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Biclustering plays a vital role in the analysis of gene 
expression data. The biclustering technique was pro-
posed in the year 2000. For the past two decades, several 
biclustering methods and applications have been used 
to improve the quality to make sense of large microar-
ray datasets. To find a highly correlated set of genes 
under specific conditions, usually one uses a measure 
or cost function. In such cases, it does not indicate that 
biclustering methods base their search on evaluation 
measures to identify the coherent biclusters. However, 
there is a substantial deviation between exploration in 
biclustering techniques and qualitative measure. Here, 
we present a review of different biclustering methods 
with the use of the most efficient measure called mean 
square residue within the search method. This review 
will guide researchers to fruitfully investigate their large 
microarray gene expression data and give meaningful, 
novel insights with greater efficiency. 
 
Keywords: Biclustering, machine learning, mean square 
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TECHNOLOGICAL improvement in the field of bioinformatics 
offers a complete opportunity to the researchers for the 
genome analysis of the living species1. DNA microarray 
technologies have made it feasible to observe the transcrip-
tion levels of more than 10,000 genes in a single investi-
gation. Figure 1 depicts the gene expression matrix. Usually, 
the outcome of the microarray technology is represented 
in a numerical matrix known as the two-dimensional data 
matrix. Rows and columns represent genes and samples res-
pectively2. The column vector of a matrix is known as the 
expression pattern of the gene and the row vector as the 
expression profile of the sample. Each entry of this two-
dimensional matrix refers to the expression level of a gene 
under a specific condition, and is denoted by an integer. 
 Machine learning techniques such as frequent pattern 
mining, classification and clustering play vital part to detect 
the set of similar gene expression profiles from microarray 
data. Clustering is the process of segmenting data points 
that have many dimensions (multi-dimensional data) into 
finite and novel disjoint groups3. In microarray gene ex-
pression data analysis, the process of unsupervised learning 
is one of the most utilized machine learning techniques for 

mining significant biological patterns4. Clustering of gene 
expression data helps us to find similar patterns underlying 
the genes over a set of samples, such as biological condi-
tions. The ultimate aim is to detect the hidden pattern that 
shows the change in expression levels under specific con-
ditions which include co-expressed gene groups. If a couple 
of rows depict correlated expression profiles across the 
columns, probably this reflects some kind of interaction 
and recommends a universal pattern of regulation. In micro-
array data analysis the cluster process can be organized into 
(i) gene-based clustering; (ii) condition-based clustering 
and (iii) biclustering (Figure 2). 
 The process of grouping a set of co-regulated genes is 
referred as gene-based clustering5. Here, genes and condi-
tions are mapped into objects and features. Condition-based 
clustering is the clustering of the substructure of the condi-
tion under all the rows; it regards the conditions as objects 
and genes as the features. Conversely, most of the genes 
must be relevant only under a subset of samples. This is 
needed for several bioinformatics use cases; for example, 
the cellular processes are active only under a subset of con-
ditions. Hence, a process needs to be grouped with a set of 
genes under a set of conditions concurrently. Thus, biclus-
tering is a two-dimensional clustering problem where the  
 
 

 Con. 1 Con. 2 … … Con. M 

Gene 1 GEx1,1 GEx1,2 … … GEx1,M 

Gene 2 GEx2,1 GEx2,2 … … GEx2,M 

… … … … … … 

… … … … … … 

Gene N GExN,1 GExN,2 … … GExN,M 
 

Figure 1. Gene expression matrix. 
 
 

 
 

Figure 2. Types of microarray data clusters. 
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genes and conditions are grouped simultaneously. It has 
an excessive capacity of finding marker genes that are asso-
ciated with certain tissues or diseases6. In 1970, Hartigan7 
introduced the term ‘biclustering’; however, it was first 
applied to gene expression data analysis by Cheng and 
Church8 in 2000. Biclustering is also called subspace clus-
tering, two-way clustering, co-clustering or bi-dimensional 
clustering. 
 Extracting co-regulated genes under a specific group of 
samples from the large microarray data is a computation-
ally intensive problem compared to clustering9. Moreover, 
it has been proven as an non-deterministic polynomial-
time (NP)-hard problem8. Therefore, most of the biclustering 
methods for bicluster analysis are based on nature-inspired 
techniques such as swarm intelligence, evolutionary and 
multi-objective evolutionary frameworks. To do a global 
search in the solution space, the development of both a 
good fitness measure and a suitable heuristic method is 
needed for determining quality biclusters in an expression 
matrix. All of them use mean square residue (MSR) as the 
cost function. It is the most widely used measure for de-
tecting coherent biclusters from the microarray expression 
data, and is the only metric used in more than 50% of appro-
aches by different researchers since 2000. More than 40 
techniques used MSR to find highly coherent biclusters. 
As per the biological myth, attentiveness are available in 
discovering two-dimensional clusters10. Therefore, to eva-
luate the subset of rows and columns simultaneously within 
the matrix as a correlated bicluster, MSR is being adopted. 

Expression pattern-based bicluster structure 

Different kinds of bicluster patterns have been described 
by Madeira and Oliveira11 based on which genes are simi-
lar under the experimental conditions. They have identified 
four well-known bicluster patterns that in the gene expres-
sion matrix m × n (ref. 11). These are listed below. 
 
Constant pattern: Consider a matrix which is referred as 
MIJ. This matrix is having the subsets of rows (genes) and 
subsets of columns (conditions)12. 
 
 aij = µ. (1) 
 
Constant pattern concerning rows (genes): Let a matrix 
MIJ have a constant value on every row. It indicates that 
the expression levels vary from gene to gene. This pattern 
can be represented using additive and multiplicative ex-
pressions 
 
 aij = µ + βi or aij = µ × αi. (2) 
 
Constant pattern concerning columns (conditions): Let a 
matrix MIJ have a constant value on every column. It indi-
cates that the expression levels vary from sample to sample. 

