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This study focuses on the current problems in earth 
system science (ESS), where machine learning (ML) 
algorithms can be applied. It provides an overview of 
previous studies, ongoing work at the Ministry of Earth 
Sciences, Government of India, and future applications 
of ML algorithms to some significant earth science 
problems. We compare previous studies, a mind map of 
multidimensional areas related to ML and Gartner’s 
hype cycle for ML in ESS. We mainly focus on the cri-
tical components in earth sciences, including studies on 
the atmosphere, oceans, biosphere, hydrogeology, hu-
man health and seismology. Various artificial intelli-
gence (AI)/ML applications to problems in the core 
fields of earth sciences are discussed, in addition to 
gap areas and the potential for AI techniques.  
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THE recent increase in computational power has promo-
ted the application of novel artificial intelligence (AI) and 
machine learning (ML) techniques. In the last few dec-
ades, there has been a significant improvement in fore-
casts at various scales using numerical methods in 
conjunction with increasing computational power. The 
advent of satellites, modern instruments and advanced 
global/regional modelling capabilities has helped amass 
large amounts of data surpassing petabytes per day. 
Hence the need of the hour is to exploit these data inno-
vatively. The datasets have been collected using sensors 
that monitor the magnitude of states, fluxes and more  
intensive or time/space-integrated variables. The earth 
system data exemplify all ‘four vs of big data’, namely 

volume, velocity, variety and veracity. The big picture 
shows that our capacity to gather and store data vastly 
outpaces our ability to access them, leave alone compre-
hending them meaningfully. The power to make accurate 
predictions has not kept pace with abundant data genera-
tion/accumulation. We need to undertake two significant 
endeavours to maximize the wealth of earth system data 
growth and diversity. These are (1) identifying and utiliz-
ing data insights, and (2) developing predictive models 
that can discover previously unknown laws of nature 
without neglecting the physical understanding that has 
been developed so far.  
 Enhanced data availability and advances in computing 
capacity provide exceptional new prospects. For example, 
ML and AI technologies are now accessible, but they re-
quire additional development and adaptation to geoscien-
tific studies. In both spatial and temporal domains, new 
methods present new opportunities, new problems, and 
ethical demands for contemporary fields of study in earth 
system science (ESS)1. ML algorithms have grown with 
data availability. They are being successfully applied to 
many geoscientific processes in the atmosphere, on the 
land surface and in the ocean. Land cover and cloud clas-
sifications have been possible due to Geographic Informa-
tion Systems (GIS) and the resurgence of neural networks, 
thanks to the availability of very high-resolution satellite 
data. The majority of ML research methodologies (for 
example, kernel techniques or random forests) have since 
been applied to geoscience and remote sensing problems. 
ML has emerged as a versatile method for geoscientific 
data analysis, prediction and quality control.  

Need for ML in ESS 

ML aims to uncover the transformation functions which 
map the fields of enormous interest, such as precipitation, 
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Table 1. Comprehensive summary of previous surveys on machine learning in earth system science and comparison with this survey 

Previous  
reviews 

 
A 

 
B 

 
C 

 
D E 

 
F 

 
G 

 
H I J K L M N O P Q R S 

 
T 

 
U 

 
V 

 
W X Y Z 

 

Rolnick et al.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓          
Reichstein  
 et al.3 

      ✓  ✓ ✓ ✓   ✓  ✓ ✓     ✓ ✓ ✓  ✓ 

Shen et al.4       ✓  ✓ ✓ ✓   ✓ ✓ ✓ ✓   ✓   ✓ ✓  ✓ 
Sit et al.5   ✓ ✓ ✓  ✓   ✓  ✓ ✓ ✓ ✓ ✓ ✓      ✓ ✓ ✓  
Ball et al.6  ✓ ✓  ✓  ✓   ✓    ✓ ✓ ✓ ✓   ✓   ✓ ✓ ✓  
Fang et al.7 ✓ ✓ ✓    ✓  ✓ ✓  ✓  ✓ ✓     ✓   ✓   ✓ 
The present  
 study 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

A, Electricity systems; B, Transportation systems; C, Buildings and cities/urban climate; D, Industrial systems; E, Farms and forests; F, Climate 
change mitigation; G, Weather and climate prediction; H, Climate finance; I, Causality; J, Computer vision, K, Interpretable machine learning; L, 
Natural language processing; M, Reinforcement learning; N, Time series; O, Transfer learning; P, Uncertainty estimation; Q, Unsupervised learn-
ing; R, Seismology; S, South Asian monsoon; T, Short-range weather prediction; U, Extended range weather forecasting; V, Seasonal weather pre-
diction; W, Hydrology; X, Oceanography; Y, Transformers or generative adversarial networks; Z, Weather and climate extremes. 
 
