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Wind power growth makes it essential to simulate 
weather variability and its impacts on the electricity 
grid. Low-probability, high-impact weather events such 
as a wind drought are important but difficult to iden-
tify based on limited historical datasets. A stochastic 
weather generator, Imperial College Weather Genera-
tor (IMAGE), is employed to identify extreme events 
through long-period simulations. IMAGE captures 
mean, spatial correlation and seasonality in wind speed 
and estimates return periods of extreme wind events 
over India. Simulations show that when Rajasthan ex-
periences wind drought, southern India continues to 
have wind, and vice versa. Regional grid-scale wind 
droughts could be avoided if grids are strongly inter-
connected across the country. 
 
Keywords: Decarbonization, grid interconnections, risk 
assessment, stochastic weather generators, wind drought. 
 
AS part of its progress toward decarbonization, India has 
plans to increase the share of renewable energy (wind and 
solar) in its electricity system1. Decarbonization or reduc-
tion in fossil-fuel sources of energy is also important for 
reducing air pollution2,3. In an electricity grid with a large 
share of renewables, weather variability would impact not 
only demand but also the supply of electricity, making it 
necessary to simulate weather variability and its impacts 
on the power system4. In addition to normal weather vari-
ability, low-probability, high-impact weather events can 
have an adverse impact on grid stability by creating large 
deficits in electricity generation. Successfully managing 
steep ramps in generation output, as well as a range of 
demands or power generation as a result of weather vari-
ability over different timescales is important for reliable 
operation of power systems4. 
 Wind-speed variability often arises from large-scale 
weather patterns5, leading to correlated extreme excesses 
or deficits in wind generation. The statistics of such ex-
treme events typically cannot be estimated from instru-
mental records, because their relatively short duration 
does not contain many realizations of such events. Never-
theless, such extreme weather events can be the result of 
an underlying structure, such as the covariance in wind-

speed between different pairs of locations. Stochastic 
weather generators can help identify such extremes, espe-
cially when they arise from statistics estimated from 
shorter instrumental datasets. 
 Sparks et al.6 developed the Imperial College Weather 
Generator (IMAGE), a novel, multi-site, multivariate, 
stochastic weather generator that can capture various ex-
treme events, including heatwaves and cold spells, droughts 
and excess rainfall. Stochastic weather generators typically 
produce single-site time series of an arbitrary length of 
meteorological variables, while preserving statistics of 
the input data, which are obtained from historical obser-
vations, reanalyses or models. In their simplest form, 
weather generators produce synthetic time series for a 
single weather variable at a single location. However, for 
many applications, the geographic area considered is so 
large that weather variables, such as wind, can vary signifi-
cantly over the domain. In such situations time series at 
multiple sites are desirable. The production of realistic 
synthetic weather data, in this case, requires the preserva-
tion of spatio-temporal correlation between sites, increas-
ing the complexity of the problem significantly, in 
proportion to the number of pairs of sites. Additionally, 
for many applications, time series of multiple, correlated 
weather variables are needed. The weather generator 
IMAGE is designed to assess the risk of events for which 
the spatial distribution of weather variables is essential, 
such as rainfall anomalies over several months over a large 
watershed or heatwaves affecting several regions of a 
country over a period of a few days6. It uses multivariate 
autoregressive modelling. Besides precipitation, other 
meteorological variables such as minimum and maximum 
daily temperature, solar radiation, humidity and wind 
speed have been generally modelled using multivariate 
autoregressive models7. Here we apply IMAGE to simu-
late data from outside Europe and explore the risk of wind 
droughts across India. 