This pattern can be represented using additive and multi-
plicative expressions 
 
 aij = µ + βj or aij = µ × αj, (3) 
 
Coherent pattern: In this type of bicluster pattern (either 
additive or multiplicative model), each row or column can 
be obtained by adding or multiplying a constant to another 
row or column. The following expression is used to obtain 
the resultant matrix 
 
 aij = µ + βi + βj or aij = µ × αi × αj. (4) 
 
In eq. (4), (1 ≤ j ≤ J) and (1 ≤ i ≤ I) are denoted as a con-
stant which is available in additive models for each row i 
and column j; similarly (1 ≤ i ≤ I) and (1 ≤ j ≤ J) are also a 
constant which used in multiplicative models. Moreover, 
if the rows of the matrix are upregulated or down-regulated 
under the columns irrespective of considering their actual 
expression values, then it is called a coherent evolution-
based bicluster. Mathematically, this kind of bicluster 
model is difficult to express12. Figure 3 depicts the perfect 
bicluster patterns for the additive model. 

Biclustering approaches based on evaluation 
measure – MSR 

Mean squared residue (MSR) is termed as a subgroup of 
rows with a novel and hidden pattern across subsets of 
samples and it was implemented on the microarray data by 
Chenga and Church in 2000. Their objective was to extract 
submatrices from the large gene expression data with an 
MSR value lower than a given minimum constraint. So, 
they derived a naive greedy algorithm for finding the bi-
clusters. It recursively deletes the row or column when the 
residual value is greater than a threshold. This approach 
finds a bicluster during the entire process. 
 To accelerate the biclustering process and address the 
random inference of the values in the data matrix, Yang et 
al.13 were presented a probabilistic move-based algorithm 
named FLexible Overlapped biClustering (FLOC). This 
approach begins with some of the seeds which are called 
as initial biclusters and to find the coherent bicluster, this 
process continues until it meets the specific threshold. The 
algorithm performs two-dimensional clustering (row and 
column) iteratively, then it adopts the divide and conquer 
methodology. The row count in the bicluster is fixed during 
the execution. Hence larger biclusters cannot be considered. 
 Zhang et al.14 proposed a scheme of deterministic biclu-
stering with frequent pattern mining (DBF)14 which is 
similar to FLOC. It is probabilistic algorithm that gives 
better accuracy than the method one introduced by Cheng 
and Church8. DBF is implemented in two phases. In the 
first phase, frequent pattern mining is used to find a group 
of highly correlated patterns. The inconsistent pattern bet-
ween two consecutive conditions is represented as an item 
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Figure 3. Types of bicluster patterns. 
 
 
and each gene is considered as a transaction. Next, iterati-
vely by adding one or more rows or columns, the size of 
the bicluster is enlarged without compromising the quality. 
The DBF algorithm finds the final bicluster in the determi-
nistic time, whereas FLOC biclusters are nondeterministic. 
 Cheng and Church8 have mentioned that finding a co-
herent bicluster from microarray data is a kind of NP-hard 
problem. Bleuler et al.15 adopted the meta-heuristic natural 
evolutionary process in the biclustering algorithm. They 
first applied genetic algorithm (GA) to biclustering, whereby 
initialization of random solutions and the encoding of bi-
nary value for the chromosome representation are done. A 
general GA operator called environment selection is used 
to avoid any redundancy of the resulting biclusters. Re-
production operators such as uniform crossover and bit 
mutation are adopted and MSR is applied as an objective 
measure. 
 To overcome the random interference issue associated 
with the technique of Cheng and Church8, Chakraborty16 
proposed an approach is called ‘biclustering of gene ex-
pression data by simulated annealing’. This method differs 
from the Cheng and Church (CC) technique where rows 
and columns were excluded from the microarray matrix to 
extract a bicluster using simulated annealing. It adds rows 
and columns until their residual score attains a given speci-
fic minimum MSR threshold value. This approach is pro-
mising in terms of controlling the required computational 
cost to define coherent bicluster. There is no significance 
in the resultant bicluster because a small size of the pattern 
is extracted for a high residual score. 
 Most of the heuristic-based biclustering procedures con-
sider MSR value as one of the important parameters to 
tune the quality of the pattern. This constant value has an 
impact on the size as well as quality of a bicluster. It is 
complicated to decide the priority. Chakraborty17 has intro-
duced a biclustering technique which mimics the behaviour 
of GA, but differs with respect to population initialization. 
K-means clustering is used to define the initial chromo-
somes. A GA search most specifically finds a maximal set 
of biclusters. Since to only the best chromosome persists 
during genetic selection, it could be difficult to get a collec-
tion of different, non-redundant biclusters. 
 Divina and Aguilar-Ruiz18 proposed a variant of GA-
based biclustering, the sequential evolutionary BI clustering 

