
RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 124, NO. 6, 25 MARCH 2023 693 

*For correspondence. (e-mail: chprsandeep@gmail.com) 

Hybrid assimilation on a parameter-calibrated  
model to improve the prediction of heavy  
rainfall events during the Indian summer  
monsoon 
 
Sandeep Chinta1,*, V. S. Prasad2 and C. Balaji1,3,4 
1Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India 
2National Centre for Medium Range Weather Forecasting, A-50, Sector 62, Noida 201 309, India 
3Centre of Excellence in Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600 036, India 
4Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, India 
 

Heavy rainfall events during the Indian summer mon-
soon cause landslides and flash floods resulting in a 
significant loss of life and property every year. The ex-
actness of the model physics representation and initial 
conditions is critical for accurately predicting these 
events using a numerical weather model. The values of 
parameters in the physics schemes influence the accu-
racy of model prediction; hence, these parameters are 
calibrated with respect to observation data. The present 
study examines the influence of hybrid data assimilation 
on a parameter-calibrated WRF model. Twelve events 
during the period 2018–2020 were simulated in this 
study. Hybrid assimilation on the WRF model signi-
ficantly reduced the model prediction error of the varia-
bles: rainfall (18.04%), surface air temperature (7.91%), 
surface air pressure (5.90%) and wind speed at 10 m 
(27.65%) compared to simulations with default para-
meters without assimilation. 
 
Keywords: Heavy rainfall events, hybrid assimilation, 
numerical weather model, parameter calibration, summer 
monsoon. 
 
THE Indian summer monsoon (ISM) is among the oldest 
global monsoon phenomena occurring with striking regu-
larity every year. Heavy rainfall events during ISM cause 
landslides and flash floods resulting in a significant loss of 
life and property each year1. The number of low and mode-
rate rainfall events averaged over the entire Indian region 
has substantially reduced during ISM, whereas heavy rain-
fall events have increased over the years2. Also, there has 
been a noticeable increase in both the average frequency 
of heavy rainfall events and the percentage of seasonal 
rainfall contributed by these events3. So, accurately simu-
lating the heavy rainfall events during the ISM is crucial. 
 The accuracy of a numerical weather prediction (NWP) 
model depends upon both its ability to accurately represent 