 
temperature, etc. The developments in physical sciences 
associated with simple statistical methodologies have left 
a large grey area in uncovering the relationships leading 
to complex, nonlinear variables. Hence, there is a need to 
dedicate resources to using advanced ML-based tools to 
decipher the links between physical fields which are still 
out of our reach and improve their predictability. The de-
velopments in deep learning, deep reinforcement learn-
ing, transformers, nonlinear science, and recent advances 
in interpretable ML are the areas that can help solve cru-
cial research problems in ESS. Recognizing this need, to 
effectively utilize the extensive data, the Ministry of 
Earth Sciences (MoES), Government of India (GoI) has re-
cently set up a virtual centre for AI and ML devoted to 
earth sciences, which is anchored at the Indian Institute 
of Tropical Meteorology (IITM), Pune.  

Related surveys 

Table 1 summarizes previous surveys on the use of ML in 
ESS2–7. These reviews have primarily focused on the 
broad applications of ML in earth science problems. Rol-
nick et al.2, in the most detailed assessment yet on the 
topic, focused in general on solutions to tackle the issues 
associated with climate change using ML. Others focused 
more on hydrology or remote sensing problems. The sur-
vey by Reichstein et al.3 is close to that we have done in 
the present study.  

Motivation for this study 

The previous surveys have only addressed problems within 
ESS in general. There is a need for a review focusing on 
studies and issues addressing the South Asia region using 
ML. For example, the Indian monsoon is one of the most 
complex climate phenomena, which is not fully under-
stood. It requires particular focus and attention to address 

the challenges in accurately predicting the various spatio-
temporal scales of the monsoon. We also focus on using 
ML methods for extended range predictions. 
 The studies summarized in Table 1 have not considered 
the latest state-of-the-art algorithms, such as the attention-
based transformers and generative adversarial networks. 
The advancements brought about by these models in the 
computer vision and natural language processing com-
munity make them excellent candidates to be explored in 
the domain of ESS.  
 This study outlines all the previous reviews on the sub-
ject, delineates the tools required, the materials needed by 
interested researchers to gain hands-on experience in ML 
and can be used to further the applications of ML in ESS.  

Background 

This section discusses the algorithms, data, problems, 
tools, educational materials, feature engineering and the 
emerging areas related to ML in earth sciences. These 
have been summarized in the mind map depicted in Fig-
ure 1, taking the case of weather and climate sciences as 
an example. 

ML algorithms for ESS 

Various algorithms that have shown remarkable perfor-
mance in computer vision, natural language processing, 
reinforcement learning, etc. can be directly applied to 
ESS problems. For example, the super-resolution methodo-
logy (SRCNN, DeepSD) developed by Dong et al.8 to en-
hance the resolution of image datasets has been used to 
downscale the precipitation datasets from coarser resolu-
tion to high resolution9,10. Seasonal forecast of various 
aspects of the monsoon has been studied using single and 
stacked encoder-based techniques11,12. Prediction of solar 
irradiance using convolutional neural network (CNN) 
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Figure 1. Mind map of multidimensional areas related to machine learning (ML) in weather and climate sciences. 
 
 
with added attention has been recently done12. Recent ad-
vances in computer vision show that algorithms such as 
SRGAN, LapSRN, FSRGAN and UNET outperform the 
standard SRCNN. Long short-term memory (LSTM) 
networks, sequence-to-sequence networks and the recent 
attention-based transformer models have improved the 
accuracies in natural language processing. Some of these 
algorithms have also been used or can be applied to the 
time-series forecasting problems in ESS. A survey on 
these applications can be found in Lim and Zohren13. 
Weather and climate data are so massive that they have 
not been explored exhaustively by the community working 
on big data. The spatio-temporal nature of the datasets, 
i.e. three-dimensional fields at each temporal dimension, 
makes it a complex problem to solve. The patterns in this 
four-dimensional data cannot be deciphered manually, 
and ML offers a perfect opportunity. Models that have 
shown good performance on video datasets such as 
ConvLSTM, can build large-scale, deep learning-based 
systems that can predict the information in high spatial 
and temporal resolution14,15. Sequence-to-sequence and 
LSTM networks have been used to predict and forecast 
active-break cycles of Indian monsoon16. Before starting 
any analysis, traditional algorithms such as random forest, 
support vector machines and multivariate linear regres-

sion should be the first go-to methods. EnhanceNeT and 
PSPNet are algorithms that can be used to classify the ob-
jects in images and spatially locate them. They have shown 
excellent results in computer vision applications. They 
can be used for problems such as identifying floods from 
satellite imagery. 