approach (SEBI). The term ‘sequential of the evolutionary 
algorithm’ refers to how only one bicluster is obtained per 
run. A sequential principle is carried out to get several bi-
clusters from the evolutionary process. Additionally, to 
minimize overlapping among the different solutions, a 
weight matrix is used. Initially, the weight matrix is zero 
and it will be changed every time a bicluster is returned. 
The ultimate aim of this method is to obtain maximal bi-
clusters with a residual value lower than the specifically 
mentioned constraint. Even so, SEBI works well for the 
distinctive place to detect a tiny pattern. 
 Mitra and Banka19 proposed a method based on pareto 
dominance, which is called a multi-objective evolutionary 
algorithm (MOEA). This technique differs from the single-
objective optimization problems in terms of considering 
more than conflicting objectives such as volume and cohe-
rence index (CI) of the bicluster in addition to the residual 
value. A local search strategy-based CC algorithm is used 
for the entire population at the commencement of every 
iteration. A measure named crowding distance is used to 
maintain diversity in the population. This approach has 
the advantage of being able to detect a bicluster with maxi-
mum size for a given constraint. Yet, this approach fails to 
converge and computational complexity is high in order to 
find the best solutions. 
 Liu et al.20 introduced a biclustering algorithm based on 
the use of an estimation of distribution algorithms (EDAs) 
together with an evolutionary approach (GA) to avoid slow 
convergence rate and reduce the computation time. It is 
working like flow mechanisms which are the part of natural 
selection algorithms. The populations for the new genera-
tion are formed as a logical hierarchal structure. However, 
dependency on the solution is depicted clearly via the mul-
timodel search space. Finally, this method converges into 
the local optimum solution. 
 Divina and Aguilar-Ruiz21 presented sequential multi-
objective biclustering (SMOB), which adopts a sequential 
strategy. The algorithm mimics the behaviour of MOEA. 
The weighted sum of the residue score, row variance and 
size are the parameters to decide the objective function. 
Moreover, the fitness solution is based on the Pareto front 
method19. So, it simultaneously reduces the number of para-
meters of the algorithm. Nevertheless, compared with 
MOEA, this method returns a limited size of the bicluster. 
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 To find biclusters using spectral clustering principles and 
also find overlapping structures, Cano et al.22 developed a 
procedure that follows the steps of one-dimensional clus-
tering with singular value decomposition (SVD) named 
possibilistic spectral biclustering algorithm (PSB). Theo-
retically, this method obtains overlapping biclusters based 
on fuzzy technology and spectral clustering. In the following 
way, excessive overlapping among the biclusters is mini-
mized: initially, check whether a set of existing efficient 
biclusters is more overlapped than a quantum of another 
set of a bicluster. The worst bicluster can be replaced with 
a previously generated bicluster. Choose the two overlap-
ped biclusters which are available in the set, if any over-
lapping occurs. MSR value of the biclusters of PSB is 
better than those of the FLOC and CC algorithms. How-
ever, the overall quality of the bicluster is based on the 
number of eigenvectors. 
 A fuzzy set-based biclustering method named multi-
objective fuzzy biclustering algorithm (MOFB) was pro-
posed by Maulik et al.23. In two-dimensional microarray 
data, many of the biclusters may not disjoint; typically the 
boundaries of the biclusters overlap as rows and columns 
may belong to various co-clusters with unique member-
ship degrees. Therefore, incorporating the fuzzy concepts 
is useful for detecting such overlapping biclusters. The 
objective of MOFB is that it concurrently minimizes the 
MSR value and maximizes the volume of bicluster and 
gene variance. To encode a group of biclusters in a string, 
the author a new variable string length encoding mecha-
nism has been proposed. The fuzzy K-medoids algorithm 
is used to cluster the dataset into K partitions. The accuracy 
of MOFB for the extracted bicluster is better than the other 
algorithms in terms of MSR value and overall coverage. 
However, its computational cost is relatively high compa-
red to the Cheng and Church algorithm. 
 A greedy technique based on a local search strategy bi-
clustering method, i.e. random walk biclustering (RWB) 
was introduced by Angiulli et al.24 to avoid premature 
convergence. This approach finds one bicluster at a time. 
Initially, the process begins with a random solution, then 
instantly it adopts successive transformations to obtain a 
locally optimal solution that improves the overall perfor-
mance of the bicluster in terms of MSR, gene variance and 
volume. The ultimate aim of the transformation is to mini-
mize MSR or maximize either the volume of the bicluster 
or the row variance. The algorithm walks randomly based 
on the probability value given by the user to get rid of local 
minima. Moreover, two distinct frequency thresholds were 
used to control the degree of overlapping rate of the ex-
tracted biclusters. 
 Gremalschi et al.25 presented a different greedy approach 
to tackle control bicluster overlapping of the extracted bi-
cluster. To handle this pitfall and accelerate the quality of 
bicluster with minimum MSR, the authors proposed a pair 
of novel MSR-based biclustering methods. Initially, this 
technique finds (m × n)-bicluster with minimum MSR and 

is known as a dual biclustering algorithm. Next, the dual 
biclustering algorithm is combined with quadratic progra-
mming (QP) which will detect an optimal co-cluster sen-
sibly because the size of the matrix is reduced by the dual 
biclustering method. Changing the threshold frequently 
can help reduce overlapping among the biclusters. 
 Based on the strategy of immune response and the local 
optimum strategy, a simple multi-objective immune biclu-
stering (MOIB) method proposed by Liu et al.26. The objec-
tive of this algorithm was to find more than one meaningful 
bicluster with maximum size for low MSR value in the 
microarray matrix. The solution diversification is improved 
by combining the crowding distance strategy and ε-domi-
nance. The crowding distance value of a particular solu-
tion can be computed by the average distance of its two 
neighbouring solutions. The mutation parameter is used in 
the solution to add either a row or a column and exclude 
one element, either column or row. The whole number of 
clones is referred as six multiply with the size of the anti-
body population. Moreover, there is no overlapping con-
trol mechanism adopted among the reported solutions. 
 The multi-objective ant colony optimization algorithm 