the physics of the atmosphere and the precision of the ini-
tial conditions provided to the model4. In the NWP model, 
sub-grid-scale processes are parameterized based on rea-
sonable physical or statistical representations. The parame-
terization schemes require information from the forecast 
variables about the process to be parameterized using a set 
of assumptions5. Multiple studies have been conducted to 
identify the optimal set of parameterization schemes for 
various regions and types of simulation events6–12. 
 However, each parameterization scheme contains multiple 
parameters on which the scheme is formulated. Typically, 
the default values of these parameters are determined 
through theoretical or experimental studies by the develo-
pers of the scheme13. By calibrating the values of these para-
meters to observations, the accuracy of the prediction can 
be improved by increasing the ability of the model to ac-
curately represent the physics of the atmosphere. Parameter 
calibration based on tuning to an objective can be classi-
fied into two categories14. The first category involves opti-
mizing an objective function that evaluates the difference 
between the model simulation and a corresponding set of 
observations. To accelerate the optimization process, a 
model emulator or surrogate model of the actual physical 
model is constructed. Several studies have used this appro-
ach15,16. The second category quantifies critical uncertainty 
sources in the problem by employing a Bayesian approach. 
Some methods in this category use the actual model, while 
others use a statistical emulator to eliminate regions of the 
parameter space that are not physically possible and yield 
not-ruled-out-yet parameter space. Although the second 
category is robust in identifying the viable parameter space, 
it requires huge computational power compared to the first 
category. Many studies have used this approach for climate 
models17,18. As trial-and-error methods typically concen-
trate on tuning a limited number of parameters (usually 
one or two) at a time, the above two categories are more 
beneficial for calibrating a considerable number of param-
eters. Overtuning is a crucial factor to consider during para-
meter calibration. It refers to calibrating the values of the 
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parameters to specific metrics resulting in the model per-
forming well for those metrics, while the performance deteri-
orates for other processes or metrics. Therefore, conducting 
validation experiments for different metrics and simulat-
ing events not used for calibration can help check whether 
the parameter calibration resulted in overtuning. 
 It is computationally expensive to calibrate all the para-
meters. So, a sensitivity study is necessary to determine the 
parameters that profoundly impact model prediction19. 
Several studies have used various sensitivity analysis 
techniques to identify the sensitive parameters for different 
regions and types of events simulated20–23. Studies have 
also calibrated the sensitive parameters with respect to ob-
servations using advanced optimization techniques to im-
prove model prediction24–27. The model parameters have 
been optimized to obtain a better forecast for various 
models such as watershed model28, atmospheric general 
circulation model29, and climate model30,31 to reduce the 
prediction error. 
 Apart from the calibration of parameters, accuracy of the 
model prediction also depends on the exactness of the ini-
tial conditions. Data assimilation is used to improve the 
initial conditions utilizing observational data. Data assimila-
tion algorithms require the background state of the atmo-
sphere obtained from the short-range forecast of the 
previous cycle32. The background state, as it is a forecast, 
contains some uncertainty. Different assimilation algori-
thms handle this uncertainty differently in the form of an 
error covariance matrix. The assimilation algorithm cor-
rects the background state using data from the observations 
and considering the error covariances of the background 
state and the observations. The background error covariance 
(BEC) matrix plays a critical role in data assimilation, 
particularly for weather systems such as heavy rainfall 
events that are intermittent and transient33,34. 
 Three-dimensional variational (3DVar) assimilation 
method utilizes a static BEC and does not contain flow-
dependent spatial covariance35,36, which means that the  
errors pertaining to the flow of the day are assumed to be 
invariant. Ensemble Kalman filter data assimilation gene-
rates the ensembles using the Monte Carlo method37, and 
flow-dependent BEC is obtained from the ensemble of 
forecasts. However, sampling error in the ensemble BEC 
is significant because of the relatively small sample size38. 
In hybrid assimilation, the weighted average of the static 
and flow-dependent BEC is used within a 3DVar frame-
work39,40. Several studies have broadly concluded that  
hybrid data assimilation performs better than the varia-
tional assimilation techniques and is sometimes equivalent 
to or better than pure ensemble assimilation methods40–45. 
 This study builds up on two previous studies. In the first 
study, sensitivity analysis was performed and the para-
meters that significantly influenced heavy rainfall events 
prediction were identified using the Morris one-at-a-time 
method46,47. In the second study, these sensitive parameters 
were calibrated with respect to observations using a multi-

objective adaptive surrogate model-based optimization 
method48,49. These two previous studies only addressed 
one aspect of improving the NWP model prediction: increas-
ing the accuracy with which the model represents the 
physics of the atmosphere. However, these studies did not 
consider the second aspect of improving the model predic-
tion: increasing the accuracy of the initial conditions provi-
ded to the model. The present study addresses both these 
aspects by implementing hybrid assimilation on a parameter-
calibrated model to improve prediction. 

Data assimilation methodology 

Two data assimilation algorithms, namely three-dimensional 
variational (3DVar) assimilation and three-dimensional 
ensemble variational (3DEnVar) hybrid assimilation have 
been used in this study. These algorithms are implemented 
using the Weather Research and Forecasting (WRF) model 
data assimilation system (WRFDA). In the 3D-Var algo-
rithm, the analysis field Xa is estimated by minimizing a 
cost function (that calculates the distance from the back-
ground Xb and from the observations Yo as formulated as 
 
 1

b b )( ) ( ) (TJ X X X B X X−= − −  
 

  1
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where J(X) is the cost function that needs to be minimized, 
𝐵 the BEC matrix estimated as the error (averaged over 
many forecasts) between two short-range forecasts valid at 
a particular time, H the forward operator that maps varia-
bles from the state space to the observation space and R is 
the observation error covariance matrix that contains the 
instrument error. In the National Meteorological Center 
method35, BEC is formulated as  
 
 3DVar [ 2( ) ( )4 h 12 h ]f fB E X Xα≈ −  
 
  × ( ) ( ) ,[ 24 h 12 h ]Tf fX X−  (2) 
 
where Xf (24 h) is the 24th hour and Xf (12 h) is the 12th 
hour regional forecast valid at a particular time. Different 
control variable (cv) transform options are available in 
WRFDA to evaluate B3DVar, where each cv transform focuses 
on different control variables. Some studies have observed 
that cv6 option performed better compared to other options, 
such as cv3, cv5 and cv7 in WRFDA50,51. The control vari-
ables used in cv6 are stream function (ψ), unbalanced 
temperature (Tu), unbalanced velocity potential (χu), unbal-
anced surface pressure (Ps.u) and unbalanced pseudo rela-
tive humidity (RHs.u). As the assimilation is performed on a 
parameter-calibrated model, the value of B3DVar is evaluated 
with the cv6 option using simulations from a parameter-
calibrated model. Simulations were done for July–August 
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Figure 1. Flowchart of the hybrid assimilation methodology implemented in this study. 
 