IMAGE model description 

We use an improved version of the IMAGE model deve-
loped by Sparks et al.6. We include only a brief description 
of the model here, presenting a more detailed explanation 
of the modifications. 
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 All variables in IMAGE are modelled as latent Gaussi-
an variables. At the start of simulation each variable is 
transformed using a normal quantile transformation, such 
that it has a normal distribution. These transforms are 
performed separately for each month to allow for changes 
in the distribution from month to month. Once transformed, 
an autoregressive lag-1 model of the form  
 
 ys(t) = cs + αsys(t – 1) + εs,  (1) 
 
is fitted separately to each month of input data for each 
variable at each site, where cs is a constant, αs the memory 
parameter and εs is the noise term. These three parameters 
are each, in turn, modelled as latent Gaussian variables 
and transformed such that each parameter has a normal 
distribution for each variable at each site for each calen-
dar month. 
 Synthetic time series are simulated for each variable at 
each site by first generating correlated values of cs and αs 
for each month by sampling from a multivariate normal 
distribution. This process requires decomposition of the 
covariance matrix of the autoregressive parameter, Σ, to a 
matrix C such that CCT = Σ. Sparks et al.6 achieved this 
using empirical orthogonal function decomposition. In 
this study we instead use Cholesky decomposition, which 
produces the same results but is computationally faster. 
In general, Σ may not be positive semi-definite, which is 
required when sampling from the multivariate normal dis-
tribution, and therefore the nearest positive semi-definite 
matrix to Σ is computed using the method of Higham8. 
Parameters are generated simultaneously for all 12 months 
in one simulated year, such that correlations between 
months in the same year are accurately simulated, as well 
as the spatial correlation between sites. The noise terms εs 
are simulated daily for each variable at each site, once 
again by sampling from a multivariate normal distribu-
tion. Daily values for each variable at each site can then 
be simulated using eq. (1). 
 After simulation, variables are transformed back to their 
original distribution using an inverse normal quantile 
transformation. The pairwise Pearson’s correlation coeffi-
cients of time series of variables at different sites are cal-
culated for the simulated data and compared to the 
correlation coefficients of the input data. As described in 
Sparks et al.6, the original version of IMAGE tended to 
systematically under simulate the observed spatial corre-
lations. IMAGE has been modified to mitigate this issue 
using an iterative method. Once one simulation run is 
complete, the covariance matrix used to generate the daily 
noise terms, εs, is adjusted by applying a correction term 
equal to the difference between the observed correlation 
and the simulated correlation for each pair of sites. The 
simulation of εs is then re-run and this cycle is iterated 
until a satisfactorily small error in the simulated pairwise 
correlations is achieved. We found that ten iterations 
were sufficient to reach approximate convergence. 

Data used and methodology 

The analysis in this study was based on horizontal wind 
speed at 100 m over the surface from ERA5 reanalysis 
products by the European Centre for Medium-Range 
Weather Forecasts (ERA5) for 41 years (1979–2019) over 
the Indian region9. We chose 100 m above the surface be-
cause the hub heights of various onshore wind turbines 
lie roughly at that level. The spatial resolution of the rea-
nalysis dataset was 0.25° × 0.25°, and temporal resolution 
was hourly. In situ, hourly 100 m wind measurement data 
of 40 weather stations from the National Institute of Wind 
Energy (NIWE), Chennai, were compared with ERA5 data 
to check if ERA5 could capture the overall wind speed 
pattern. 
 The methodology used was as follows. First, we tested 
if ERA5 could capture the overall pattern of observed 
wind speed over India (from NIWE measurements for 40 
locations; Figure 1, purple dots). However, the aim of this 
study is to highlight the ability of the stochastic weather 
generator to model wind-power variability. The IMAGE 
model which is presented here can be used with different 
sources of data input, and we have chosen the best physi-
cally consistent gridded dataset available to us. The input 
data can change, but the tool presented here remains ap-
plicable to a variety of weather variables, depending on 
the context. 
 
 

 
 

