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Publicly available EO datasets offer new possibilities to 
generate biodiversity information at the community 
composition level, an essential biodiversity variable, 
beyond forest type. We demonstrated the potential of 
Sentinel-2, GEDI LiDAR canopy height and ALOS-
DEM in discriminating and classifying tropical tree 
communities in the Western Himalayas, India. For this, 
tree communities were first identified based on the ordi-
nation of field data and subsequently classified using 
satellite data applying machine learning, i.e. random 
forest (RF). From the three forest types in the study 
area, eight distinct tree communities were identified 
for which classification accuracy increased from single 
date (75.17%) to multi-date images (85.33%) and further 
by applying feature selection (88.17%). Whereas the best 
classification accuracy of 94.66% was achieved when 
canopy height and topographic variables were also 
considered. The findings suggest that RF is suitable for 
mapping tree communities by combining Sentinel-2 with 
GEDI and DEM parameters. 
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TROPICAL forest ecosystems that are home to at least two-
thirds of the Earth’s terrestrial biodiversity are facing high 
rates of loss due to a variety of anthropogenic disturban-
ces1,2. Tree community composition is the most robust and 
sensitive indicator of degradation in natural forests3, mak-
ing it invaluable for conservation planning and assessing 
changes4. Satellite remote sensing (RS) has become an in-
tegral tool for mapping and monitoring biodiversity at dif-
ferent scales. There is an emphasis on developing Earth 
Observation (EO) methods to address essential biodiversity 
variables (EBVs) in order to monitor biodiversity changes 
from regional to global scales5. Community composition 
has been identified as one of the EBVs for which satellite 
RS-based approaches must be used for better mapping and 
monitoring6. The high diversity, topographic variability and 

lack of cloud-free data are particular challenges in the com-
munity-level mapping of tropical forests7. 
 Recent studies highlighted the potential utility of Senti-
nel-2 (S2) data in classifying vegetation composition8 and 
tree species9. Better spatial, spectral (13 bands, including 
three red-edge bands) and temporal (five-days) characteri-
stics, consistent availability and open access of S2 make it 
one of the best options for routine monitoring of tropical 
forests. In this context, there is a need to explore the poten-
tial of S2 for classifying and mapping tree communities in 
tropical ecosystems. 
 Optical RS imagery explicitly describes vegetation hori-
zontal structure, while they also differ in vertical structure 
due to resource competitiveness. With regard to tree commu-
nities in mountainous regions, a spatial correlation exists 
between diversity patterns and topographic heterogeneity10. 
Several studies have demonstrated the benefits of integrating 
airborne LiDAR11,12 and topographic parameters13,14 for 
improving vegetation classification in different ecosystems. 
Improvements in the accuracy and resolution of freely avai-
lable space-borne LiDAR data (Global Ecosystem Dyna-
mics Investigation (GEDI)) and DEM (Advanced Land 
Observing Satellite (ALOS-2)) open up possibilities for 
improving vegetation classification from regional to global 
scales. 
 Machine learning (ML) methods have been explored for 
their ability to enhance vegetation classification by incor-
porating multi-temporal datasets8, vegetation indices15, 
vegetation structure12 and topographic variables13. Several 
studies have observed that ML performs better than con-
ventional statistical classifiers, especially for complex and 
high-dimensional RS datasets16. Random Forest (RF) is 
the most widely used non-parametric ML method due to its 
high reliability and accuracy in classification applica-
tions8,10. 
 The objectives of the present study are to develop a mod-
el to (i) identify the possible range of tree communities oc-
curring in the study area using the ordination technique; (ii) 
assess and compare the classification accuracy of RF using 
different combinations of spectral variables from multi-
temporal S2 data, and (iii) analyse the performance of RF 
classification when canopy height model (CHM) and topo-
graphic variables are integrated with multi-temporal S2 data. 
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Figure 1. Location map of the study area in India, and distribution of sample plots and tree communities. 
 
 
Materials and methods 

Study area 

The study was conducted in the Nandhaur landscape, which 
includes the Nandhaur Wildlife Sanctuary and adjoining 
areas, falling in the Nainital and Champawat districts of 
Uttarakhand in the foothills of Western Himalaya, India 
(Figure 1). The physiography is mountainous with elevation 
ranging from 150 to 1400 m amsl. The sites fall under 
Cwa (temperate: dry winter and hot summer) of the Köppen–
Geiger climate classification17. The mean annual tempera-
ture is 23°C, while the mean annual precipitation is 940 mm. 
According to Champion and Seth18, tropical moist and dry 
deciduous forests dominate the study area. It also constitutes 
important habitats and a corridor for tigers, elephants, and 
other large mammals. Nandhaur Wildlife Sanctuary (270 sq. 
km) is a critical conservation unit and part of the Shivalik 
Elephant Reserve. 