(MOACO) is used more often than other heuristic algori-
thms while solving the discrete path multi-objective optimi-
zation problem27. Liu et al.28 proposed an application of 
ant colony optimization to the microarray data. The multi 
objective any colony optimization based biclustering incor-
porates local search strategies to find the average maxi-
mum biclusters with lower MSR and higher row variance. 
Here, a separate pheromone table is available for every ant 
because biclustering is not a unimodal problem. It requires 
that a few diverse solutions be given at the same time. The 
main drawback of this approach is poor convergence due 
to a decentralized processor to guide the ant system to-
wards good solutions. 
 Liu et al.29 presented a biclustering method on the basis 
of particle swarm optimization (PSO) as the neighbour 
search strategy along with the crowding distance. This kind 
of logic can enhance the convergence speed to the Pareto 
front and is also promising for a diversity of solutions. 
The authors focused on three objectives, namely homoge-
neity, row variance and size of the biclusters, which were 
satisfied concurrently by applying these fitness functions in 
the optimization framework. Many complicated optimiza-
tion and search problems use PSO to reveal its speed in 
providing solutions. Even so, there is difficulty in selecting 
the probable value of inertia weight and constant accelera-
tion coefficients. 
 A biclustering technique that is based on the multi-objec-
tive multi-population artificial immune network (MOM-ai-
Net) was proposed by Coelho et al.30. This method is 
inspired by the logic of clonal selection and the theory of 
immune network is incorporated into the original aiNet 
algorithm. After an initialization step, it consists of indi-
viduals randomly generated with just one column and row. 
All the solutions are grown by mutating and cloning the 
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individuals. This approach includes three types of mutations 
namely insert one row and column, remove one element, 
from the row and remove one element from the column. 
After a certain number of iterations, within each popula-
tion, this method gives all the non-dominated individuals. 
Nevertheless, there is no biological proof for the extracted 
biclusters and return trivial biclusters. 
 Gallo et al.31 presented a novel memetic approach with 
a local search for microarray data biclustering that uses 
the multi-objective based evolutionary algorithm (MOEA), 
and it was employed in the PISA platform. In this approach, 
the optimization process has two modules31. The first phase 
has the apparatus required for the optimization problem. 
The next module holds the components of an optimization 
process that are independent of the optimization problem. 
The performance evaluation is done with MOEA on a 
couple of widely used benchmark datasets. The proposed 
method was competent to acquire maximum size biclusters 
with a high receptivity to the independent parameter. 
 In the population-based meta-heuristic algorithm, a fixed 
size of the population has the greatest impact on computa-
tional cost. Therefore, to mine coherent patterns from micro-
array data, Liu et al.32 have proposed a novel dynamic 
multi-objective immune optimization biclustering (DMOIOB) 
algorithm, which adapts dynamically to adjusting the pop-
ulation size strategy. This method is inspired by the be-
haviour of the MOIB, and the sigma method is adopted to 
find the global best solutions. Moreover, the population 
declining strategy is used to restrict the population size so 
that it does not to grow excessively. However, it has higher 
computational cost compared to greedy approaches. 
 Joung et al.33 presented a probabilistic coevolutionary 
biclustering algorithm (PCOBA) that generates clusters of 
rows and columns in a two-dimensional matrix simultane-
ously, based on coevolutionary searching and probabilistic 
learning. This strategy is most appropriate since it can per-
form clustering without specific constraints. Additionally, 
probabilistic learning is used to get statistical information 
on two populations. In this way, it improves the ability to 
search for the optimum value. The quality of a bicluster is 
examined through a suitable objective function. The low 
fitness value depicts the highly correlated bicluster and it 
should have a low residual score with the maximal size 
bicluster. Nevertheless, the performance of the proposed 
PCOBA is fully dependent on the control parameters. Simi-
larly, a biclustering method that adopts the evolutionary 
strategies with tree-based search called condition-based 
evolutionary biclustering (CBEB) reported by Huang et 
al.34. The drawback of this method is that it fails to gener-
ate the multiplicative model biclusters. 
 Ayadi et al.35 proposed an iterative local search appro-
ach for the biclustering problem is known as pattern driven 
neighbourhood search (PDNS). Initially, to transform the 
raw input data matrix into a behaviour matrix, normaliza-
tion is used. Next, consecutive local search processes are 
considered to detect patterns of information. Since this 

