during the second epidemic was carried from province to 

province and place to place within each province by trav-

ellers by rail, riverboats, carts and on foot’4. This mode  

of spread is also confirmed by other studies based on  

detailed data recorded then in Bombay and other provinces 

of British India3. Nearly one century after the Spanish flu, 

long-distance travel is even more common. This has re-

sulted in rapid spread of infections to remote corners of 

the world5–7. It is expected that irrespective of the innate 

capacity of a virus to infect, the spread from one geogra-

phical area to another is primarily caused by the mobility 

of the people8–11. 

 The influence of transportation on the pattern of infec-

tion spread is evident in SARS-CoV-2 and earlier infec-

tious diseases12–15. One might identify two concurrent but 

distinct processes: (i) evolution of infection within a 

small, well-mixed geographical region (city/town), and 

(ii) intercity transmission between the regions. The latter 

will depend crucially on the transport networks and  

the mobility patterns of people within the country16–19.  

A rather impractical limit is when transportation systems 

are entirely stopped leading to suppression of infection 

spread. Most modelling efforts focused on prediction of 

caseloads in India, rather than geographical spreading 

patterns20–25. 

 In this study, we propose an infectious diseases hazard 

map for India based on a reliable predictor of the arrival 

time of infections from a known outbreak location12. 

Though the first official COVID-19 cases were detected 

in Kerala, significant outbreaks (several hundred cases) 

were reported in April 2020 from Mumbai and Delhi2. 

Being large transport hubs, the infection quickly spread 

into the rest of the country from these two cities. While 

Mumbai or Delhi could be the outbreak location now, in  

a general scenario, it can be anywhere. It is natural to  

define hazard indices for every city/town based on differ-

ent potential outbreak locations. 

 Let us pose the following question: Consider a network 

of M cities/towns (X1, X2, X3,…, XM), and the outbreak 

location as X1: then can a hazard value be assigned to 

other cities/towns reflecting not their geographical proxi-

mity, but an ‘effective proximity’ incorporating mobility 

patterns? We discuss one solution and validate it using 

models incorporating extensive transportation network  

data. 
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 Note that the proposed hazard index (on which the  

hazard map is based) depends on the outbreak location 

and mobility patterns. The latter is a time-dependent  

factor. However, as the number of cases does not appre-

ciably change in less than a day and the data are made 

public only on a granularity of a day, we construct the 

hazard map assuming mobility averaged over a few days 

to be representative for all times. For a hazard map at a 

subcontinental spatial scale such as India, each city/town 

is assumed to be well-mixed. In this study, the mobility 

data are applied to obtain a hazard map for 446 cities/ 

towns with a population more than one lakh26. 

Augmented SIR model framework 

Our framework is based on the susceptible–infected–

recovered (SIR) compartmental model augmented with 

connectivity information between towns and cities12,27. 

For a well-mixed population, the SIR model is given as28,29 
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Here, S(t), I(t) and R(t) denote the susceptible, infected, 

and recovered population respectively, at time t.  and  

denote the infection and recovery rate respectively. The 

total population N = S(t) + I(t) + R(t) remains constant 

over time. However, the population in a large region like 

India is not well-mixed. But the population within each 

city/town can be assumed to be well-mixed and eqs (1) 

are applicable within each of M cities/towns. A small part 

of this population can travel between cities/towns accord-

ing to 
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where Nn(t) denotes the population of the nth city/town at 

time t and 
m

nF  denotes the number of people travelling 

from n to m in unit amount of time. 
m

nF  together with the 

convention 0n
nF   defines the traffic matrix. The popu-

lation of a city will be constant if its total influx and out-

flux are equal. In this study the traffic matrix is inferred 

from limited, available real-life data, and generally they 

do not strictly satisfy this balance. However, the time-

scales over which our simulations have been performed 

are small enough that such imbalances in fluxes do not 

change the city populations appreciably; accordingly, we 

assume them to be constant in the rest of the work. 

 Little reliable data are available regarding infection  

acquired during transit. The probability of getting infected 

during transit is assumed to be zero. In our model, a  

susceptible traveller leaving city n would remain so upon 

reaching city m (similarly for infected or recovered  

travellers). With these assumptions, the SIR model incor-

porating inter-city mobilities can be written as30 
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Upon adding the above set of equations, we find that the 

total city population Sn(t) + In(t) + Rn(t) = Nn is a constant 

up to small deviations on account of the imbalance  

between influxes and outfluxes. These equations extend 

the SIR model to a network in which the population is well-

mixed only within each city. These equations provide one 

of the well-studied among several models of large-scale 

infection spread31,32. 