Sampling design and field inventory 

The sampling design included the distribution of 0.1 ha 
(31.62 m × 31.62 m) sample plots across different combi-
nations of elevation, aspect and moisture categories. A pilot 
study was conducted to determine the total number of 

sampling units to be laid based on variance in the species 
richness using the formula of Chacko19 
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where n is the number of sample plots, CV the coefficient 
of variation of tree species richness, SE% the standard error 
percentage (10) and t is the statistical value at 95% signifi-
cance level. Plot inventory followed the internationally 
standardized protocols and methodologies established by 
the Amazon Forest Inventory Network, RAINFOR20. 

Classification of tree communities using ordination  
technique 

Two-way indicator species analysis (TWINSPAN)21 was 
used to identify the patterns of compositional variation of 
tree species in the region. It is based on the partitioning of 
the ordination axis resulting from reciprocal averaging. 
This is followed by a discriminant function for assigning 
the sites to either side of the dichotomy based on indicator 
species. This process is repeated for each cluster obtained 
from this portioning until a predefined stopping criterion is 
met, i.e. minimum group size for division and maximum 
level of divisions. TWINSPAN classification was carried 
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Table 1. Spectral, topographic and structural variables extracted from Sentinel-2, ALOS-PALSAR DEM and GEDI LiDAR, used for developing  
 tree community classification models 

Feature/dataset Independent variables Reference 
   

Sentinel-2 band reflectance B2 (blue) 490 nm Sentinel-2 User 
 B3 (green) 560 nm Handbook, 2015 
 B4 (red) 665 nm  
 B5 (vegetation red edge 1) 705 nm  
 B6 (vegetation red edge 2) 749 nm  
 B7 (vegetation red edge 3) 783 nm  
 B8 (near infrared) 842 nm  
 B8a (near infrared) 865 nm  
 B11 (short wave infra-red) 1610 nm  
 B12 (short wave Infrared) 2190 nm  
Spectral indices Normalized difference vegetation (NDVI) 30 
 Enhanced vegetation index (EVI1 and EVI 2) 31 
 Red edge normalized difference vegetation (NDRE) 32 
 Green chlorophyll index (CI green) 33 
 Red-edge Chlorophyll Index (CI red-edge) 33 
 Difference vegetation index (DVI) 34 
Topographic variables (ALOS-PALSAR DEM) Elevation ALOS Data Users 
 Slope  Handbook, 2008 
 Aspect  
Structural variables Canopy height model developed by integrating GEDI LiDAR, multi-date  

 Landsat 8 OLI and SRTM DEM using Random Forest (RF) 
 

 
 
out based on plot-level abundance data of tree species us-
ing PC-ORD software (version 4.20). 

Acquisition of satellite datasets and processing 

S2 level-1C cloud-free images for winter (January 2018), 
spring (March 2018), and summer (May 2017) seasons 
were downloaded from the Sentinel’s Scientific Data Hub 
(https://scihub.copernicus.eu/) of the European Space Age-
ncy22. The level-1C images were subsequently converted to 
level-2A top-of-canopy (TOC) surface reflectance using 
the atmospheric correction module in Sen2Cor (version 
2.4) processor. The digital image processing and calcula-
tion of vegetation indices (VIs) were carried out using 
ArcGIS (10.3). 
 ALOS phased array type L-band synthetic aperture radar 
(PALSAR) RTC (radiometrically terrain corrected) DEM 
was downloaded from Alaska Satellite Facility (https:// 
asf.alaska.edu/) at 12.5 m resolution and topographic varia-
bles, viz. elevation, slope and aspect were derived. Table 1 
provides information about the satellite datasets used in 
this study. 