approach utilizes a divide and conquer strategy to make 
exploited initial biclusters with high accuracy, it returns 
one bicluster for the entire run. So, to find more than one 
bicluster, the algorithm must be executed more times with 
different initial populations. Moreover, the authors consi-
dered initial biclusters from the outcome of two familiar 
methods. However, there are no mechanisms were adopted 
to control overlapping among the final deliverables. 
 To extract more than one large-sized correlated biclusters 
from the complex microarray dataset, Liu et al.36 proposed a 
multi-objective dynamic population shuffled frog-leaping 
biclustering (MODPSFLB) approach. This algorithm in-
corporates a dynamic population and ε-dominance strategy. 
It uses crowding distance on the shuffled frog-leaping algo-
rithm. Frogs are represented as a feasible solution in the 
search space. To preserve Pareto optimal solutions, it adopts 
computation of crowding distance and the ε-dominance 
relation. Hence, each new frog is generated as a popula-
tion based on the strategy of the dynamic population at 
every next iteration. However, it has a higher computational 
cost compared to the algorithm of Cheng and Church8. 
 Many researchers have implemented biclustering algo-
rithms based on evolutionary techniques; the use of a gene-
ral crossover concept does not extract highly correlated 
genes. Therefore, the biclustering algorithm is based on a 
new crossover method called EBACross, proposed by 
Maatouk et al.37 for the specific biclustering of gene ex-
pression data. Standard deviation is applied to check 
whether the conditions belong to the same cluster or not. 
However, it possibly takes a long time to discover the cohe-
rent bicluster on large inputs. 
 Biclustering-based binary particle swarm optimization 
(BPSO) was proposed by Li et al.38 and was found to be 
similar to the crowding distance-based multi-objective 
PSO biclustering28. However, they differ in the objective 
function, and BPSO focuses only on computing MSR. To 
improve the search efficiency of BPSO, it incorporates a 
pattern-driven local search operator. Initial bicluster is 
generated from the particle positions using a fixed-size  
binary string with a part for genes and the other for condi-
tions. However, the MSR threshold plays an important 
role in deciding the size of the bicluster. 
 Inspired by the properties of the black hole, stellar-mass 
blackhole optimization (SBO) has emerged as a computa-
tional paradigm that applies the mass of the black hole 
principles to problem-solving in a wide range of areas. 
Balamurugan et al.39 presented a nature-inspired algorithm 
for biclustering based on the concepts of absorption and 
emission. It is constituted by sequences of absorption, 
emission, coalescing and vanishing steps. The individuals 
who got success in new characteristics are getting the sur-
vival. It is based on the concept of ‘strong survive and the 
weak perish’. The Jaccard coefficient distance measure is 
used to control the overlapping between the biclusters. 
The biological significance of the cluster genes can be veri-
fied using the gene ontology (GO) database. 
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 Balamurugan et al.40 derived their subspace clustering 
method based on the contribution of Nelder–Mead (NM) 
together with differential evolution (DE) as the neighbor-
hood search strategy41, which increases the convergence 
speed and also guarantees diversity of solutions. The NM 
procedure for high-dimensional data may reach premature 
convergence due to its poor ability to control coordinate 
moves in the solution space; also, it works well only for 
the unimodal problem. Hence, the modified Nelder–Mead 
(MNM) takes the median rather than the mean of the co-
ordinates, and the evolutionary principle is adopted before 
performing the shrinking operation. Bicluster volume and 
MSR requirements are often conflicting here; for instance, 
the larger bicluster is more probable and has a higher 
MSR value. However, larger biclusters that have low MSR 
values are preferred. 
 In recent years many binary versions of the biclustering 
algorithm have failed to deal with the large size of data; 
during the clustering process, occurrence of more irrele-
vant rows or columns may lead to poor performance in 
clustering. Therefore, to improve the performance of the 
biclustering algorithm, Zhu et al.42 have proposed an algo-
rithm, which combines the features of fuzzy member matrix 
and comprehensive evaluation in fuzzy mathematics with a 
multi-objective optimization algorithm (MOFM). An im-
portant generalization principle applied in the fuzzifica-
tion of algebraic operations is the closure property. To 
minimize the MSR value, a single point delete method is 
used, which deletes the rows or columns with maximum 
MSR. 
 Shuffled cuckoo search with the Nelder–Mead (SCS-
NM) technique has been implemented43 and it is similar to 
the Cuckoo Search with Mutation biclustering algorithm44. 
Both perform an exploration search based on the cuckoo 
search strategy and yield a set of eggs in the last popula-
tion as output. However, they differ in generating a cuckoo 
egg. This clutch contains three eggs in each nest instead  
of a single egg and also to initiate diversification in the 
search space, it shuffles the eggs into a new search space 
after a certain number of epochs if the solution does not 
change. 
 Huang et al.45 have recently introduced a technique using 
GA together with hierarchical clustering. To detect biclusters 
more proficiently in such a large search space, this bi-phase 
evolutionary architecture is used. It has two populations, 
i.e. a population of biclusters and a population of columns 
and rows grow in two phases which interacts with each 
other. On the other hand, traditional evolutionary biclus-
tering algorithm uses single population structure. Cui et 
al.46 presented a nature-inspired hybrid biclustering algo-
rithm that is inclusive of a binary artificial fish swarm47 

with a binary simulated annealing algorithm (BAFS–BSA–
BIC). In BAFS, every fish population is denoted as a boo-
lean string instead of traditional values. But in simulated 
annealing the solution is represented in a binary form to 
process the large gene expression data matrix. 

Discussion and conclusion 

This article is the outcome of a comprehensive analysis of 
various available strategies for subspace clustering of micro-
array data. Table 1 summarizes the objective of the most 
widely used biclustering methods based on the evaluation 
measure MSR, together with the used datasets and the cor-
responding references. This present study considers a list 
of 41 subspace clustering methods. It paves a way for re-
searchers to understand the evolution hierarchy and facili-
tates new investigators to start with the right initial point 
in the domain. From Table 1, it can be consequent that 
modern exploration on biclustering is being engrossed more 
based on the quality measure MSR. This tendency is created 
because of the managerial metaheuristics through a residual 
resource. However, the search policy does not create any im-
pact on the method validation. Bio-inspired approaches for 
subspace clustering creates the utmost reconnoitered do-
main within stochastic schemes. 
 The dimension and complexity of raw clinical samples 
are the ultimate objectives for researchers to develop bi-
clustering algorithms. Several use-cases of the bicluster-
ing algorithm are done on microarray expression data for 
bioinformatics research such as protein network analysis,  
accurate diagnosis, treatment planning, prognosis and drug 
design. Cheng and Church8 implemented 2D clustering to 
a couple of microarray data matrices, namely yeast cell 
data and the lymphoma microarray data. Yeast data have 
2884 rows and 17 samples, while 4026 genes and 96 sam-
ples are available with the human B-cells data. Later, most 
of the researchers have done biclustering on the yeast  
data. The dataset, namely Arabidopsis thaliana has 1000 
selected genes under 153 samples. 
 Angiulli et al.24 developed a technique for the most 
widely used couple of matrices covering cancer data: the 
dataset contains 181 tissue samples, defined by 12,533 
genes which are known as lung cancer; the dataset leukemia 
collected 7129 genes from 72 acute leukemia patients. The 
yeast Saccharomyces cerevisiae (yeast stress) dataset con-
sists of 2993 genes and includes 173 different samples 
such as amino acid starvation, shock and nitrogen source 
deletion used by several approaches such as PDNS and 
EBACross. The rat CNS dataset has nine tissue samples 
defined by 102 genes. Zhu et al.42 applied MOFM to a mice 
protein expression dataset with 1080 measurements and 
51 proteins. BAFS-BSA also considered the Mice Protein 
expression dataset used by MOFM. Recently, hybrid 
swarm intelligence BAFS-BSA method for co-clustering 
has been implemented on four datasets, namely cdc_15, 
complete_DTT, Mice Protein expression dataset and elu-
triation. 
 The biclustering of microarray data use-case is NP-hard8. 
So, the biclustering methods must balance the quality of the 
extracted bicluster and the cost of computation. Some res-
earchers have mentioned the computational cost of their 
approaches. However, this information is not useful 
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Table 1. Mean square residue (MSR)-based biclustering algorithms 