 Note that eq. (3) is not India-specific and has been  

applied on a global scale12,30. In rest of this study, eq. (3) 

will be the central framework supplemented with India-

specific traffic matrix. Estimating the entries 
m

nF  of the 

traffic matrix (F) is particularly difficult due to the insuffi-

cient availability of real data, the details of which are 

elaborated in the Supplementary Material34. 

Transportation network and data 

Hereafter, the discussion will be India-specific. We include 

air, rail and road data in the traffic matrix; inland water-

ways and other modes are ignored. A directed network of 

cities/towns with a population above 1 lakh (according to 

the 2011 census)26 and having at least one of air, rail or 

road connectivity is created. The network has M = 446 

nodes (cities/towns), and 46,448 weighted edges. Each 

pair of cities can have up to two oppositely directed edges 

between them, with weights representing the total traffic 

https://www.currentscience.ac.in/Volumes/121/09/1208-suppl.pdf
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(all modes) in that direction. Further details of the edge 

data are given in the Supplementary Material34. 

 The air, rail and road transportation data are combined 

to obtain the averaged daily traffic matrix F, whose element 
m

nF  represents the net direct traffic (number of people) 

from city n to m on a ‘typical’ day. We ignore any effect 

of the differences in the travel times associated with dif-

ferent modes of traffic (for instance, air travel being fast-

er than road travel). Figure 1 shows the 500 busiest inter-

city routes based on the sum of forward and backward 

traffic. 

 The matrix F constructed from real data is not symmet-

ric: ,m n
n mF F  i.e. the forward and backward traffic bet-

ween n and m is unequal. The line thickness in Figure 1 

indicates its weight – thicker lines represent more traffic. 

We also summarize some of the key statistics of transpor-

tation networks in Table 1. 

Infectious diseases hazard index 

The central idea in constructing the hazard map is the  

notion of ‘effective distance’ introduced by Brockmann 

and Helbing12. If Fn and Fn, are the net rates of people 

travelling in and out of city n, then the one-step condi-

tional probability that a person leaving city n travels to m 

is given by 
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We define pair distance 
m
nd  from city n to m as 
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If the cities are not directly connected, i.e. nobody travels 

from n to m directly, then 0m
nP   and .m

nd   In con-

trast, large traffic between the cities (relative to the popu-

lation of the origin n) makes 
m
nd  small. Note that 

m
nd  is 

not necessarily symmetric between the cities. 

 The fastest path for an infection may pass through other 

cities. This motivates the notion of an effective shortest 

distance between any pair of cities as follows: For any 

path 
m
n  (a sequence of cities starting and ending at n and 

m) through the network between n and m, ( )m
n   re-

presents the sum of the pair distances between successive 

cities. The effective distance eff
nmD  between a pair of cities 

is defined as the shortest among all paths 
m
n . 
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Infection spread between the cities is likely to depend  

on the traffic between them, rather than geographical  

distances. The effective distance depends on the mobi-

lities rather than the geographical distance. By definition, 

it takes into account the multiple paths that may connect a 

pair of cities, just as the infection may reach a city 

through another one rather than directly from the out-

break. It is therefore natural to expect a high correlation 

between aspects of infection spread and Deff. 

 To make this precise, we define the ‘time of arrival’ 

A
nmT  of the infection in a city m (from a given outbreak 

location n) as the first time when the number of (active) 

infected cases crosses a predefined threshold Ic. In studies 

of infection spread through global air-traffic patterns, 

time of arrival at location m from an outbreak location n 

was found to be proportional to the effective distance 

eff
nmD  between them12. Naively A

nmT  between cities, which is 

obtained by solving eq. (3) is expected to have a complex 

dependence on the traffic. It is surprising that A
nmT  can in-

stead be reliably predicted from a simple functional eff .nmD   

 
 

 
 

Figure 1. Averaged composite transportation network estimated 
based on data from pre-COVID years 2017–2019. The lines represent 
the busiest 500 connections between cities and their thickness is pro-
portional to the total volume of traffic in the forward and backward  
directions between each pair of cities. 
 
