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There are challenges in performing 3D scene understand-
ing on point clouds derived from drone images as these 
data are highly unstructured with no neighbouring infor-
mation, highly redundant making the processing difficult 
and time-consuming and have variable density making it 
difficult to group and segment them. For proper scene 
understanding, these point clouds need to be segmented 
and classified into different groups representing similar 
characteristics. The approaches for segmentation differ 
based on the distinctiveness of each data product. Alt-
hough newer machine learning-based approaches work 
well, they need large amounts of standardized labelled 
data which in turn require extensive resources and human 
intervention to obtain good results. Considering these, we 
have proposed a hybrid clustering-based hierarchical 
model for effective segmentation of dense 3D point cloud. 
We have applied the model to local data having a mix of 
man-made and natural vegetation with variable topogra-
phy. The combination of RANSAC, DBSCAN and Eucli-
dean method of cluster extraction proved to be useful 
for precise segmentation and classification of point clouds. 
The performance of the model has been assessed using 
Davies–Bouldin dbIndex-based intrinsic measures. The 
hybrid approach is able to segment 91% of the point 
clouds precisely compared to the conventional one-step 
clustering approach. 
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POINT clouds represent world objects in a three-dimensional 
space. Each of these points has X, Y and Z coordinates. 
Point clouds derived using image-based models will have 
three additional colour attributes for R, G and B for every 
point. The drone imaging system can be deployed to rapidly 
collect the overlapping images and use them to generate a 
sparse point cloud initially. This is done through a well-
defined process of feature detection and feature matching 
from closely overlapping images, followed by triangulation 
and bundle adjustment. It is called structure from motion, 
which means reconstructing a structure or scene from mov-

ing cameras capturing multiple overlapped photographs. 
The sparse point cloud is further densified using multi-view-
stereo that uses a point densification algorithm and generates 
a high-quality, dense three-dimensional point cloud. These 
3D point clouds are highly unstructured and unordered and 
do not have neighbouring information or scan position and 
direction. Based on the surface features and topography, 
the points will also show diverse variations in density across 
the objects in the scene. Further, the 3D points have limited 
attributes with no classification information. All these char-
acteristics make the segmentation task challenging. The 
ability to accurately segment and classify these point 
clouds should benefit many real-world applications from 
general geospatial analysis to sophisticated vision-based 
applications such as robotics.  
 Considering the nature of 3D point attributes and their 
structure, different methods can be used for segmentation. 
Edge-based methods may be used for segmenting regions 
based on the object boundaries. These methods fail when 
the scene contains objects with arbitrary shapes. The region-
based methods can be used to form different point clusters 
with similar properties. Here, the threshold parameter is 
important as it can affect the segmented regions. Segmenta-
tion based on attributes will depend on the computed value 
of the attributes and spatial relations of the points. The 
model-based segmentation methods rely on primitive geo-
metric shapes such as sphere, cone, plane or cylinder to clus-
ter and group. Model-based segmentation may work well for 
scenes comprising planar structures. The graph-based 
methods are used after converting the point cloud into a 3D 
graph. They are effective for application in areas such as  
robotic navigation. Despite having many techniques for 
segmenting point clouds, there are always challenges in us-
ing them for robust real-time applications. Further, techniques 
such as newer machine learning and deep learning require 
large amounts of labelled point data and high computing 
resources, and thus are expensive and time-consuming. The 
present study focuses on a combination of algorithms for 
clustering and the construction of a hierarchical model for 
clustering and segmentation on medium-sized point clouds 
consisting of non-uniform and complex features represent-
ing various land and natural resource features with good 
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Figure 1. Data acquisition and generation of dense 3D point clouds. 
 
 

 
 

Figure 2. Estimation of surface normals in 3D point cloud. 
 

 
performance. We propose a hybrid clustering process with 
model-fitting methods such as RANSAC in combination 
with a hierarchical-based clustering algorithm, which works 
well to detect shapes and segment the point clouds accurately.  