Figure 1. Mean climatological wind speed at 100 m above ground 
over India. Purple dots show 40 locations chosen for validation from 
wind-rich regions. These locations are used for ERA5 comparison with 
in situ data and IMAGE validation. Green triangles indicate three out of 
these 40 locations that are chosen for validating the seasonal pattern 
simulated by IMAGE. Brown boxes indicate the areas chosen for vali-
dation of the return period of various wind speeds from the simulation 
with respect to ERA5 input. The same regions are used for demonstrat-
ing the application of IMAGE. 
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 Next, the IMAGE weather generator was validated for 
wind speeds over the Indian region. The model was simu-
lated for 40 locations over wind-rich regions in western 
and southern India for daily wind speed of 4100 years 
(Figure 1; purple dots). The output of 4100 years of IMAGE 
simulation for each of these locations was segregated into 
100 ensemble members, each of 41 years in length (i.e. 
same length as the input data). For each of these ensem-
ble member, the 41 years’ daily wind speed time series 
was compared with the corresponding time series in the 
ERA5 input dataset. The parameters chosen for compari-
son were yearly mean of daily wind speed, seasonal vari-
ation of monthly mean wind speed and spatial correlation 
of wind speed. Three locations were used to illustrate the 
validation of seasonal patterns, from three different high 
wind-resource regions in India (Figure 1, green triangles): 
Dhanushkodi in the offshore region near South India, and 
two onshore locations in box A (Rajasthan) and box B 
(South India). We also examined if the wind speed simu-
lated by IMAGE could preserve the Weibull distribution 
of wind speed. 
 As part of validation of the simulations from IMAGE, 
we also examined whether they could capture the low 
probability extreme events of high and low wind speed. 
This analysis compares the return periods of various wind-
speed events from the ERA5 reanalysis with IMAGE  
simulations. The validation was done for two high wind-
resource regions within Rajasthan (box A) and South  
India (box B) (Figure 1, brown squares). 
 Following the validation as described above, IMAGE 
was used to simulate 1000 years of wind speed over India 
based on the ERA5 reanalysis as input data. The ERA5 
data were upscaled to 1° × 1° resolution prior to using it 
as an input to IMAGE. Based on the IMAGE simulations, 
we estimated the probability of low wind (wind drought) 
over different regions and all over India. We estimated 
the fraction of days for which the average wind speed was 
below 3 m/s all over India, given that one of the wind-rich 
regions – box A (Rajasthan) or box B (South India) – had 
an average daily wind speed below 3 m/s. The 3 m/s thres-
hold was considered because most of the turbines have a 
‘cut in’ speed of 3 m/s, i.e. the wind speed beyond which 
the turbines start producing electricity. 
 Finally, with a case study, we have illustrated the bene-
fits of having grid-connected wind plants located in differ-
ent regions compared to the absence of any interconnection 
between regional grids. These benefits have been assessed 
from the perspective of ‘wind drought’ or ‘no generation’ 
days based on the IMAGE simulation of 1000 years. We 
simulated wind turbines in four sets of locations from 
boxes A and B for the case study. 
 
Set 1:  One grid having maximum mean wind speed in 

box A and another neighbouring grid. 
Set 2:  One grid with maximum mean wind speed in box 

B and another neighbouring grid. 

Set 3:  Grids with maximum mean wind speed in both the 
boxes. 

Set 4:  Grids with the second highest mean wind speed in 
both the boxes. 

 
We simulated one 2.1 MW wind turbine at each location. 
The manufacturer’s power curve of the Suzlon S.88-2100 
model turbine10 with a rated power output of 2.1 MW was 
used for converting wind speed to wind generation. A 
look-up table created based on the normalized power 
curve was used for converting the IMAGE-simulated 
wind speed to wind generation. Due to normalization, the 
rated generation from the turbine is indicated as 1. Hence, 
wind generation for any given wind speed can be interpre-
ted as a fraction of the rated generation obtained at that 
wind speed. 
 To compare the benefits of having wind farms located 
in different sets of locations, we estimated the fraction of 
days in 1000 years for which there was no generation 
from the individual plants as well as no generation from a 
combination of the two simulated wind-power plants. Im-
provement in the fraction of ‘no generation’ days can be 
used as a potential parameter to assess the benefits of ag-
gregating wind plants from different regions. 
 Next, we assessed the robustness of this parameter 
(fraction of ‘no generation’ days). Twenty grids were selec-
ted from boxes A and B, which had higher average daily 
wind speed compared to the other grids. An equal number 
of grids (10) were selected from each box. We simulated 
all possible combinations of four grids that could be se-
lected from among these 20 grids. One wind turbine was 
simulated at each location. We estimated the reduction in 
percentage of ‘no generation’ days in the aggregate gene-
ration for each combination. The reduction values were 
estimated based on eq. (2). 
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where fi and fc are the fraction of zero-generation days esti-
mated for individual and combined generations from simu-
lated wind plants respectively. R is the absolute value of 
reduction in fraction of zero-generation days achieved by 
aggregation. 