 

Table 1. Properties of transportation network and mobility data used 

in this study. Not surprisingly, air travel constitutes a small fraction of 

the overall mobility. Majority of the long-distance travel is accounted  

  for by trains, and road is the dominant mode for short-distance travel 

Property Air Rail Road Combined 
 

Number of nodes   85    435  446   446 

Number of edges 1182 41,594 9128 46,448 

Average degree   13    95   20   104 

Passengers per day 7.5  105 8.8  106 2.5  106 1.2  107 

Fraction of total 0.06 0.73 0.21 1.0 

https://www.currentscience.ac.in/Volumes/121/09/1208-suppl.pdf
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 Extensive simulations performed in this study and 

summarized in Figure 2 show that for a wide range of re-

alistic  and  and Indian traffic patterns, TA has a  

high linear correlation with Deff. Predicting the arrival of  

infection at a given location is not only of academic  

interest but is also of immense practical value. In the rest 

of the study, we present our analysis of this idea using 

Indian traffic data. 

 Given an outbreak location, the risk of infection in an-

other location can be quantified in many ways, time of ar-

rival being a natural one. Under reasonable and realistic 

assumptions, including uniform infection parameters, Deff 

provides a reliable and robust predictor of TA, as evident 

from our simulations. Deff can be mapped using available 

transportation data, unlike TA that can be obtained either 

from extensive simulations or a posteriori knowledge of 

infection spread. 

 

 
 

Figure 2. Plots showing strong linear correlation between effective 
distance Deff and time of arrival TA. Left column shows 0

eff
i m

D  plotted 
against TA of the infection at city m from outbreak at city i0. TA is ob-
tained by solving eq. (3) with infection parameters  = 1.5,  = 1.0 and 
Ic = 10. Outbreak locations considered in the rows from top to bottom 
are Delhi, Mumbai, Patna and Tirupati. Right column shows the geo-
graphical distance 0

geo
i m

D  from i0 plotted against TA. R2 is a measure of 
goodness of the linear fits (red lines), with R2 = 1 being a perfect linear 
fit. 

Results 

In order to validate the utility of the effective distance, 

we numerically evolve the coupled differential eq. (3) using 

fourth-order Runge–Kutta method. The initial infected 

population Ii0 (t = 0) in the outbreak city i0 is taken to be 

a fraction (0.0001) of the local population. We perform 

such simulations for different choices of the outbreak  

locations and infection parameters. TA for each city is 

evaluated in each case by finding the time when the  

infected population in that city crosses a threshold, Ic is 

taken to be 10. Qualitative results are independent of 

choices of Ii0 and Ic. 

 In Figure 2 we show the results assuming infection para-

meters  = 1.5,  = 1.0 giving R0 = 1.5, a typical value 

that was witnessed for SARS-CoV-2 (ref. 33). In Figure 2 

(left panel), the effective distance 0

eff ,
i m

D  where i0 is the 

outbreak location, is plotted against the time of arrival at 

city m. This is shown for four different outbreak locations 

of varying size, namely Delhi, Mumbai, Patna and Tirupati. 

We find a good linear relation between 0

eff
i m

D  and 0

A ,
i m

T  as 

indicated by high R2  0.94. These are in striking contrast 

to the right panel in Figure 2 which shows TA against the 

geographical distance from the outbreak. 

 Similar observations were made by Brockmann and 

Helbing12, who considered key global air traffic patterns 

alone. 

 Remarkably, within India, considering multiple modes 

of transport, with air travel being the least popular mode 

accounting for less than 10% of relevant mobility, the  

linearity holds good. Smaller Deff to the outbreak then 

suggests a higher risk to a city, manifested as earlier  

arrival of the infection. The demonstration of the ability 

of Deff to predict the time of arrival is a key result of this 

study. 

 Table 2 shows TA for the same outbreak locations as in 

Figure 2. In each case, the list of the top cities in terms of 

risk (i.e. smallest Deff) is also shown. For outbreaks from 

poorly connected cities, the surrounding regions face the 

first brunt of infection; followed by bigger cities. On the 

other hand, outbreaks from big metros which are well 

connected, quickly reach far corners. For instance, infec-

tion from Tirupati reached Bengaluru in ~5 days, whereas 

the outbreak from Mumbai or Delhi spread to Bengaluru 

in ~2.5 days. The hazard map in Figure 3 shows this  

visually for the same four outbreak locations. The size of 

the circles represents the hazard (larger the circle, greater 

the risk). The hazard (i.e Deff) is easily estimated for all the 

cities; only the top 10 cities are shown to avoid clutter. 