Materials and methods 

The camera of focal length of 4 mm (Zenmuse X3-FC350) 
having an effective resolution of 12.4 megapixels fitted to 
a drone (T600 DJI Inspire Series) was used to capture about 
120 images, giving a maximum image size of 4000 × 3000. 
The drone was flown at 100 m altitude and ensured 75% 
forward and slide overlapping. This helped us obtain re-
peated, robust feature points in each image pair and match 
them to generate a denser point cloud. The structure from 
motion in combination with multi-view stereo algorithm 
was used to generate highly dense 3D point clouds1,2. 
 For the study, we considered a subset of data stored in a 
LAS file format which contained 738,583 points (Figure 1). 
The derived point cloud data were noisy, sparse and unor-
ganized, and stored limited point attributes such as X, Y, Z 
and R, G, B. The sampling density of the points was also 
typically uneven due to varying linear and angular rates of 
the scanner. In addition, the surface shape was arbitrary 

with sharp features and there was no statistical distribution 
pattern in the data. 
 To understand the structure of a point cloud and its orien-
tation, a pre-processing step was carried out where point 
normals were estimated for each point after uniform down-
sampling of the input point cloud with a voxel size of 5 cm 
(ref. 3). In the voxel grid geometry, 3D data are represented 
on a regular 3D grid. The colour and voxel value are calcu-
lated by averaging all the points within a voxel (Figure 2). 
Voxel normal estimation can be used to understand how 
each point cloud surface is oriented to obtain cues on the sur-
face characteristics of objects. Planar surfaces will have their 
normal perpendicular to the surface, as opposed to other sur-
faces with different normal orientations. Such information 
can be used as an additional attribute to segment the point 
clouds more effectively4. 
 We can observe and differentiate different objects such 
as ground features with uniform orientation, linear features 
representing stream networks, artificial building structures 
with curvy roofs and natural vegetation with diverse point 
normal orientation, etc. Further, the varying density of point 
clouds representing different surface features can also be 
observed. Such preliminary information can assist while 
choosing different parameters for clustering algorithms. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 124, NO. 4, 25 FEBRUARY 2023 436 

 
 

Figure 3. Proposed hierarchical-based 3D point cloud segmentation. 
 
 
 Considering the nature of point clouds having a mix of 
both planar man-made structures and vegetation structure, 
as well as non-uniform topography, a combination of model-
based fitting algorithms such as RANSAC and clustering 
was adopted for grouping and labelling these points. This 
technique works effectively to separate outliers and noise 
present in the data5. RANSAC is good for detecting points 
having geometric primitives such as lines and circles present 
in the scene, but fails to group other unstructured point 
clouds representing trees and irregular structures6. Therefore, 
combining these two approaches can effectively segment 
all kinds of surface structures present within a point cloud. 
 The segmentation process began by first applying the 
RANSAC algorithm with a planar model and segmenting the 
points brought on the same plane in a global context of the 
point cloud. The rest of the point cloud, after subtracting 
the first output of RANSAC, was then fed to the DBSCAN 
clustering algorithm. This algorithm is good for clustering 
and grouping points with varied densities. The method is 
more effective for points with a greater altitude relative to all 
other points in the cloud and with each cluster of similar den-
sity. All such segmented point clouds were further fine-tuned 
by applying Euclidean cluster extraction algorithm. The 
segmented point clouds were separately merged to form the 
final segmented point cloud (Figure 3).  