Mapping tree canopy height with GEDI and  
Landsat 8 

To incorporate the canopy height characteristics of tree 
communities in the classification, we developed a CHM 
by integrating GEDI LiDAR observations, multi-date Land-
sat 8 OLI images/vegetation indices and Shuttle Radar 
Topography Mission (SRTM) DEM at 30 m using RF re-

gression method. These variables were used for modelling 
due to their spatial and temporal relevance with field inven-
tory data. The highest quality GEDI L2A (RH95) samples 
available from March 2019 till July 2021 from the power 
beam with beam sensitivity ≥0.9, quality flag = 1, collected 
during nighttime, were used for the model. Of the eight 
bands available in Landsat 8 OLI, the spectral information 
from bands 2 to 7 corresponding to blue (0.45–0.51 µm), 
green (0.53–0.59 μm), red (0.64–0.67 µm), near-infrared 
(NIR; 0.85–0.88 µm) and two shortwave infrared bands 
(SWIR1, 1.57–1.65 µm and SWIR2, 2.11–2.29 µm) at 
30 m spatial resolution were used for analysis. Spectral 
bands and NDVI of the cloud-free Landsat 8 images for 5 
April 2019, 15 November 2019, 22 March 2020, 17 Novem-
ber 2020, and 21 February 2021 were used as independent 
variables to extrapolate the estimates of GEDI LiDAR. 

Selection of optimal independent spectral variables  
for tree community type mapping 

Removing the irrelevant or redundant variables from the 
large datasets results in higher classification accuracy. 
Recursive feature elimination (RFE), integrated with RF 
was implemented for the selection of optimum predictors 
constituting the S2 bands and vegetation indices based on 
the importance ranking of the RF model, i.e. mean decrease 
accuracy (MDA) and mean decrease gini (MDG). MDA 
was computed by permuting the prediction error on the 
out-of-bag (OOB) portion of the data. MDG is the total 
decrease in node impurities measured by the Gini index 
from splitting on the variable, averaged over all trees. The 
RFE method improves the prediction performance of the 

https://scihub.copernicus.eu/
https://asf.alaska.edu/
https://asf.alaska.edu/
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Figure 2. TWINSPAN dendrogram with interpreted clusters up to the sixth level of division. 
Numerals in the box represent the number of sample plots and the decimal numbers represent data 
heterogeneity in each level of division. 

 
 
predictor variables by progressively eliminating the least 
promising variables. This method is performed iteratively 
on the reduced dataset using a cross-validation function until 
3% of the number of variables remains. The set of predic-
tors showing the least RMSE after cross-validation was 
selected as the optimum for classification. The ‘random-
Forest’ package in RStudio was used to run the RF model. 

Tree community type mapping using ML  
classification 

Tree communities obtained from the ordination analysis 
were classified using the RF classifier. RF is an ensemble 
of decision trees built on a bootstrap sample of the train-
ing data and chooses the best split at each node using a 
randomly selected subset of predictor variables23. The RF 
was considered for classifying the multi-source and non-
linear RS data in the present study as: (i) it is flexible and 
can handle many variables and a large amount of missing 
data; (ii) the curse of dimensionality in the data is naturally 
reduced by selecting the most optimum variable subset 
with minimum OOB error and (iii) the bootstrapping pro-
cedure improves the efficiency of model performance by 
decreasing the variance of the model without increasing 
the bias by selecting many classification trees. 
 The classification was performed on different combina-
tions of S2 images of different seasons, followed by optimum 
predictors of S2 bands and spectral indices obtained from 
RFE. Finally, the optimum predictors were integrated with 

topographical variables and CHM independently. Classifi-
cation accuracy for all the datasets was evaluated using 
confusion matrix. The kappa statistics was also used to 
compare the true agreement between classes that occur on 
the ground versus those classified by the classifier rather than 
those that occur by chance. 

Results and discussion 

Tree communities obtained from ordination analysis 

The TWINSPAN classification at the sixth hierarchical level 
of division based on tree species composition and abun-
dance recognized 11 tree communities. The final number 
of divisions was chosen based on expert-based validation24, 
as the number of clusters cannot be set manually. Among 
the identified tree communities, four were dominated by 
Shorea robusta (Sal), two by Syzygium cumini (Jamun), 
one by Pinus roxburghii (Chir pine), and the rest belonged 
to the riverine community. The Dalbergia sissoo and Aca-
cia catechu communities were not prominent and formed 
a sparse open forest mixed with grasses along the river 
beds. Further, the classification of riverine communities 
separately did not provide a meaningful result. So, we 
combined the riverine communities into Holoptelea integri-
folia–Litsea sp.–Acacia catechu, making only eight woody 
communities for further analysis. Figure 2 shows a den-
drogram of the result obtained from TWINSPAN. 
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Figure 3. Canopy height map derived using GEDI LiDAR based on Random Forest (RF) regression model. 
 