ESS datasets 

The understanding of ESS datasets is important while de-
veloping ML models. These datasets primarily come in 
three classes: (i) observational data, (ii) reanalysis prod-
ucts which are merged model outputs and observations 
created invariably and (iii) dynamical model simulated 
outputs (such as climate change data from models). For 
the South Asian domain, long-period ground-based obser-
vations made by India Meteorological Department (IMD) 
are available. These datasets can now be obtained from 
the website https://dsp.imdpune.gov.in. Satellite-based 
products are available from the Tropical Rainfall Measuring 
Mission (TRMM), Landsat, Sentinel and MODIS. Reana-
lysis products are gridded products which are developed 
through blending models and observational data products 
using data assimilation techniques, and are useful for the 
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fields which are not/cannot be measured directly by in-
struments. They offer insights into the information which 
is closet to reality. Various reanalysis products are avail-
able for the South Asian region, such as IMDAA reanaly-
sis, NCEP/NCAR reanalysis, CAMS reanalysis, ERA5 
reanalysis, MERRA-2 reanalysis and JRA55 reanalysis.  
 With regard to model products, TIGGE (short- and 
medium-range forecasts), CMIP5/CMIP6 (past and future 
climate scenarios), and seasonal to sub-seasonal (S2S) 
hindcasts are available. The model outputs are based on 
the integration of partial differential equations of dynami-
cal systems. ML offers an innovative methodology to im-
prove these dynamical model estimates by combining 
them with the observed or reanalysis products.  
 The archive of seismic waveform data, global position-
ing system (GPS) data, oceanographic and other geo-
science datasets in India is increasing exponentially every 
year, calling for fast and efficient processing and disse-
mination of information to the public service systems.  

Research problems in ESS 

South Asia is home to more than two billion people who 
are largely dependent on natural climate variability for 
their livelihood. For example, the Indian monsoon feeds 
agricultural lands over the region, thus directly impacting 
its economic well-being. Monsoon is a complex, multi-
scale and nonlinear problem. Hence linear methods can-
not unravel the fundamental processes, especially the 
feedback processes leading to its variability. Forecasts at 
various temporal scales such as short to medium range 
(1–10 days), extended range (2–3 weeks), seasonal scale 
(for the coming season) and climate scale (hundreds of 
years) are essential for planning hydrological resources of 
the region. It has been known that the crop yields are de-
pendent on meteorological variables; ML can be used to 
accurately forecast the spatial crop yield a season in ad-
vance and thus economically benefit the society. The de-
mographics in the South Asian region have considerably 
changed in the past decades, and many people now live in 
the cities. This demographic shift could be attributed to 
the agricultural variability arising from the modulations 
in rainfall patterns (and other factors such as new oppor-
tunities in various sectors). 
 The population density in South Asian countries is also 
very high. Hence, locally accurate urban forecasts are a 
need of the hour. These locations are also sources of 
chemical species harmful to the environment and all living 
beings. Hence air-pollution prediction is a significant 
task. Identifying localities with high air pollution is essen-
tial for city planning; for example, deciding the number 
of electric buses to be introduced in a city. ML-based algo-
rithms can be used to improve the cyclone forecasts of 
dynamical models. Extreme weather events such as heat-
waves and cloud bursts are causing havoc in recent times. 

It is challenging to predict them accurately. Other impor-
tant problems of interest to the ESS community are flood 
forecasting and disaster management using AI/ML-based 
techniques. 
 In seismology, AI/ML-based techniques are being used 
for earthquake detection, phase-picking (measurement of 
arrival times of distinct seismic phases), event classifica-
tion, early warning of earthquake, ground motion predic-
tion, tomography and earthquake geodesy. They are also 
useful to determine and predict tsunami inundation and 
heights. 