 It is interesting to consider the hazard map assuming 

that only one mode of transport is operating. The trans-

portation mode-specific hazard map is shown for two 

outbreak locations, Bengaluru (Figure 4) and Guwahati 

(Figure 5). As expected, air traffic takes the infection to 

distant big cities, whereas road traffic restricts the infec-

tion in geographical proximity. When all the data are 
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Table 2. Time of arrival (TA; in days), for each of the four outbreak locations in Figure 2, showing cities with 10 largest values of TA. The para-  

  meters used are  = 1.5,  = 1.0 and Ic = 10 

Delhi Mumbai Patna Tirupati 
 

City Deff TA City Deff TA City Deff TA City Deff TA 
 

Kanpur 3.96 1.62 Thane 2.89 1.00 Gaya 2.98 2.06 Chittoor 2.41 2.88 

Mumbai 4.06 1.69 Pune 3.17 1.19 Dinapur Nizamat 3.32 2.50 Chennai 2.53 2.88 

Gurgaon 4.25 1.94 Delhi 3.7 1.62 Arrah 3.58 2.75 Hyderabad 3.04 3.50 

Lucknow 4.33 2.00 Surat 4.07 2.00 Delhi 3.75 2.81 Vellore 4.23 5.31 

Faridabad 4.34 2.00 Ahmedabad 4.08 2.00 Bhagalpur 3.99 3.25 Bengaluru 4.25 5.06 

Jhansi 4.54 2.19 Pimpri Chinchwad 4.25 2.19 Kolkata 4.09 3.25 Tiruvannamalai 4.50 5.81 

Rohtak 4.58 2.31 Nashik 4.33 2.25 Darbhanga 4.44 3.88 Kadapa 4.84 6.50 

Ludhiana 4.70 2.38 Vasai 4.43 2.38 Jehanabad 4.47 3.94 Vijayawada 4.89 6.62 

Moradabad 4.70 2.44 Vasco Da Gama 4.47 3.00 Begusarai 4.57 4.00 Anantapur 5.00 6.75 

Bengaluru 4.71 2.38 Bengaluru 4.49 2.38 Biharsharif 4.60 3.94 Madanapalle 5.01 6.75 

 

 

 
 

Figure 3. A visual depiction of the information in Table 2 in the form of an infectious diseases hazard map, with outbreak locations at (a) Delhi, 
(b) Mumbai, (c) Patna and (d) Tirupati (shown as black-coloured location icon). The radius of the circle is proportional to the hazard index of the 
city/town. Larger the circle, greater is the hazard and their colour does not carry any information. Only the cities/towns wi th the top-ten hazard val-
ues are shown. 

 
combined, the map is largely influenced by rail and road  

traffic patterns due to their higher contribution to the total 

traffic (Figures 4 d and 5 d). 

 Earlier works which used mobility to study the spread 

have exclusively used airline mobility, which is justified 

in the global context12. India has not just one of the largest 

railway networks, but it is also used by a significant frac-

tion of people. Hence, an analysis of the type presented 

here is most desirable in the Indian context. 

 In Table 3, the results of our framework are compared 

with real data of TA for the first wave of the SARS-CoV-2 

pandemic. 
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Table 3. Comparison of the time of arrival of infection (TA; days) for real data and that from the simulation 

framework proposed in this study. The top 12 cities at most risk obtained through Deff and real-life data are 

shown. The ranks based on TA for the top-12 cities according to Deff are also given. Correspondingly, a list is 

prepared for the top-12 cities based on TA. The rows in bold denote cities common to both lists. Note that 9 out 

of 12 cities (~75%) are common to both the lists, showing that the proposed framework has predictive  

 capability. Mumbai is taken to be the outbreak location and real-life data is at the granularity of districts 

Rank based on  

Deff 

 

City 

 

Deff 

Rank based  

on TA 

Rank based  

on TA 

 

City 

TA 

(days) 

Rank based 

on Deff 
 

 1 Thane 2.88   4  1 Delhi 11   3 

 2 Pune 3.18   5  2 Ahmedabad 13   5 

 3 Delhi 3.70   1  3 Chennai 16  12 

 4 Surat 4.06 222  4 Thane 25   1 

 5 Ahmedabad 4.08   2  5 Pune 46   2 

 6 Nashik 4.29  10  6 Hyderabad 57  10 

 7 Vasai 4.42 No Data  7 Bangalore 65   9 

 8 Vasco Da Gama 4.47 No Data  8 Guwahati 70  55 

 9 Bangalore 4.49   7  9 Kolkata 79  11 

10 Hyderabad 4.62   6 10 Nashik 85   6 

11 Kolkata 4.91   9 11 Guntur 88 141 

12 Chennai 4.93   3 12 Kurnool 89 131 

 