Model validation 

ERA5 reanalysis dataset and observation 

Before using ERA5 as input for IMAGE, we checked if it 
could capture wind speed over India. Figure 2 a compares 
the daily mean wind speed for 40 NIWE wind-monitoring 
stations in the wind-rich regions of India with ERA5. 
There is some underestimation of point observations of 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 122, NO. 10, 25 MAY 2022 1148 

 
 

Figure 2. Comparison of climatology (average (1979–2019)) ERA5 wind speed with observation data from NIWE for the year 2014. a, Compari-
son of daily mean wind speed for 40 NIWE wind monitoring stations in wind-rich regions of India. b, Comparison of monthly wind speed pattern 
for a NIWE wind monitoring station, Devereddypalli, Andhra Pradesh. Red dot indicates the monthly median wind speed from 41 years of ERA5 
and vertical line shows the distribution. Although ERA5 underestimates wind speed, the seasonal pattern is captured accurately. 
 
wind speed in ERA5, which might result from spatial  
averaging of wind speed in the gridded dataset. ERA5 
captured the spatial pattern of daily mean wind speed with 
moderate accuracy (correlation coefficient of 0.58 with 
P-value ≈ 0). However, it is important to note that the aim 
of this study is to highlight the ability of the stochastic 
weather generator to model wind-power variability, and the 
tool presented here can be applied to a variety of weather 
variables. 
 ERA5 has outperformed ERA-Interim and MERRA-2 
consistently across several parts of the world and so this 
reanalysis has been recommended for local wind-power 
studies11. Molina et al.12 reported that ERA5 could repro-
duce the wind-speed spectrum over Europe. The authors 
noted that despite shortcomings, ERA5 provided a regular 
spatial and temporal wind distribution that is important 
for renewable energy studies12. Belmonte Rivas and Stof-
felen13 analysed the differences between ERA-Interim and 
ERA5 surface wind fields relative to Advanced Scat-
terometer (ASCAT) ocean vector wind observations, and 
found that ERA5 performed better than ERA-Interim in 
terms of mean and transient wind errors. 
 Figure 2 b compares the observed and ERA5 monthly 
wind-speed patterns for a NIWE wind-monitoring station, 
Devereddypalli, Andhra Pradesh. The red dot indicates 
monthly median wind-speed from 41 years of ERA5, while 
the vertical line shows the distribution. Although ERA5 
underestimates wind speed, the seasonal pattern is captured 
accurately. 

Mean wind speed, seasonal pattern and spatial  
correlation 

Simulations from IMAGE are able to well represent the 
mean wind speed over India. The validation of IMAGE 

simulations was performed for 40 locations, each having 
100 ensemble members that are as long as the input data, 
i.e. 41 years. A linear regression between the mean wind 
speed from the input data and IMAGE simulations was 
performed; the bias was small and R2 value was 0.99. 
This comparison is made in Figure 3 a, where the dots 
show the median values and vertical lines indicate the 
distribution of the ensemble members for each location. 
This distribution is narrow, indicating that each of the  
ensemble members closely approximates the mean wind 
speed. 
 Next, we assessed if IMAGE simulations could repre-
sent the spatial correlation of wind speed between various 
locations. We considered Dhanushkodi in Tamil Nadu as 
a reference location, and compared the spatial correlation 
coefficient between daily wind speed for ERA5 input data 
and IMAGE simulations between Dhanushkodi and each 
of the other 40 locations (Figure 3 b). Each of the dots in 
Figure 3 b indicates the median of the 100 ensemble 
members from the simulation plotted against the ERA5 
value, between Dhanushkodi and another location. The 
vertical lines show the distribution among the 100 ensemble 
members of the correlation coefficient, for each pair. 
These results demonstrate that IMAGE is able to success-
fully represent the spatial correlation of wind speed in its 
simulations. The R2 value of a linear regression between 
the correlation coefficients of input and simulated output 
was 0.99, and the bias was small. 
 Much of India experiences high wind speed during the 
summer monsoon months (JJAS – June, July, August and 
September). Figure 3 c shows the seasonal variation of 
wind speed at three locations indicated in Figure 1: Dhanu-
shkodi, Devereddypalli and Bassi. For each location, the 
solid lines indicate the ERA5 inputs while the dashed 
lines indicate distributions from the IMAGE simulations. 
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Figure 3. a, Comparison of mean wind speed simulated by IMAGE with ERA5 input dataset the R2 value is 0.99 and bias is small. Each 
point indicates median values for an individual location. The vertical bars show distribution across 100 ensemble members, each being as 
long as the input data (41 years). The x = y line is shown in black. b, Comparison of wind speed spatial correlation between each of 40 locations 
and Dhanushkodi, Tamil Nadu, as simulated by IMAGE, with corresponding correlations from ERA5 input dataset; the R2 value is 0.99. 
Each point indicates median values across 100 ensemble members, while vertical bars show the distribution. The x = y line is shown in 
black. c, Comparison of monthly average wind speed pattern simulated by IMAGE with corresponding values from the ERA5 input dataset 
at three high-wind locations: Dhanushkodi, Devereddypalli, Andhra Pradesh and Bassi, Rajasthan. 