Popular tools to perform ML for ESS 

The open-source software packages have provided a 
bridge to the domain experts to avoid reinventing the 
wheel while applying ML to their problems. Python is the 
most popular language for ML, and various libraries such 
as TensorFlow, PyTorch, Theano, MXNet, OpenCV,  
Keras and PyTorch Lightning are available freely. Visua-
lization software such as TensorBoard and Tableau assist 
in communicating the results from ML models. In addi-
tion to the software requirements, deep learning needs 
graphical processing units (GPUs) to perform tensor 
computations in neural networks. Tensor processing units 
(TPUs) are a step ahead of GPUs, wherein the neural 
network is encoded on the chip to perform fast calcu-
lations. However, TPUs are only available over the cloud, 
and each individual cannot buy a personal GPU for deep 
learning. Hence free and paid cloud computing services, 
such as Amazon Web Services (AWS), Microsoft Azure, 
Google Cloud Platform (GCP), Paperspace, Digital 
Ocean, Google Earth Engine, etc. provide an option to 
build machines over the cloud to perform deep learning 
and data analysis in ESS17. A step further, the concept of 
Jupiter notebooks as a service has become popular, and 
there are several free and paid vendors providing note-
books as a service. Notable amongst them are the free 
services offered by Kaggle, Google Colab and others. 
Readers can find information on more cloud vendors at 
https://github.com/binga/cloud-gpus, https://github.com/ 
zszazi/Deep-learning-in-cloud, https://github.com/disc- 
diver/deep-learning-cloud-providers/blob/master/list.md, 
etc. ‘Docker containers’ have also become an essential part 
of the ecosystem, helping us to deploy end-to-end pack-
ages for deep learning.  

Educational materials for learning earth system  
data science 

A key component in the ML cycle is the educational re-
sources to build knowledge and apply it to ESS. The ave-
nues to learn data science and use ML for earth sciences 
applications are the Coursera specializations, courses, 
professional certificates, Udacity nanodegrees, Udemy 
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courses and other free and paid materials available as 
massive open online courses (MOOCs). The Development 
of Skilled Manpower in Earth System Sciences (DESK), 
Ministry of Earth Sciences (MoES), GoI regularly holds 
training programmes for young researchers on ML appli-
cations in earth sciences. DESK conducted one such 
training workshop in 2021, and the video recordings of 
the sessions can be found at https://tinyurl.com/448t8yb4. 

Decision-making for ML in ESS 

Once the weather/hydrological forecasts are generated, 
they must be used to make decisions for the benefit of  
society. Deep reinforcement learning is an excellent method 
for this. State-of-the-art algorithms such as Deep-Q-net-
works, vanilla policy gradient, trust region policy optimi-
zation, proximal policy optimization, deep deterministic 
policy gradient (DDPG), soft actor-critic, twin delayed 
DDPG, etc. can be used to train agents who can guide in 
decision-making. The most crucial aspect of deep rein-
forcement learning is the design of the environment, ac-
tion(s) and reward(s). The authorities can use these tools 
in decision-making for disaster preparedness/mitigation, 
hydrological planning and other associated tasks. 

Feature engineering for ML in ESS 

Feature engineering is the generation of meaningful pre-
dictors or parameters to improve the performance of a 
ML model. It is performed after cleaning the data and pre-
paring them in a format that can train statistical models. 
It has been noted that removing redundant variables im-
proves the performance of ML systems. Various methods 
can be used to find the most valuable predictors; some of 
them are principal component analysis (PCA), empirical 
orthogonal functions (EOF) and independent component 
analysis (ICA). Binning, counting, transforming or filter-
ing can extract the predictive signal from the data to im-
prove the models. Unsupervised learning techniques, 
such as autoencoder, can also assist in finding valuable 
predictors from raw datasets. The deep learning-based 
models are, however, coded for image-based input data-
sets. To overcome this limitation, strategies such as trans-
forming the spherical global data to a cubed sphere or 
tangent planes mapping can effectively reduce spherical 
distortions in the data. 

Emerging areas in ML for ESS 

While the previous decade has seen the hype of deep 
learning overshadow other ML methodologies, numerous 
emerging and innovative ML methods can be used for 
ESS. Graph ML is training neural networks on graphs and 
is becoming increasingly popular. Complex networks and 

recurrence plots fall in the category of nonlinear metho-
dologies and are suitable for specific applications. While 
using ML physical sciences, one primary concern is that 
these could be considered as black-box models. Interpret-
able ML aims to address this concern, and analysis of 
deep learning model weights reveals the patterns learned. 
Active research is being done in this area, and it is crucial 
for the increasing acceptability of deep learning models at 
the production scale in ESS. The emerging fields of aug-
mented reality, virtual reality, improved remote sensing 
measurements, crowd-sourcing and drone technology offer 
excellent potential to advance observation data collection 
and improve ML models.  