 

 
 

Figure 2. Configuration of the model domain used in this study. Mon-
soon core region (MCR) is also marked. 
 
 
2016, and the 24th hour and 12th hour forecasts were eva-
luated at 12-h intervals for these two months. These fore-
casts were utilized to calculate B3DVar using eq. (2). 
 In hybrid assimilation, BEC was estimated using a weigh-
ted average of the variational and ensemble BEC, as already 
mentioned. The background error covariance Bhyb was 
evaluated using eq. (3). 
 
 hyb Ens 3DVar ,(1 )B B Bβ β= − +  (3) 
 
where β is the weighting factor and BEns is the ensemble 
BEC. Figure 1 presents a flowchart of the hybrid data assimi-

lation methodology adopted in this study. The ensemble 
BEC was evaluated using ensemble forecasts. Global Ensem-
ble Forecast System (GEFS) data52 were used as the driv-
ing data for providing initial and boundary conditions for 
the ensembles. As GEFS data contain 21 ensemble mem-
bers, the hybrid assimilation also contains 21 ensemble 
members (k = 21). A value of β = 0.25 was used44 to eval-
uate Bhyb (ref. 44), i.e. 25% of B3DVar and 75% of BEns. After 
the processing, quality control and thinning of observation 
data in WRFDA, the background forecast was updated using 
data observations and Bhyb. The updated background fore-
cast is called analysis and contains the improved initial 
conditions. This was used as the background for the follo-
wing forecast cycle. Ensemble members were also updated 
using the observation data. After ensemble assimilation, 
the ensemble background forecasts were updated to ensem-
ble analysis for the next forecast cycle53. This procedure was 
repeated continuously for several cycles. Single-resolution 
assimilation was performed in this study, where both the 
deterministic and ensemble forecasts were simulated on a 
similar grid resolution. The ensemble analyses are recen-
tred in some studies using the deterministic analysis for 
the next forecast cycle. However, recentring was not used 
in this study due to its small impact on the ensemble analy-
ses54. 

Design of experiments 

Domain and model configuration 

The domain has a resolution of 12 km in the horizontal direc-
tion (Figure 2). WRF model version 4.0 was used in this 
study55. The domain covers the Indian subcontinent and its 
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Table 1. List of parameters and their default and calibrated values 

 
Scheme 

 
Parameter 

 
Default value 

Calibrated  
value 

 
Description 

 

Cumulus pd 1 2 Multiplier for the downdraft mass flux rate 
 pe 1 0.5693 Multiplier for the entrainment mass flux rate 
 phusl 150 349.9996 Starting height of downdraft over USL (hPa) 
 timec 2,700 2,770.13 Mean consumption time of CAPE (s) 
Microphysics ice stokes 14,900 18,147.36 Scaling factor applied to ice-fall velocity (s–1) 
Shortwave cssca fac 1e-5 5.73e-6 Scattering tuning parameter (m2 kg–1) 
Land surface porsl 1 0.5 Multiplier for saturated soil water content 
 bsw 1 1.168 Multiplier for Clapp and Hornberger b parameter 
Planetary boundary layer Brcr sb 0.25 0.4423 Critical Richardson number for the boundary layer of land 

 
 

 
 

Figure 3. Daily regional average rainfall in the MCR during Indian summer monsoon for the period 2018–2020. 
Solid line boxes show the events that are simulated. 

 
 
surrounding regions. It comprises 470 points in the zonal 
direction and 460 points in the meridional direction. The 
central point is 19°N, 80°E. The time-step used is 40 s. 
The model is discretized into 40 sigma (σ) layers vertically 
with the top layer at 50 hPa level in the atmosphere. The 
initial and lateral boundary conditions are obtained from 
the National Centers for Environmental Prediction Global 
Forecast System model six-hourly data at 0.5° × 0.5° reso-
lution. 
 The parameterization schemes were the same as those 
used in parameter calibration49. The Kain–Fritsch eta scheme 
was used for cumulus parameterization56, the WSM 6 single-
class scheme for microphysics parameterization57, the 
Dudhia scheme for shortwave radiation58, the RRTM scheme 
for longwave radiation59, the MM5 Monin–Obukhov scheme 

for the surface layer60, the Yonsei University scheme for 
the planetary boundary layer61, and the Noah scheme for 
land surface parameterization62. As mentioned earlier, each 
scheme has multiple parameters that can be calibrated. 
Table 1 lists nine sensitive parameters that influence the 
prediction47. The table also presents the default and calibrated 
values of these sensitive parameters. The calibrated parame-
ter values minimized the prediction errors of daily accumu-
lated rainfall (RAIN), surface air temperature (SAT), surface 
air pressure (SAP) and wind speed at 10 m (WS10)49. 