 

 
 

Figure 4. Transportation mode-specific hazard maps with Bengaluru as the outbreak location. 
Corresponding to (a) air, (b) rail, (c) road and (d) combined modes of transport. The radius of the 
circle is proportional to the hazard index of the city/town. Larger the circle, greater is the hazard 
and their colour does not carry any information. Only the cities/towns with the top 10 hazard values 
are shown. 
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Figure 5. Transportation mode-specific hazard maps with Guwahati as the outbreak location. Corresponding to (a) air, (b) rail, (c) road and (d) 
combined modes of transport. The radius of the circle is proportional to the hazard index of the city/town. Larger the circle, greater is the hazard 
and their colour does not carry any information. Only the cities/towns with the top 10 hazard values are shown. 

 

 District-wise data are available from 26 April 2020 

(ref. 2). Mumbai crossed the threshold first and has been 

taken as the outbreak location. There were ~4000 active 

cases in Mumbai on 26 April 2020. The time of arrival 

(TA) for a city is when its three-day average caseload 

crosses a threshold taken to be Ic = 4000. Table 3 presents 

a comparison of the real data with predictions from Deff. 

In Table 3 (left), the top 12 cities at most risk based on 

the Deff framework are shown. This is compared with 

their ranks in terms of real-life time of arrival of infec-

tions (TA). We find that 9 out 12 cities also appear in the 

top-12 based on estimates from TA. To present a different 

means of comparison, Table 3 (right) shows the top-12 

cities based on time of arrival. Again, we find that 9 out 

of 12 cities appear in the top-12 based on Deff. It is re-

markable, given the uncertainties in the traffic data and 

the approximations made to fill in missing data, that 

~75% of cities obtained from simulations match with 

those in the list obtained from real data. This provides the 

proof-of-concept that it is possible to develop a systemat-

ic predictive framework to objectively estimate the risk in 

Indian cities34. 

Conclusion 

If an infectious disease breaks out in one city, how long 

does it take to reach other cities and towns? This length 

of time can be a simple measure of the risk in other  

cities – the longer it takes, the lesser the risk. One may 

estimate this from careful simulations involving detailed 

traffic patterns. However, this time is easily predicted  

by a quantity called the effective distance, which can be 

calculated if we know the prevailing traffic patterns. 

Larger the effective distance of a city from an outbreak 

location, lower is its risk of early infection. 

 Based on this idea, we have constructed an infectious 

disease hazard map for India using data from the inter-

city transportation network in the country. Further details 

about the map can be found at https://www.iiserpune. 

ac.in/~hazardmap/. 

 Real data from air, road and rail transportation networks 

between the most populous 446 Indian cities were used in 

this calculation. We relied on publicly available data 

sources and used simple assumptions and algorithms to fill 

in the missing attributes of typical Indian traffic patterns. 

https://www.iiserpune.ac.in/~hazardmap/
https://www.iiserpune.ac.in/~hazardmap/
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 We used extensive simulations to validate the useful-

ness of the idea. We find, in agreement with similar past 

studies, that the effective distance of a city, from the origin 

is proportional to the time of appearance of first infections 

in that city and is thus a reliable measure of its risk. 

Comparison with the early patterns of spread of COVID-19 

in India showed surprisingly good agreement between the 

predictions from effective distances and real data. This 

adds further credence to the idea of effective distance. 

 The results of this study prompt several interesting, 

questions, both of academic and practical value. While  

effective distance predicts relative order in which cities 

are affected, the rate of spread through this sequence is 

determined by details of the infection parameters (,  ) 

as well as average mobility. A conceptual framework that 

explains the empirical observations regarding these (from 

simulations) is missing. Moreover, a good explanation for 

the linear relationship between the effective distance and 

time of arrival may be needed in order to know the limits 

of its applicability. Lastly, a generalization of the notion 

of effective distance to a scenario of multiple outbreak 

locations will make this an invaluable tool in designing 

efficient mitigation measures – for instance in determin-

ing which traffic routes to close down with higher priority. 
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