Applications of AI and ML in earth sciences  

The AI/ML algorithms have vast applications in earth 
sciences problems. Figure 2 depicts a few such applica-
tions in areas such as atmosphere/biosphere, seismology 
and ocean.  

Statistical downscaling 

Downscaling of data is necessary to obtain a local projec-
tion of the information. The present-day models and ob-
servations generated from weather stations (or other 
instruments) are available at a coarser resolution. They 
are irregularly spaced, which may often lead to misrepre-
sentation (or absence) of precipitation, temperature or 
other variables at local levels. Downscaling the Indian 
summer monsoon (ISM) rainfall is a difficult task involv-
ing a multi-scale spatio-temporal dynamical process with 
significant variance18. Further, regional variations of ISM 
rainfall are often quite substantial, varying from a few 
millimetres to thousands of millimetres within a few hun-
dred kilometres. The ISM rainfall can be classified into 
different coherently fluctuating zones, linked to complex 
multi-scale processes19–21. 
 Statistical downscaling is a low-cost method to obtain 
information at the local scale and provide it to the stake-
holders. AI and ML techniques are used for statistical 
downscaling8,22. Recently, development in the single im-
age super-resolution using deep learning has proved to be 
one of the best methods used for this purpose8–10. Another 
method that has shown promising results in statistical 
downscaling is ConvLSTM documented by Harilal et al.23.  

Seismological events 

The growing volume of seismological and other geo-
science-related datasets acquired from surface and borehole 
studies requires efficient analysis and trend recognition 
techniques to extract valuable signals. AI/ML tools have 
been applied in different fields in seismology, from event 
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Figure 2. An overview of the application of artificial intelligence (AI)/ML algorithms in some earth sciences problems. The precipita-
tion forecasting can include data from short-range, medium-range and extended-range forecasting. 

 
 
identification to earthquake prediction, with varying de-
grees of success24–29. The case studies also highlight the 
need for further research and development to refine the exi-
sting techniques, and develop new tools that could be uti-
lized in the processing and analyses of large datasets and 
identification of different geophysical signals. AI/ML 
techniques in geoscience/seismology could be employed 
gainfully to analyse other seismological datasets that 
MoES, GoI and its affiliated institutions routinely ac-
quire. Identifying seismic phases accurately is one of the 
primary requirements in seismological data analysis to 
determine earthquake source parameters. ML helps iden-
tify different seismic phases in the data.  
 In many earthquake detection algorithms, short-term 
average (STA)/long-term average (LTA) criteria are used 
to detect possible arrival times of P and S waves30. There-
fore, matched filtering or template matching technique is 
used for event detection. In this method, waveforms of 
known events are used as templates to scan through conti-
nuous waveforms to detect new events31. Recently, ML 
has been utilized to improve earthquake detection and 
phase-picking capabilities25,32. Fingerprinting and similarity 
thresholding (FAST) is the latest algorithm using ML 
techniques that have been used to identify earthquakes 
without prior knowledge of seismicity. FAST would facili-
tate the automated processing of large and voluminous 
datasets by being computationally more efficient than 
template matching. Similarly, the generalized phase detec-
tion (GPD) algorithm searches for near-identical wave-
forms from millions of seismograms, which is used to 
classify windowed data as P, S or noise. GPD can be  

applied to datasets not only encompassed by training sets, 
but also to complex cases such as clipped seismograms. 
Kong et al.33 used neural networks to detect P-wave onset 
and P-wave polarity. ML techniques have important appli-
cations in detecting small-magnitude local earthquakes in 
areas characterized by sparsity of receivers. AI/ML algo-
rithms may play an essential role in the identification of 
events and in locating earthquakes with recordings of the 
events at fewer stations33,34. Other applications in earth 
sciences such as hydrology, show that AI/ML can esti-
mate and predict streamflow in ungauged basins35–37. 

Short- and medium-range data-driven weather  
forecasting  

Currently, the highest global resolution ensemble predic-
tion system at ~12.5 km horizontal resolution (with 21 
members) is being used for providing ten-day probabilistic 
forecast based on the Global Ensemble Forecast System 
(GEFS@T1534) by IMD. IITM has implemented the 
high-resolution GEFS for operational application since 
June 2018. While the deterministic GFS model38 at 12.5 km 
horizontal resolution provides a better skill up to ~five 
days compared to the earlier coarser resolution (~25 km 
resolution GFST574)39, the ensemble prediction system 
has shown much better skill than the control member (the 
deterministic GFS model), particularly for predicting ex-
treme rainfall events40,41. The model forecast inaccuracies 
mainly arise from initial conditions and improper physical 
parameterization. The uncertainties of initial conditions 
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are resolved primarily by the perturbed initial states in 
the ensemble prediction system. However, the uncertainty 
arising from deterministic closures of the physical para-
meterization still adds many errors due to unrealistic con-
straints, namely the quasi-equilibrium42. Under the AI/ 
ML paradigms, the use of sub-grid-scale tendencies gene-
rated by the cloud-resolving models within each climate 
model grid would be used as the input of a deep learning 
model. The inputs would be mapped for training to target 
the heat and moisture tendencies and this framework 
holds promise in improving the model fidelity43–45. 