Method            Dataset Pros Cons 
 

CC8 Yeast (2884 × 17), Automatic finding of similarities in a subset of attributes High time complexity 
  lymphoma (4026 × 96) Grouping of genes and conditions. 

Overlapped grouping for representing the genes in a  
better manner. 

Biclustering does not need the  
computation of overall similarity  
between genes. 

FLOC13 Yeast (2884 × 17) Proposed a new algorithm named probabilistic algorithm 
which is used to incorporate null values in the bicluster 
model. 

Temporary blocking of certain actions 
which are violating the biclustering 
process. 

  It is able to identify a set of k possible overlapping  
biclusters simultaneously. 

Larger biclusters may not be  
considered. 

  Low cost  
DBF14 Yeast (2884 × 17) Used to generate good quality biclusters which is based  

on frequent pattern mining. 
Quality of the created biclusters is not 

better than the method proposed here. 
  Refining the biclusters by adding more genes.  
Bleuler-B15 Yeast (2884 × 17),  

Arabidopsis thaliana 
(1000 × 153) 

Reduces the requirement of additional run-time  
resources. 

Quality of the created biclusters is not 
better than the method proposed  
here. 

  The quality of the biclusters is comparatively improved 
when compared to the methods which use the greedy 
strategy alone. 

 

SA-B16 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

Presented the method to find out the high-quality  
bicluster seeds 

Computational cost is bit high. 

  After finding the quality bicluster seeds, more genes are 
added to it. 

 

GA-B17 Yeast (2884 × 17),  
lymphoma (4026×96) 

Used greedy algorithm which is embedded as a local  
search procedure to find the best biclusters. 

It is difficult to get a variety of  
non-redundant biclusters. 

  Yields good results when compared to the lymphoma and 
yeast datasets. 

 

SEBI18 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

Uses multi-objective-based evolutionary algorithms for 
finding the best biclusters. 

The biclusters are found by a higher  
row variance. 

  Used to find quality biclusters with large variations. The size of the biclusters is limited. 
MOEA19 Yeast (2884 × 17),  

lymphoma (4026 × 96) 
It uses simple local search algorithms. Computational complexity is high. 

  Detects a bicluster with maximum size for a given  
constraint. 

 

EDA-B20 Simulated matrix  
(200 × 60) 

Introduced a biclustering algorithm based on the use of  
estimation of distribution algorithms together with an 
evolutionary approach genetic algorithm to escape from 
slow convergence rate and reduce the computation time. 

Dependency on the solution is  
depicted clearly via the multimodel  
search space. 

PSB22 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

Identified the potentially overlapping biclusters. The overall quality of the bicluster is 
based on the number of eigenvectors. 

MFOB23 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

The residual size is minimized. Time complexity is very high. 

  Cluster size and expression profile variance are maximized.  
  Multiple biclusters are encoded into a single string.  
  Generates a set of biclusters in a single run.  
RWB24 Lung cancer (12533 × 181), 

colon cancer (2000 × 62) 
Identified the overlapped biclusters. 
Poor local minima is disabled using a local search  

strategy. 

The algorithm walks randomly based  
on the probability value given by the  
user to get rid of local minima. 

DB-QP25 Yeast (2884 × 17) The size of the matrix is reduced in order to find the  
optimal bicluster. 

 

  Time complexity is low  
MOIB26 Yeast (2884 × 17),  

lymphoma (4026 × 96) 
Dynamically adjust the population size strategy. Computational cost is high. 

MOACOB28 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

It is used to find more than one meaningful biclusters with 
maximum size for low MSR in the microarray matrix. 

 

CMOPSOB29 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

Proposed an application of ant colony optimization to the 
microarray data. The MOACOB incorporated local 
search strategies to find the average maximum  
biclusters with lower MSR and higher row variance. 

Poor convergence due to a decentralized 
processor to guide the ant system  
towards good solutions. 

   (Contd) 
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Table 1. (Contd) 

Method             Dataset Pros Cons 
 

MODPSFLB36 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

Focuses on three objectives, namely homogeneity, row  
variance and the size of biclusters. 

There is difficulty in selecting the  
probable value of inertia weight and 
constant acceleration coefficients. 

CBEB34 Yeast (2884 × 17),  
lymphoma (4026 × 96) 

Identifies all the non-dominated individuals. There is no biological proof for  
extracted biclusters and return  
trivial biclusters. 