Events simulated 

The monsoon core region (MCR) is a critical zone where 
the variation of ISM rainfall all over the country is similar 
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Figure 4. Distribution of conventional observations at 00 UTC on 7 July 2019 assimilated for event F. 
 
 

Table 2. Overview of the observations assimilated 

NCEP prepbufr observations 
 Atmospheric winds GEOAMV 
 Land surface SYNOP, METAR, SONDE SFC 
 Marine surface BUYO, SHIPS 
 Upper air SOUND 

Satellite radiance observations 
 Instrument Satellite 
 AMSU-A NOAA 15,16,18,19; EOS-Aqua; METOP-A 
 AIRS EOS-Aqua 
 HIRS-4 NOAA 18 
 IASI METOP-A 
 MHS METOP-A; NOAA 18,19 
 SSMI DMSP 16 
 
 

Table 3. Details of numerical experiments 

Experiment Description 
 

DEF_NA Simulations with default parameters without data  
assimilation 

CAL_NA Simulations with calibrated parameters without data 
assimilation 

DEF_3DV Simulations with default parameters and three- 
dimensional variational data assimilation 

DEF_HYB Simulations with default parameters and three- 
dimensional ensemble variational hybrid data  
assimilation 

CAL_3DV Simulations with calibrated parameters and three- 
dimensional variational data assimilation 

CAL_HYB Simulations with calibrated parameters and three- 
dimensional ensemble variational hybrid data  
assimilation 

 
 

to that in MCR63. It ranges from 69°E to 88°E and 18°N to 
28°N. So, the region of interest is MCR. The monsoon core 
region is also shown in Figure 2 for reference. Twelve four-
day heavy rainfall events between June and September for 
the period 2018–20 over MCR are simulated in this study 
(Figure 3). Each event consists of the day with the highest 
accumulated rainfall, averaged over MCR, in the respec-

tive month and spans a period of four days13. The rainfall 
data are taken from the India Meteorological Department 
(IMD) daily accumulated gridded rainfall data at 0.25° ×  
0.25° resolution64. Figure 3 shows the dates of the 12 cho-
sen events (A–H). 

Observation data for assimilation and verification  
datasets 

The observation data used for assimilation are summarized in 
Table 2, and include both conventional and satellite radi-
ance data. Observations were assimilated at six-hourly inter-
vals. Conventional observations comprise global surface 
and upper-air data collected by NCEP65 and are provided 
in PREPBUFR format. The data contain land surface, marine 
surface, radiosonde, pibal and aircraft reports from the 
Global Telecommunications System, profiler and satellite 
wind data. Figure 4 presents the conventional data from 
various sources valid at 00 UTC on 7 July 2019, used in 
the assimilation for event F. Satellite radiance data (BUFR 
format) from various instruments on-board different satel-
lites were used for assimilation66. The instruments include 
Advanced Microwave Sounding Unit-A, Atmospheric Infra-
red Sounder (AIRS), High-resolution Infrared Sounder-4, 
Infrared Atmospheric Sounding Interferometer, Microwave 
Humidity Sounder and Special Sensor Microwave/Imager. 
 The WRF model output variables were compared with 
the verification data to evaluate the accuracy of the simula-
tions. RAIN was validated using IMD daily accumulated 
gridded rainfall data at 0.25° × 0.25° resolution. SAT, 
SAP and WS10 were verified with the Indian monsoon data 
assimilation and analysis regional reanalysis data at 0.12° × 
0.12° resolution67,68. 