ML for extended range forecasts 

AI/ML methods have recently found applications in cli-
mate forecast models. There are two basic applications 
that show promise for near-future climate applications. 
The first is the bias correction and improvement of the 
numerical model forecasts. The second relates to the me-
thods attempting the sub-seasonal low-frequency predic-
tions. The bias correction and model post-processing 
applications are helpful to the stakeholders using climate 
forecasts. The climate forecasts from dynamical models 
show substantial bias when the forecast is considered 
over scales lower than the balanced flow, mainly arising 
due to unknown physics or unresolved dynamics. When 
sufficient observations are available over a location, 
some of the systematic errors arising due to unresolved 
scale dynamics or physics can be corrected46. Sub-
seasonal forecasting using ML methods are now under 
active research12,47–49. 

ML for seasonal and climate-scale forecasting  

Seasonal forecasting is one of the most challenging pro-
blems in forecasting. As pointed out by Lorenz50, the 
weather forecasts are highly dependent on initial condi-
tions (today’s weather determines tomorrow’s weather). 
In contrast, climate projections/decadal predictions (an 
average of weather for a few decades) are less sensitive to 
the initial conditions. However, they depend on boundary 
conditions. When we try to make seasonal forecasts, the 
distinction is somewhat blurred, and the seasonal fore-
casts still depend on initial conditions51. Chattopadhyay 
et al.51 have shown that model hindcasts initialized with 
February initial conditions exhibit better prediction skills 
for the Indian summer monsoon rainfall (ISMR). Further 
complexities such as resolving ocean processes also be-
come essential at a seasonal scale. Hence, extracting pre-
dictive information (which changes from event to event) 
across both space and timescales is vital to significantly 
improve seasonal forecasts52. Therefore, the use of AI/ 
ML methods for improving seasonal forecasts is impera-
tive, and the research community has started using these 
methods extensively in seasonal forecasts53–55. Some res-

earchers also consider that AI/ML methods can outper-
form conventional prediction systems for seasonal fore-
casts54,55. Currently, they outperform statistical models. 
 One of the long-standing seasonal prediction problems 
is the ISMR prediction. Blandford started seasonal fore-
casting of ISMR using empirical methods in 1886. Since 
then, numerous attempts have been made to predict sea-
sonal mean monsoon over India using empirical and  
dynamical models (atmosphere and coupled ocean–atmo-
sphere models; see Rao et al.39 for more details). Empiri-
cal models showed very high skills (>0.9) during the 
development stages and during the actual operational 
phase, while they showed weak skills (<0.5). On the other 
hand, dynamical models showed moderate skill during 
the hindcast and operational forecast phase39. The  
primary reason for the failure of empirical models in pro-
viding high skills during the operational phase is that the 
relationship between predictors and predictands under-
goes secular changes from the time the model has been 
developed to the stage when it is made operational. To 
avoid such a situation, AI/ML models can be used effi-
ciently to identify new predictors53. Using autoencoders, 
Saha et al.53 have developed an AI/ML model to predict 
ISMR with two months lead time and an absolute mean 
error of less than 3%. On the other hand, the dynamical 
models exhibit systematic biases in precipitation that 
arise due to parametrization schemes used in these mod-
els39 and therefore underestimate the extremes. To avoid 
such systematic errors, AI/ML models will be useful. 