 
 
The crosses and triangles show the ensemble medians of 
the monthly wind speed from ERA5 and IMAGE simula-
tions respectively, and the vertical bars indicate the distri-
bution in each case. The IMAGE simulation captures this 
seasonal variation quite well. 

Wind speed distribution pattern 

Wind speeds are expected to follow a Weibull distribu-
tion14. Figure 4 compares the probability distribution plot 
of the ERA5 input data for 41 years and IMAGE-simulated 
wind speed for 4100 years (4100 × 365 data points) for 
two locations, viz. Gudaparihar and Bassi. The red lines 
indicate that the Weibull distribution fits the appropriate 
shape and scale factor for the distributions. This shows 
that the IMAGE simulations could preserve the wind-
speed distribution. 

Return periods 

We estimated the return periods of different values of 
wind speed for both the wind-rich regions (boxes A and 
B) shown in Figure 1. Figure 5 a and b shows the return 
periods of different values of spatially averaged wind 
speed in box A (Rajasthan) and box B (South India). The 
red dots show the median of the return period based on 
ERA5 input data (41 years), while the blue dots show the 
simulated return period in 1000 years. Corresponding 
ranges are also indicated by the horizontal bars. The re-
sults show that the ERA5 dataset does not contain many 
instances of very high wind speed, owing to its limited 
length, and hence could not predict the return period values 
for these cases. However, such return periods can also be 

estimated from the IMAGE simulation. A similar result is 
observed in the case of very low wind speed. 
 This analysis of return periods is validated by the ob-
servation that the relatively frequent events with return 
periods much smaller than a year have similar distribu-
tions in both the ERA5 reanalysis and IMAGE simulations 
(Figure 5 a and b). Furthermore, in the past 41 years, in 
the ERA5 reanalysis, box A had a record average daily 
wind speed of 12.25 m/s only once and the median return 
period of this high wind speed has been predicted as 33 
years by IMAGE. Similarly, box B experienced only one 
record instance of average wind speed beyond 12.25 m/s 
in 41 years the ERA5 dataset and the median return period of 
this event was predicted as 60 years by IMAGE. For box 
B, IMAGE can simulate an extremely low wind speed of 
1.25 m/s with a return period of 30 years. This is outside 
of the observed range and illustrates the benefits of the 
model. 