 

 
 

Figure 4. RF for the optimization of independent variables: (a) varia-
ble importance index and (b) selection of optimum number of variables 
based on the least RMSE for ten-fold cross-validation. 

Canopy height modelling 

After filtering out the less reliable GEDI samples, a total 
of 9405 sample footprints were used for the generation of 
CHM. Independent validation of predicted canopy height 
was done using field-measured maximum stand height of 
50 plots of 0.1 ha collected during 2019–20 (Figure 3). A 
promising relationship was observed between the meas-
ured and predicted canopy height (r2 = 0.67) with an RMSE 
of 5.12 m. The predicted canopy height tends to be over-
estimated as we move from low canopy to higher canopy. 
A mean difference of 3.8 m was observed between the 
predicted and measured canopy height. 

Optimal satellite variables for tree community  
classification 

In this study, 890 sample points (70% training and 30% 
testing) were used for the RF model. For optimization of 

independent spectral variables (51 variables), the RF algo-
rithm was tested for different Mtry and Ntree values itera-
tively. Since it is a classification, the node size was kept at 
1. The Ntree value of 480 and Mtry of 7 were found to 
contain the lowest OOB prediction error. MDA and MDG 
were computed as measures of variable importance ranking. 
Using RFE with ten-fold cross-validation, the lowest 
RMSE was obtained for a set of 20 variables from MDG 
(Figure 4). 
 The mean spectral response of the tree communities was 
analysed for the S2 images of three seasons (Figure 5). The 
SWIR region showed the highest variability in the spectral 
response among classes, followed by the red edge and NIR 
region, while the blue, green and red regions showed mini-
mum separability. With regard to the season, the data obtai-
ned for May showed the highest spectral variability among 
classes, followed by March. 

Performance of ML classifier 

Table 2 shows an increase in the performance of RF on 
using single to multi-date imagery (overall accuracy, 
75.17–85.33%). The high spectral variation in the summer 
and spring seasons and the contrast of winter and spring 
seasons helped in discriminating communities and increas-
ing the classification accuracy. Similar observations were 
reported by Macintyre et al.8 in mapping floristic commu-
nities of Western Australia, where a multi-temporal feature 
set comprising autumn and spring images returned the 
highest accuracy. 
 Among the two variable importance measures obtained 
from RF, optimum predictors from MDG obtained higher 
classification accuracy (88.17%). High dominance of red-
edge bands/indices and SWIR was observed in the impor-
tant variable measures. This likely reflects the importance 
of differences in moisture and chlorophyll content of the 
species in different phenophases and soil conditions. Simi-
lar observations have been reported in vegetation mapping 
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Figure 5. Mean spectral signature of all target classes for S2 images of (a) January, (b) March and (c) May. Mean 
spectral reflectance is shown on the y-axis and wavelength of the band on the x-axis. 

 
 

Table 2. Classification accuracy of RF for all the datasets 

 
 

 
No. of  

RF 

Dataset description variables UA PA OA KC 
 

January 10 70.51 71.86 68.50 0.59 
March 10 73.28 74.38 71.33 0.62 
May 10 76.88 79.70 75.17 0.65 
January + May 20 79.77 80.09 78.33 0.68 
March + May 20 78.70 75.19 77.37 0.64 
January + March 20 81.10 82.43 80.00 0.70 
January + March + May 30 85.92 87.39 85.33 0.75 
Mean decrease accuracy (MDA) 20 87.43 87.54 86.67 0.76 
Mean decrease Gini (MDG) 20 88.40 89.02 88.17 0.77 
MDG + DEM 23 91.92 91.69 91.17 0.80 
MDG + CHM 21 93.32 93.74 93.17 0.82 
MDG + DEM + CHM 24 95.20 94.8 94.66 0.84 

PA, Producers’ accuracy; UA, Users’ accuracy; OA, Overall accuracy; KC, Kappa coefficient. 
 
 
over a range of ecosystems8,25,26. The red-edge bands/indi-
ces are sensitive and show relation to the leaf structure 
and chlorophyll content of plants27,28 and are found suita-
ble for mapping heterogeneous landscapes, especially by 
including red-edge-associated vegetation indices. 
 S2 was not sufficient to capture all the variability present 
in the tree communities with similar species composition. 
To segregate such classes, other parameters of vegetation, 
such as structural and topographical variables, must be used 
to explain variability. The addition of CHM resulted in 
further explanation of the variability and increased the 
classification accuracy (5%). The highest improvement in 
accuracy was observed for Syzygium cumini–Trewia nudi-
flora–Cordia myxa (8%) and Syzygium cumini–Lagerstro-