CoBi48 Rat CNS (112 × 9),  
yeast (2884 × 17) 

Requires a single pass over the database to generate all  
biclusters. 

Extracts small biclusters for large MSR 
values. 

 
 

Table 2. An empirical analysis of various methods for the yeast dataset 

Method Average MSR Average volume Average genes Average samples 
 

CC8 204.29 1557.0  167.0 12.0 
FLOC13 187.84 1825.8 195.0  12.0 
DBF14 114.70 1627.2 188 11 
SA-B16 166.0 2605.5 268.6 10.8 
GA-B17 161.87 3492.54 351.7 10.97 
SEBI18 205.18 209.9 13.6  15.3 
MOEA19 234.87 10301.68 1095.4 9.29 
SMOB21 206.17 453.48 27.28 15.46 
PSB22 169.03 1725.4 274.42 7.42 
DB-QP25 171.19 – – – 
MOIB26 202.32 2638.74 – – 
MOACOB28 203.12 2745.12 – – 
CMOPSOB29 218.54 1510.78  1102.8  9.31 
MOM-aiNet30 178.28 1831.80 – – 
PISA-B31 261.61 13116.33 1047.63 12.52 
DMOIOB32 201.86 2841.08 – – 
PCOBA33 219.15 1321.30  92.40 14.30 
MODPSFLB36 215.98 11220.7 1154.21 9.81 
CBEB34 233.59 – – – 
EBACross37 167.62 495.3 38.08 3.78 
BPSO-B38 301 1089 121 9 
SBO-B39 160.75 3227.14 332.28 9.15 
MNM-B40 180.56 2903.32 307.67 8.04 
MOFM42 211.7 12082.85  1180.0 10.24 
SCSNM-B43 167.43 3086.18 315.63 8.59 
CSM-B44 176.12 2912.37 291.27 8.11 
CoBi53 652.45 4992 347 15 
MHS-B54 165.05 3049.54 334.21 8.73 

 
 
because it is affected by various factors such as the size of 
the input, machine environmental settings, the program-
ming platform used, number of iterations, etc. Tables 2 
and 3 give a summary based on the qualitative perfor-
mance measure for researchers who have revealed these 
statistics in their articles. As can be seen in Tables 2 and 
3, with regard to MSR value, the results obtained by majo-
rity of methods are analysed on the yeast and lymphoma 
datasets. The second column reports the mean MSR value 
found by each method, the third column, the size of the 
cluster; while fourth and the fifth columns report the mean 
values of genes and conditions contained in the biclusters 
respectively. The symbol ‘-’ indicates that the present au-
thors do not consider the value for evaluation. Generally, 
the number of genes is multiplied by the number of sam-
ples and this refers to the ‘volume’ of the bicluster. 

 The process of extracting biclusters from a given dataset 
can be seen as a multi-objective optimization problem. For 
instance, in Table 2, biclusters found by SBO-B have a 
larger average bicluster size than those by MHS-B, though 
with the same MSR. However, when comparing MHS-B 
with EBACross and PSB, the biclusters found by the for-
mer are larger than those found by EBACross and PSB. 
Most of the algorithm is repeated until it reaches a pre-de-
fined threshold. This threshold used in the fitness function 
is set to 300 for the yeast dataset and 1200 for the lymphoma 
dataset. It is a variational parameter with different datasets. 
Table 3 shows the performance of different state-of-the-art 
methods on the lymphoma data. Various approaches reveal 
that the multi-objective biclustering techniques can deter-
mine biclusters with maximum rows of samples, which 
indicates that the detected biclusters have many genes and 
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Table 3. An empirical analysis of various methods for the lymphoma dataset 

Method Average MSR Average volume Average genes Average samples 
 

CC8 850.04  4595.98 269.22 24.50 
SA-B16 792.05 7711.98 730.6 16.8 
GA-B17 592.28 3492.54 795.43 17.44  
SEBI18 1028.24 615.84 14.07 43.57 
SMOB21 1019.16 709.13 11.60 78.47 
PSB22 361.4  4725.4 965.1 49.5 
MOIB26 839.74  6918.29 – – 
MOACOB28 841.87  7274.19 – – 
CMOPSOB29 927.47 34012.24 902.41 40.12 
MOM-aiNet30 759.37 2953.00 – – 
PISA-B31 1089.61 39821.51 655.93 60.71 
DMOIOB32 832.79 7106.51 – – 
MODPSFLB36 913.53 35601.8 933.9 43.29 
SBO-B39 780.45 9562.23 289.45 32.29 
MNM-B40 832.09 8226.55 284.20 30.11 
MOFM42 934.4 40604.32  976.3 41.59 
SCSNM-B43 810.75 8876.46 292.61 31.51 
CSM-B44 822.36 8387.42 281.52 30.93 
MHS-B54 798.49 8882.51 295.92 31.94 

 
 
samples with low MSR values. Here, a detailed review has 
been carried out for the most significant biclustering appro-
aches, pointing out their merits and demerits, both denoting 
the implemented strategy and the quality of the obtained 
bicluster. 
 Wang et al.48 developed a computer program which is 
used to combine both biclustering and divide and conquer 
approach48. This computer program is mainly applicable 
for local MSA and BlockMSA. The main objective of 
studying about single-cell RNA sequencing is to make 
new cell subtypes with the help of clustering. Ming Chu et 
al.49 introduced a new bicluster method named JCB (joint 
CC and BIMAX). The proposed method is based on the 
algorithm of Cheng and church8 and binary inclusion–
maximal biclustering algorithm (Bimax). It merges the 
MSR introduced by Cheng and Church with the BIMAX 
algorithm. The merit of single-cell RNA sequencing is 
that is used to study about the cell based changes in the 
transcriptomic data. The main drawback of scRNA-seq 
data is that they contain noise and sometimes are sparse 
due to sampling deficiencies. Fang et al.50 proposed a bi-
clusering framework named DivBiclust, which is used to 
identify cell subpopulations50. It identifies subpopulations 
with good accuacy. Xie et al.51 proposed a biclustering 
alogirthm which is named qualitatic biclustering algori-
thm51,52. The proposed model has a new mixture gaussian 
model53 to test the importance of all the identified biclus-
ters. 