ML for improving the physical processes in  
dynamical models 

Dynamical models work on the principle of solving par-
tial differential equations over the area of interest with 
the necessary initial and boundary conditions. They con-
sist of various components such as atmosphere, ocean, 
land surface, etc. and a correct representation of physical 
processes in the numerical models is highly essential for 
accurate simulations of the coupled climate systems. For 
example, various researchers have tried to understand the 
relationship between the Indian monsoon and the global 
and regional teleconnections such as El Niño-Southern 
Oscillation (ENSO)56,57, Indian Ocean dipole (IOD)58, 
North Atlantic Oscillation59, Pacific Decadal Oscillation60, 
volcanic eruptions61 and aerosols62,63. Recent studies have 
attempted to use deep learning to develop models that 
better represent the physical processes. For example, de 
Witt and Hornigold64 used deep reinforcement learning-
based approach to test the stratospheric aerosol injection 
on climate. Volcanic eruptions have been used as an ana-
logue for stratospheric aerosol injection, and deep learn-
ing can assist in addressing the nonlinear nature of the 
problem. Recently, Lamb and Gentine43 used graph neural 
networks to study the aerosol optical properties. Seifert 



REVIEW ARTICLE 
 

CURRENT SCIENCE, VOL. 122, NO. 9, 10 MAY 2022 1026

and Rasp65 discusses the role of ML in estimating cloud 
microphysics. The uncertainties in the simulation of the 
Indian monsoon arise from the missing or erroneous 
physics in the dynamical systems. ML to improve the un-
derstanding of physical processes can lead to cascading 
returns by enhancing the hydrological outputs from the 
numerical weather prediction (NWP) models66–70. 

ML for nowcasting weather and tracking storms cells 

There is a need for a high-resolution early warning system 
with reliable nowcasts in the regions of steep topography 
and urban areas during severe weather. Traditionally, 
nowcasting is performed by carrying out extrapolation, 
probabilistic nowcasting71, semi-Lagrangian advection 
scheme72 and using algorithms like optical flow, etc. The 
state-of-the-art, data-driven approach plays a pivotal role 
in weather nowcasting. Doppler weather radar provides 
extremely high geographical and temporal resolution 
weather information. Agarwal et al.73 utilized radar im-
ages to forecast the weather using the U-Net algorithm, 
demonstrating that it outperformed the optical flow tech-
nique. Su et al.74 have shown that ML approaches have a 
high learning capacity, and enhance echo position and in-
tensity forecast accuracy in convective cells. The tempor-
al precision of such convective cells varies from 30 to 
60 min during a relatively short period. Estimating preci-
pitation in complicated orography regions is a well-known 
problem. Arulraj and Barros75 used detection and classifi-
cation ML algorithms to improve the estimation of oro-
graphic precipitation across the Southern Appalachian 
Mountains. Human lives, ecosystems, manmade struc-
tures, and landscapes are at risk when snow avalanches 
occur in mountainous locations. The International Com-
mission for Alpine Rescue anticipates an increase in the 
frequency of deadly occurrences caused by snow ava-
lanches, with an average of 138 recorded cases per year 
in 2015 across Alpine nations and North America. A recent 
study used ML to simulate the hazards due to snow ava-
lanches76. Important precursors for modelling snow ava-
lanche hazards were found to be slope, topographic 
location, surface wetness and precipitation. 

ML for numerical weather prediction 

Satellite remote sensing and NWP groups are ripe for rapid 
advancement in the application of ML. NWP relies heavily 
on integrating fields generated by satellites and other re-
mote sensing devices. Both spatially and temporally, gaps 
are a common occurrence in such data. The existence of 
spatial and temporal gaps is a typical issue in such obser-
vations. Alleviating uncertainties arising due to these data 
gaps is necessary before performing ML. The time series 
of satellite ocean fields are constructed using an ensem-
ble of neural networks with varying weights77 and a deep 

learning method to reconstruct the optical images78. 
While modelling and deploying systems and issuing 
warnings, the ML method can give a post-forecast correc-
tion to account for the uncertainties after learning from 
all previous failures79. 