Results 

Probability of low wind or wind drought in India 

In a future electricity grid in which the share of wind en-
ergy is large, the probability of low wind (wind drought) 
across large parts of the grid is a critical concern. Raja-
sthan and South India significantly comprise two distinct 
wind-rich regions in the country. Since wind development 
is likely to concentrate substantially in these regions, we 
examined the association between low-wind days in both 
of the regions. IMAGE simulations over a period of 1000 
years indicate that, on days when box A (Rajasthan) ex-
periences low wind on average (below 3 m/s), there is  
only 0–10% probability that locations in box B (South 
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Figure 4. Comparison of probability distribution and best-fit Weibull curves based on ERA5 and IMAGE. a, Gudapari-
har (Weibull shape factor = 3.19, scale factor = 5.31), based on IMAGE-simulated daily wind speed for 4100 years 
(4100 × 365 data points). b, Gudaparihar, Madhya Pradesh (Weibull shape factor = 3.19, scale factor = 5.31) from ERA5-
based 41 years of daily wind speed. c, Bassi (Weibull shape factor = 3.04, scale factor = 4.97); based on IMAGE simulated  
daily wind speed for 4100 years (4100 × 365 data points). d, Bassi (Weibull shape factor = 3.04, scale factor = 4.97); from 
ERA5-based 41 years of daily wind speed. 

 
 

 
 

Figure 5. Return period (x-axis) of daily average wind speed (y-axis) over (a) Rajasthan and (b) South India from ERA5 reanalysis and 
IMAGE simulations. The points indicate the median return periods, while horizontal lines show the distribution of return periods. 
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Figure 6. a, Fraction of days when wind speed is below 3 m/s in individual pixels across India when box A (shown in black) experi-
ences a wind low. Analysis is based on 1000 years of IMAGE wind speed simulation. Blue colour represents fewer days with wind 
drought. b, Fraction of days when wind speed is below 3 m/s in individual pixels across India, when box B (shown in black) experi-
ences a wind low. 

 
 
India) will have winds lower than 3 m/s (Figure 6 a). Low 
wind in box A occurs in 7% of the days in 1000 years. Simi-
larly, on the days when box B has low wind, with average 
below 3 m/s, there is only 10%–20% probability that indi-
vidual locations within box A will also have low wind 
(Figure 6 b). Low wind in box B occurs 6% of the time  
in 1000 years. Clearly, these two regions demonstrate a 
complementary behaviour from the perspective of wind 
drought. Hence, there is a possibility of avoiding grid-
wide wind droughts if regional grids in these two regions 
are themselves connected. This is illustrated further with 
the help of a case study. 

Case study 

Four sets of paired locations from box A (Rajasthan) and 
box B (South India) were chosen for the case study. As 
both boxes A and B demonstrate a complementary behav-
iour from the perspective of wind drought, these sets of 
pairs were chosen accordingly. Daily generation from one 
wind turbine was simulated for each location depending 
on the local wind speed. 
 
Set 1:  One grid having maximum mean wind speed in 

box A and another neighbouring grid. 
Set 2:  One grid with maximum mean wind speed in box 

B and another neighbouring grid. 
Set 3:  Grids with maximum mean wind speed in each of 

the boxes. 

Set 4:  Grids with the second highest mean wind speed in 
each of the boxes. 

 
We estimated the fraction of days with zero generation in 
the 1000 years IMAGE simulations, for the individual 
plants and a combination of the two plants, one in each of 
the chosen grids. In the case of set 1, the individual plants 
in Rajasthan had 11% and 15% of the days with zero 
generation respectively, while the combination of these 
two plants had 10% of days with zero generation. Simi-
larly, in the case of set 2, the individual plants in South 
India had 11% and 9% of the days with zero generation 
respectively, whereas the combination of these two plants 
had 5% of days with zero generation (Table 1). These two 
case studies demonstrate that in the case of wind plants 
situated nearby, such as in a neighbouring grid, their aggre-
gate generations do not show much improvement as 
measured by the fraction of days with zero generation. 
This occurs because low-wind days tend to coincide for 
the grids that are located in the same box or within small 
regions. 
 The next two sets (3 and 4) show the benefits that can 
be achieved by combining wind plants that are located in 
different regions (box A – Rajasthan and box B – South 
India). In the case of set 3 (combination of grids with 
maximum mean wind speed from each of the boxes A 
and B), we estimated the fraction of days with zero gene-
ration in the 1000 years IMAGE simulations for each  
location as well as their combination. We found that 
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while the plants in boxes A and B experienced 11% and 
9% of the days with zero generation respectively, the 
combination of these two plants experienced only 1% of 
the days with zero generation. Set 4 considers the combi-
nation of grids with the second highest mean wind speed 
from each of the boxes A and B. Similar estimations were 
made for set 4. We found that for set 4, while the individual 
plants had 15% and 11% of the days with zero generation 
respectively, their combination had only 2% of the days 
with zero generation (Table 1). For cases 3 and 4, improve-
ment in the fraction of days with wind drought for the 
combined generation is evident because low-wind days in 
each of the two regions (A and B) coincide less frequently. 
 Next we examined the reduction in the fraction of ‘no 
generation’ days. Figure 7 depicts the results. After iden-
tifying 20 grids with the highest mean wind speeds in 
boxes A and B, we simulated the aggregate generation from 
all possible combinations of the four grids chosen from 
these 20 grids. The boxplot indicates the reduction in fra- 
 