Comparative analysis with biological validation 

Recently, scientists have understood the need for two-
dimensional clustering in the bioinformatics domain and 
made significant efforts in this direction. Therefore, this 
study analytically reviews the fundamental need for biclu-

stering techniques in biological data. The p-value is required 
to select meaningfully overrepresented functions. The p-
value speaks indicates the proportion of genes added into 
the cluster randomly. If the p-value is small, then the clus-
ter is framed without approximation. There is a major bio-
informatics initiative to compute the probability of observing 
the number of genes from a particular GO category (func-
tion, process and component) within each bicluster. One 
of the most widely adopted gene-based benchmarks for 
biclustering methods is GO-based significance. It depicts 
how significantly a group of genes identified by a bicluster-
ing method is enriched with a similar GO category in terms 
of the statistically significant GO annotation database. 
 Recently, to identify the biological relevance of the bi-
clusters from the Gasch yeast dataset, the nature-inspired 
SBO technique was used. The interpretations of genes for 
three ontologies, namely cellular component, molecular 
function, and biological process are acquired. To evaluate 
the biological significance, the results of the recent techni-
que were compared with traditional approaches such as 
Bimax, BiMine, CC, ISA and OPSM for yeast expression 
data35. For this, we used the FuncAssociate 2.0 web tool52. 
The adjusted significance scores for each bicluster were 
computed using this web tool. Indeed, these scores were 
computed as adjusted p-values. These values specify how 
they match with the different GO categories. When the p-
value is close to 0, it indicates a good match. Figure 4 
shows a comparative analysis of different values of the 
significant score (p-value) of yeast cell-cycle expression 
data. For instance, 100% of the tested biclusters under all 
the mentioned methods have a p-value of 5% and 1%. At 
the p-value of 0.5% and 0.1%, only SBO shows a higher 
percentage of the tested bicluster which are 100% and 
98% respectively. Lastly, 87% of the detected biclusters 
of SBO are statistically significant with p-value = 0.001%, 

https://pubmed.ncbi.nlm.nih.gov/?term=Fang+Q&cauthor_id=32167906
https://pubmed.ncbi.nlm.nih.gov/?term=Xie+J&cauthor_id=31503285
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Figure 4. The GO functional activity of yeast expression data (ten genes). 
 
 

 
 

Figure 5. Proportion of biclusters significantly enriched by gene ontology (GO) annotations on yeast cell-cycle data. 
 
 
while in the case of MHS, SCS-NM, CSM and MNM it is 
73%, 80%, 68% and 65% respectively. Comparatively, we 
can conclude the SBO is better than the other proposed 
methods on this dataset for all p-values. We also note that 
SBO performs well for 0.001% p-values compared to CC, 
ISA, Bimax and OPSM. It performs well for all p-values 
(5%, 1%, 0.5%, 0.1% and 0.001%). 

Functional activity analysis 

The molecular function vocabulary is three-structured. It 
represents basic activities such as catalysis or binding. 
GOTermFinder is a functional analysis tool available in 
the Saccharomyces genome database. It supports much ex-
tracting the major shared GO terms of the cluster of genes 
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Table 4. Remarkable gene ontology terms for three biclusters on Saccharomyces cerevisiae data 

Bicluster # #Genes Process Function Component 
 

BC4 1475 Catalytic process  
(n = 712, p = 2.17 × 10–29) 

Structural molecule activity  
(n = 594, p = 3.08 × 10–8) 

Extracellular  
(n = 1287, p = 8.43 × 10–21) 

BC5 1510 Hydrolase  
(n = 658, p = 4.17 × 10–16) 

Orgonic cyclic activity  
(n = 294, p = 7.21 × 10–27) 

Nuclear part  
(n = 1347, p = 7.16 × 10–19) 

BC8 1492 Transferase  
(n = 881, p = 3.16 × 10–28) 

Hydrolase activity  
(n = 299, p = 1.29 × 10–27) 

Intracellular part  
(n = 1354, p = 2.76 × 10–23) 

 
 
and offers users to obtain the characteristics that the genes 
have. Figure 5 shows the proportions of biclusters signifi-
cantly enriched by GO annotations on yeast cell-cycle data. 
Table 4 shows the major common GO terms available to 
define the group of genes in each bicluster for the ontolo-
gies of function, component and process. The supreme 
terms are depicted here. Most of the genes are predomi-
nantly involved only in structural molecule activity. For 
instance, in bicluster BC1, the record (n =594, p = 3.08 × 
10–8) depicts that 594 genes out of 1475 genes belong to 
structural molecule activity function with statistical signifi-
cance (p-value = 3.08 × 10–8). Moreover, for the clusters 
with ten genes, the biological network false discovery rate 
(FDR) is 0.00000. This is very low value which indicates 
that the subspace clustering methods can return biologically 
significant co-clusters and in most case, it is only zero. The 
analogous which has much less p-value (p = 8.34 × 10–15) 
is used to obtain the gene cluster that is random and more 
biased on it. 
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