Results and discussion 

Segmentation using RANSAC 

RANSAC, a plane-fitting method, was chosen for its robust 
detection of planes in 3D point clouds and segmenting them 

into inliers and outliers7. The inliers were labelled as 
‘ground’ and they collected all the points with lower Z value 
under some threshold. The outliers were the ‘non-ground’ 
points fed into the next step in the segmentation process. 
The RANSAC method finds largest set of points that fits a 
plane under a given threshold. First, it randomly selects 
three points from the data to form a plane and calculates the 
parameters of the corresponding plane according to the 
plane equation ax + by + cz + d = 0, where x, y, z are the 
3D coordinates. Given the known points, the constants a, b, 
c and d can be calculated. Using the final plane equation, 
the inlier 3D points are calculated at a threshold8. After a 
number of iterations, a threshold is selected to produce the 
maximum number of inlier ground points. This plane is 
then saved and segmented from the rest of the point cloud. 
The number of iterations n required to run the algorithm 
for finding the inliers can be calculated assuming the proba-
bility of success, p, where n = log (1 – p)/log (1 – (1 – ε)s), 
for outlier ratio ε and sample size s (ref. 9). Based on the 
data, the plane equation for plane segmentation of inlier 
ground points was –0.02x + 0.00y + 1.00z + –816.28 = 0 
with the distance threshold at 1.1. 
 The resultant segmentation produced a point cloud of 
402,563 points containing the inliers, i.e. points lying on the 
same ground plane. We observed the efficacy of RANSAC, 
where all the planar points present in the point cloud lying 
on the same plane were segmented. This process was effec-
tive when segmenting almost all the ground points. The 
algorithm treated non-ground points as outliers containing 
the rest of the above-ground features such as buildings, high-
slope areas, trees, etc. As shown in Figure 4, the output 
depicts the efficiency of RANSAC, as it can effectively 
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Figure 4. Segmentation using RANSAC. 
 
 

 
 

Figure 5. Detected clusters. 
 
 
segment above-ground features. An advantage of RANSAC 
is its robust estimation of the model parameters, i.e. it can 
estimate the parameters with a high degree of accuracy even 
when a significant number of outliers is present in the 
point cloud10.  

Segmentation using DBSCAN 

Next, we considered the remaining 3D points with relatively 
higher Z values. The DBSCAN algorithm is used to create 

multiple clusters of varying density11–13. It needs at least two 
parameters: the minimum number of points minPts and the 
searching radius ε. As our input 3D point cloud was rela-
tively large with a natural scene of arbitrary shapes, minPts 
was set to 500 to capture all the major clusters. ε defines the 
maximum searching radius between two points in a cluster. 
For calculating ε, mean distance of all points to all k (number 
of minPts) nearest neighbours was calculated. All the kth 
distances were then sorted in descending order and plotted 
on a k – dist graph14,15. The desired value for ε will be at 
the first point in the valley of curvature. For our point 
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Figure 6. Roof structure clusters. 
 
 

 
 

Figure 7. Methodology for point cloud segmentation. 
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Figure 8. Relationaship between dbIndex, searching radius ε and cluster number n. 
 
 

Table 1. Segmented features 

Segment Number of 3D points 
 

Ground 402,563 
High-slope area 117,651 
Noise/unclassified  85,178 
Cultivated area  46,725 
Water streams  23,153 
Building structure  17,955 
Roof structure  13,973 
Trees  13,925 

 

 
cloud, we used searching for a radius of 190 cm (ε = 1.9). 
Most patches of vegetation and trees were accurately clus-
tered in our results, including buildings and other roof 
structures (Figure 5).  
 However, DBSCAN failed to cluster some object charac-
teristics of trees, shrubs and patches of vegetation. The points 
representing roof-building structures and cultivation areas 
in the point cloud were also treated as noise. To identify 
and cluster these points, the third approach of segmenting us-
ing Euclidean cluster extraction was used. 

Euclidean cluster extraction 

The set of clusters which could not be detected by DBSCAN 
and was treated as noise can be connected in a given radius 
to form clusters using Euclidean cluster extraction. It works 
by finding the nearest neighbours of a point in the data. We 
set the distance threshold at 20 cm to find two more clusters 
(Figure 6).  
 The combination of three different techniques in a hier-
archical manner was able to segment the majority of the fea-

tures, although 11.8% of the point cloud could not be clus-
tered or identified due to the non-uniform variation in point 
cloud density and highly unstructured points (Figure 7 and 
Table 1).  