Experimental set-up 

This study assesses the influence of hybrid assimilation on 
a parameter-calibrated WRF model on predicting heavy 
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Table 4. RMSE values of the variables rainfall (RAIN), surface air temperature (SAT), 
wind speed at 10 m (WS10), and surface air pressure (SAP), averaged over 48 days  
  (12 four-day events) for different experiments 

Experiments RAIN (mm/day) SAT (K) WS10 (m/s) SAP (hPa) 
 

DEF_NA 28.93 1.72 2.69 874.21 
CAL_NA 26.54 (8.24%) 1.42 (17.54%) 2.21 (17.77%) 825.93 (5.52%) 
DEF_3DV 24.74 (14.47%) 1.86 (–8.00%) 2.16 (19.80%) 827.13 (5.39%) 
DEF_HYB 24.82 (14.21%) 1.68 (2.71%) 2.07 (23.15%) 823.63 (5.79%) 
CAL_3DV 24.09 (16.74%) 1.69 (1.88%) 1.99 (25.99%) 821.85 (5.99%) 
CAL_HYB 23.71 (18.04%) 1.59 (7.91%) 1.95 (27.65%) 822.59 (5.90%) 

Values within brackets represent the reduction in value of RMSE for the corresponding 
experiment with respect to the default experiment. 

 
 

 
 

Figure 5. Comparison of RMSE values of the WRF model variables for DEF_NA and DEF_HYB experiments:  
a, rainfall; b, surface air temperature; c, wind speed at 10 m; d, surface air pressure. Values above the bars indicate re-
duction in RMSE of DEF_HYB compared to DEF_NA. 

 
 
rainfall events during ISM. Six experiments (for each of the 
12 events) were performed. Table 3 summarizes the details. 
The first experiment was performed with default parame-
ters without data assimilation (DEF_NA) to set a benchmark 

for comparison. The second experiment was performed with 
calibrated parameters without data assimilation (CAL_NA) 
to evaluate the influence of calibration on the model out-
put. The third and fourth experiments were performed with 
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Figure 6. Comparison of RMSE values of the WRF model variables for CAL_NA and CAL_HYB experiments:  
a, rainfall; b, surface air temperature; c, wind speed at 10 m; d, surface air pressure. Values above the bars indicate re-
duction in RMSE of CAL_HYB compared to CAL_NA. 

 
 
default parameters using 3DVar (DEF_3DV) and 3DEnVar 
assimilation (DEF_HYB) respectively, to evaluate the in-
fluence of assimilation on the default model parameters. 
The fifth and sixth experiments were performed with calibra-
ted parameters using 3DVar (CAL_3DV) and 3DEnVar 
assimilation (CAL_HYB) respectively, to evaluate the in-
fluence of assimilation on the calibrated model parameters. 
 For experiments without data assimilation (DEF_NA and 
CAL_NA), the simulations were started at 00 UTC on the 
first day of each event and run continuously for 96 h. For 
experiments with data assimilation, simulations were started 
24 h before the beginning of each event. A 6 h spin-up fol-
lowed by four cycles of assimilation at six-hourly intervals 
was performed. After four cycles of assimilation, the model 
was continuously run for 96 h. Root mean square error 
(RMSE) as defined in eq. (4) was used for evaluating the 
simulations. It was also used to calibrate the parameters in 

the earlier study49, as the objective was to determine the 
parameter values that minimize RMSE. 
 

 1

2

1

(sim obs )
RMSE ,

t t
i

t
i

N T

i

N T
= =

−

=
×

∑∑
 (4) 

 
where obst

i  and simt
i  are the observed and simulated values 

at grid point i and time t respectively, N the total number 
of grid points in MCR and T is the number of simulation 
days. 

Results and discussion 

Table 4 summarizes the results obtained from the experi-
ments. RMSE values of the variables RAIN, SAT, WS10 
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Figure 7. Spatial pattern comparison of bias for DEF_NA and CAL_HYB for the variables RAIN 
(a, b), SAT (c, d), WS10 (e, f ) and SAP (g, h) averaged over 48 days (12 four-day events). 