ML for hydrogeological modelling 

Rajaee et al.80 use 67 published studies to assess the AI 
approaches towards groundwater level (GWL) modelling. 
They found that ML could accurately simulate and fore-
cast GWL time series in various aquifers. This type of 
modelling uses data science to unravel physical relation-
ships between GWL and various hydrological factors. 
Due to the lack of mathematical/physical representations 
of the processes, AI models are beneficial in groundwater 
modelling, where knowledge-driven simulation is chal-
lenging to design. Research and methods in hydrogeology 
have evolved in response to global challenges81. Hydro-
geologists are now working to find solutions to a wide 
range of issues, including the long-term supply of potable 
water, geothermal energy production, preservation of the 
natural environment and the impact of climate change on 
groundwater. These challenges can be solved by hydro-
geologists using numerical modelling. Identifying piezo-
metric risk zones and calculating groundwater recharge 
are two examples of simple hydrogeological issues that 
are routinely treated using simpler models. Iterative dis-
crete forms of the equations driving the hydrogeological 
process are solved using numerical models to handle 
complex difficulties. The Internet of Things and other  
recent technological advancements have allowed hydrogeo-
logists to acquire large amounts of real-time data. Tradi-
tional modelling approaches have difficulty extracting 
useful features, quantifying uncertainty or establishing 
correlations between diverse factors. At least four issues 
impede the broad adoption of ML in hydrogeology as a 
complement to the numerical models. The first constraint 
is that most ML models are opaque black boxes. Using a 
black-box model, one does not know the laws that govern 
the system’s operation or the causal relationships between 
the variables. Hence hydrogeologists cannot explain or jus-
tify the model results, either for improved understanding 
of the phenomena or to support high-stakes judgements. 
A second issue is that generalization is challenging in hy-
drogeology data-driven models even with high simulation 
fidelity. Another drawback of the ML models is that they 
may not converge and cannot be automatically extended to 
respond to new events in a system under study. Extensive 
and dedicated research efforts are needed at the intersec-
tion of hydrogeology and ML. 
 Tsunami evacuations helped by early warnings can 
considerably reduce the number of casualties. However, 
incorrect danger predictions and warnings might have the 
opposite impact. To limit the number of casualties in 
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Figure 3. Gartner’s hype cycle for ML in earth system science (ESS) with a focus on research problems associated with South Asia. 
 
 

 
 

Figure 4. Word cloud incorporating the crucial aspects of ML in ESS. 
 
 
future tsunamis, it is vital to develop tsunami forecasting 
systems based on real-time tsunami observation data and 
provide early warnings. Using an advanced CNN, research-
ers were able to accurately forecast tsunamis based on data 
from extensive tsunami and geodetic monitoring net-
works82, which is the first effort at AI-enabled end-to-end 
tsunami inundation predictions.  

AI for climate and human health 

Using supervised ML, topic modelling and geoparsing, 
Berrang-Ford et al.82 identified mapped all climate change 
and health research published between 1 January 2013 
and 9 April 2020. Their analysis included only the studies 
published in English, with 15,963 climate and health  
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studies published between 2013 and 2019. They found an 
overwhelming focus on the effects of climate change on 
human health, with little attention paid to mitigation and 
adaptation. Causal mortality and infectious disease inci-
dence due to heat and air pollution were most frequently 
studied. Seasonality, harsh weather, heat and weather vari-
ability were the most researched weather exposures. 
Mental health, undernutrition, and maternal and child 
health were the areas of climate health study that received 
less attention. Low-income countries, which often bear 
the brunt of health consequences due to climate change, 
were underrepresented in the studies. Climate change and 
human health must be mapped using automated ML in the 
era of big data. With the lack of data guidance on climate 
and health, policymakers may be hesitant to make deci-
sions on how to mitigate the health effects of climate 
change. ML to generate the datasets can lead to transfor-
mational benefits for society. 

Summary and future directions 

In this study, a review of ML applications in ESS has 
been done. The future directions especially relevant to solu-
tions for the South Asian region have been summarized as 
a Gartner’s curve (Figure 3). Hard AI problems such as 
earthquake prediction and climate-scale predictions re-
quire long lead times of several years to centuries. They 
will take more than a decade of development to be fully 
solved by ML and allied techniques. Such a long deve-
lopment time is expected because of data sparsity; for  
example, over the Himalayan region, for earthquake pre-
diction. Significant uncertainties in dynamical models to 
project end-of-century estimates of climate are also ex-
pected to be resolved after extensive research and deve-
lopment. Recent developments in ML, particularly in 
deep learning, are expected to lead to transformative im-
provements in the short to extended-range forecast, intel-
ligent transportation, precision agriculture, policymaking, 
wind and energy forecasts during this decade. These  
advancements would be driven by the critical nature of 
such problems and the availability of high spatio-tem-
poral drones, ground-based observations and satellite  
datasets. 
 We have discussed various AI/ML techniques that have 
been used and those with high potential for improving the 
state-of-the-art in ESS. Figure 4 is a word cloud showing 
all the critical components required for ML in ESS. An 
exhaustive literature survey on AI/ML/DL applications in 
the South Asian domain, a mind map incorporating all the 
essential components of data science applications in ESS 
and a Gartner’s curve for future directions are the main 
contributions of this review. It can be used as a starting 
point to understand the existing research problems, appli-
cable algorithms, educational resources, hardware/soft-
ware stacks and other vital aspects essential to data 

science for ESS. This work aims to further ESS over 
South Asia using ML applications as an end goal. 
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