Performance measures of clustering algorithms 

We can assess and analyse the performance of clustering 
algorithms. For any clustering-based algorithm, the validity 
of the clusters must be assessed so that they have sufficient 
inter-cluster distance and each point in the cluster is within 
the individual cluster radius and well localized. In case of 
DBSCAN, we adopted an intrinsic index-based measure 
of performance, where additional ground truths are not re-
quired. The Davies Bouldin index (dbIndex) is a popular 
clustering performance measuring technique. It works by 
dividing the clusters and finding their similarity by compar-
ing the cluster distances and their sizes16. It finds the ratio 
of inter-clusters and intra-clusters. The dbIndex can be used 
to find the optimal cluster, where the lower value shows better 
clustering mechanism. Therefore, it can be used to cross-
verify the cluster parameters used in the proposed approach17.  
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Table 2. Comparison table of DBSCAN and the proposed approach 

Details DBSCAN cluster extraction The proposed Hierarchnical-based clustering 

dbIndex 1.839 1.76 
Execution time (s) 189.210074 34.245472 
Number of clusters 33 8 
Output 

The dbIndex finds the average similarity between each 
cluster Ci for i = 1, …, k and its most similar cluster Cj. 
Cluster similarity is defined as a measure Rij. 
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where si is the average distance between each point of 
cluster i and the centroid of that cluster, and dij is the distance 
between cluster centroids i and j. dbIndex is then defined as 
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Figure 8 shows the influence of dbIndex on ε and n. Variable 
searching values were used, which gave different cluster 
outputs for the DBSCAN clustering algorithm and the 
dbIndex calculated. The outlier non-ground point cloud was 
considered to determine cluster density in the data. The lower 
index value gives the optimal number of clusters and sear-
ching radius. We observed and verified that 33 optimum 
clusters were formed with ε = 1.9, which gave a lower 
dbIndex among all configurations. The output with ε = 1.9 
showed clusters of different objects with fewer noise data, 
such as building structures, water streams, tree patches, high-
slope areas, etc. Colours were assigned arbitrarily to differen-
tiate the individual clusters and do not necessarily represent 
unique object classes across these images (Figure 8). 
 Finally, the performance of the entire process of RANSAC, 
DBSCAN and Euclidean cluster evaluation was evaluated 
in terms of dbIndex, number of clusters and overall exe-
cution time, and compared with DBSCAN (only) used on 
the entire point cloud. The combination of RANSAC and 
DBSCAN algorithms in hierarchical approach has helped 
in separation of grounds and efficiently clutser the non-
ground points as separate features in less time. This approach 
offers better performance in terms of unsupervized clu-
stering and processing of point cloud data than DBSCAN 
alone (Table 2). 

Conclusion 

The combination of plane fitting and clustering algorithms 
in a hierarchical setting can effectively segment 3D point 
clouds with limited point attributes, and yield good results. 
RANSAC and DBSCAN work well for grouping and identi-
fying objects of both planar as well arbitrary shape features 
from dense point clouds. Euclidean cluster extraction sup-
plements the clustering results by its ability to cluster 3D 
points and locate additional objects. The performance of the 
clustering algorithm on the data was assessed using dbIn-
dex. We found an effective searching radius of 1.9 for per-
forming density-based clustering to find optimal clusters  
in order to capture all non-ground surface objects with 
low dbIndex. The  proposed hierarchical-based approach 
resulted in the precise segmentation of 91% of point 
clouds giving eight well-defined clusters and reducing 
the overall execution time. Thus, this study highlights a 
simple yet effective hierarchical-based model architec-
ture for better segmentation of highly unstructured, dense 
point clouds derived from drone imagery. 
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