 
 
and SAP were evaluated for each experiment and aver-
aged across 12 heavy rainfall events. The percentage val-
ues within brackets represent the reduction in RMSE for the 
corresponding experiment with respect to the DEF_NA. 
Calibrated parameters performed better than default para-
meters by reducing RMSE for all variables, viz. RAIN 
(8.24%), SAT (17.54%), WS10 (17.77%) and SAP (5.52%) 
without assimilation. Using assimilation on default para-
meters improved the overall prediction corresponding to 
both algorithms, with HYB performing similar to or better 
than 3DV for all variables compared to DEF_NA. The re-
sults were similar for DEF_3DV and DEF_HYB for RAIN 
(≈14%) and SAP (≈5%). However, DEF_HYB performed 
better than DEF_3DV for WS10 and SAT. Even for calibra-
ted parameters, HYB performed similarly to or better than 
3DV for all variables. CAL_HYB performed better than 
CAL_NA for all variables except SAT. 
 Figure 5 shows the event-wise RMSE values for DEF_ 
HYB and DEF_NA experiments to assess the impact of 

data assimilation on the default parameters. These results 
show a general trend with a substantial reduction in 
RMSE of all variables for DEF_HYB, except SAT. RMSE 
values for RAIN were reduced for all events with an aver-
age decrease of 14.21% for DEF_HYB compared to DEF_ 
NA. A similar trend was observed for WS10 (23.15%) and 
SAP (5.79%), where DEF_HYB performed better for almost 
all the events. However, for SAT, RMSE increased for 
most of the events. Although the average RMSE (2.71%) 
had reduced, it was skewed primarily because of event I, 
where it reduced (43%) from 3.36 K to 1.92 K. Figure 6 
shows the event-wise RMSE values for CAL_HYB and 
CAL_NA experiments to assess the impact of data assimi-
lation on the calibrated parameters. RMSE values of RAIN 
(10.67%) and WS10 (12.02%) had reduced after assimilation 
for most of the events. The RMSE of SAP were similar 
with and without assimilation, with no significant increase 
or decrease for almost all events after assimilation. However, 
the RMSE values of SAT increased after assimilation for 
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most of the events, with an overall increase of –11.68%. 
Although there was an increase in RMSE for SAT after 
assimilation, the overall effect of calibration and assimila-
tion had reduced (7.91%) compared to the default parame-
ters without assimilation. 
 Figure 7 compares the spatial patterns of bias (simulated 
minus observed) for the DEF_NA and CAL_HYB experi-
ments for RAIN, SAT, WS10 and SAP, averaged over 48 
days (12 four-day events). The bias of RAIN was similar for 
both DEF_NA and CAL_HYB in the western region. How-
ever, a strong positive bias in the eastern part for DEF_NA 
was replaced by a negative bias for CAL_HYB. Although 
the reduction in overall bias is not evident from this figure, 
the RMSE values (18.04%) indicate a significant decrease 
for CAL_HYB compared to DEF_NA. In the case of SAT, 
a strong positive bias in the northern region for DEF_NA 
was replaced by a weak negative bias for CAL_HYB. Also, a 
weak positive (negative) bias in the western (eastern) part 
was replaced by a strong negative bias. Overall, a reduction 
in RMSE (7.91%) was observed for CAL_HYB compared 
to DEF_NA. A strong positive bias in the entire region for 
DEF_NA was replaced by a weak negative or positive bias 
for CAL_HYB, which is consistent with a considerable 
reduction in RMSE (27.65%) for CAL_HYB compared to 
DEF_NA. In the case of SAP, a weak negative bias in DEF_ 
NA was replaced by a weak positive bias for CAL_HYB 
in the entire region. The reduction in RMSE was also small 
(5.90%) for CAL_HYB compared to DEF_NA. Event-wise 
spatial comparison, presented in Supplementary Figures 
1–12, also shows a general trend of improvement in the 
spatial pattern of all variables for CAL_HYB compared to 
DEF_NA. 

Conclusion 

The impact of assimilation on the parameter-calibrated WRF 
model was assessed. Twelve heavy rainfall events were 
simulated. The calibrated parameters performed better 
than the default parameters, reducing RMSE for all variables. 
There was considerable improvement in predicting all varia-
bles with assimilation on both the default and calibrated 
parameters, except for SAT. Also, 3DEnVar expectedly 
performed better than the 3DVar assimilation method. 
Overall, hybrid assimilation with calibrated parameters 
showed a significant improvement for the variables RAIN 
(18.04%), SAT (7.91%), WS10 (27.65%) and SAP (5.90%) 
compared to the default parameters without assimilation. 
A further improvement in prediction could be obtained using 
different methods. Performing an observing system simu-
lation experiment can help identify observations that do 
not improve the initial conditions. These observations can 
be omitted, thereby improving the results from assimilation. 
Assimilating observations from other satellite instruments 
and radars could also help improve the predictions. Also, 
implementing advanced assimilation techniques such as 

four-dimensional ensemble variational (4DEnVar) hybrid 
assimilation and particle filter could further improve the 
model prediction. 
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