 
Table 1. Impact of aggregation of simulated wind generation from 
different plants on the fraction of days with ‘no generation’ in IMAGE 
simulations of 1000 years. Set 1: Plants located in box A; moderate im-
provement during ‘no generation’ days. Set 2: Plants located in box B; 
moderate improvement during ‘no generation’ days. Set 3: Plants located 
in grids with maximum mean wind speed in boxes A and B. Set 4: 
Plants located in grids with the second highest mean wind speed in 
boxes A and B. In the last two cases, improvement is evident because  
  low-wind days in each of the two regions coincide less frequently 

 Percentage of days with ‘no generation’ in 1000 years 
 

Set  Plant 1 Plant 2 Combination 
 

1 10 14 9 
2 11  8 5 
3 10  8 1 
4  14 11 2 
 
 

 
 
Figure 7. Reduction in fraction of zero generation days in 1000 years 
due to aggregation of different combinations of four wind plants from 
different boxes (A and B). Combination of plants from different regions 
demonstrates larger reduction in fraction of ‘no generation’ days by aggre-
gation of generation. 

ction of zero-generation days in 1000 years due to aggre-
gation of different combinations of four wind plants from 
different boxes (A and B). Combination AAAA in Figure 
7 has all four grids from box A, while the combination 
AABB has two grids from each box (A and B). The bold 
black line is the median for the improvement for each set 
of combinations. The top and bottom of the boxes indicate 
the 75th and 25th percentile values for each combination 
respectively. Combination of plants from different regions 
(AAAB, AABB, BBBA) demonstrates larger reduction 
(0.13–0.14 (median)) in the fraction of ‘no generation’ days 
by aggregation of generation compared to plants located in 
the same region (AAAA, BBBB) (reduction of 0.1). 

Discussion and conclusion 

The IMAGE weather generator has been validated for 
wind-power studies over India. It could reproduce the sta-
tistics of ERA5 reanalysis over the country. We tested the 
output for 40 grid locations, chosen because of their 
proximity to in situ wind measurements from NIWE. The 
weather generator could correctly reproduce the mean 
wind and seasonality. The key advantage of the underlying 
model is that it can also capture the pairwise temporal 
correlation between sites. We confirmed that the correlation 
between sites is correctly captured by IMAGE. The model 
was then trained on wind-speed time-series from ERA5 
reanalysis wind data to gain insights into the correlated be-
haviour of wind droughts in the important wind-resource 
regions of Rajasthan and South India. Our emphasis here is 
on highlighting the ability of a novel tool to study renew-
able drought over India, using the relevant gridded data-
sets, and not limited to ERA5. Other datasets such as the 
regional high-resolution analysis (IMDAA) can also be 
used as inputs to IMAGE. The benefit of a stochastic 
weather generator is that it can simulate out-of-sample 
events to get a more robust estimate of, for example, 100 
years and other low-probability events. A 1000-yr simu-
lation of daily wind speeds allows us to quantify the like-
lihood of wind droughts anywhere in India. 
 A potential implication of such studies is that they can 
be used to quantify the benefits of strong grid intercon-
nections across weakly correlated regions. In our case 
study, we found that the risk of a wind drought in one re-
gion could be substantially mitigated by supplying wind 
generation from another region. We found cases where 
the number of days with no power generation could be 
dramatically reduced by a factor of 10, if the regions 
were interconnected. Stochastic models have long been 
used by hydrological community15,16. The present study 
shows that it can prove useful for wind risk assessment in 
India and elsewhere. 
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