emia parviflora–Mallotus philippensis (7%) community 
types. 
 The addition of topographic variables (elevation, slope 
and aspect) provided an improvement in overall accuracy 
(>2%). The highest increase in accuracy was observed for 
P. roxburghii–S. robusta (7%), S. robusta–L. parviflora–
M. philippensis (5%) and S. robusta–S. cumini–M. philip-
pensis (4%) communities which occupy the upper and 
lower regions of the study area respectively. Similar obser-
vations were also reported in other studies, especially in 
the mountainous ecosystem13,29. 
 Besides the similarity in community composition, spectral 
mixing/confusion between classes is also possible due to 
the edge effect. However, the transition between tree 
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Figure 6. Tree community type map prepared using the best combination of predictor variables. 
 
 

Table 3. Area statistics of target classes inside and outside the Nandhaur Wildlife Sanctuary, Uttarakhand, India 

 
Vegetation type 

 
Class 

Protected  
area (sq. km) 

Unprotected  
area (sq. km) 

Study area  
(sq. km) 

 

Moist deciduous forest S. robusta–Terminalia tomentosa–Syzygium cumini 34.9 4.7 39.6 
Shorea robusta-dominated S. robusta–Lagerstroemia parviflora–Mallotus philippensis 62.6 10.0 72.5 
 S. robusta–S. cumini–M. philippensis 36.1 12.5 48.6 
 S. robusta 35.2 20.5 55.8 
Syzygium cumini-dominated S. cumini–L. parviflora–M. philippensis 19.0 7.2 26.2 
 S. cumini–Trewia nudiflora–Cordia myxa 2.1 21.5 23.6 
Sub-tropical forest Pinus roxburghii–S. robusta 51.7 3.3 55.0 
Dry deciduous forest Dry deciduous mixed 0.5 24.4 24.8 
 Holoptelea integrifolia–Litsea sp.–Acacia catechu 12.9 25.6 38.5 
Others  11.3 55.2 66.5 
 Total area 266.3 184.6 450.9 

 
 
communities is continuous rather than discrete, so it would 
be difficult to separate them effectively using the present 
dataset. Our approach effectively classified the composi-
tional variation in tree communities; however, slightly lower 
accuracy was obtained in the transition zones, especially for 
the S. robusta and S. cumini-dominated communities. 
 The best classification result (94.67%) was observed 
when CHM and topographic variables were integrated with 
the optimum predictor variables of S2. The map generated 
using the present approach can be utilized to identify the 
composition and distribution patterns of tree communities 
in the region. 

Spatial patterns of tree communities of the  
Nandhaur landscape 

The final classified map showed eight tree communities 
obtained from the field data and a dry deciduous mixed 
community (Figure 6). For the dry deciduous mixed 

community, sample plots could not be laid out; so training 
points were taken with the help of the characteristic spectral 
signature of vegetation on RS imagery and the additional 
GPS locations taken during the field inventory. The area 
statistics showed the dominance of moist deciduous tree 
communities inside the Nandhaur wildlife sanctuary. Majo-
rity of the area outside the Sanctuary is dominated by dry 
deciduous tree communities, where plantation activities 
are also carried out. Table 3 shows the area statistics of tree 
communities both inside and outside the protected area. 
 The tree communities showed diverse relationships with 
the input variables used in the final classification (Figure 7). 
There was significant variation in the distribution pattern 
of tree communities with the type and season of spectral 
bands/indices. Tree communities showed the highest vari-
ability in the distribution pattern with elevation. The canopy 
height variable had a distinct distribution pattern for S. 
cumini-associated communities, which were spectrally less 
separable from Sal-associated communities. 
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Figure 7. Spectral separability of tree community types for important variables. 
 
Conclusion 

In this study, tropical tree communities of the study area 
were first systematically identified based on field data, and 
thereafter classification was done using multi-temporal sat-
ellite datasets of the dry season. Reasonably good classifica-
tion accuracy was obtained by choosing the most optimal 
predictors among multi-season spectral bands and ratios. 

We found that by incorporating CHM and topographic 
variables, tree community classification can be further en-
hanced. Tree communities associated with topographic fea-
tures in the mountainous terrain and differences in canopy 
height owing to different site conditions play an important 
role in determining the spatial distribution of tropical tree 
communities with strong seasonality. The findings of this 
study suggest that RF is highly efficient in discriminating 
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tree communities using multi-sensor RS datasets. The pre-
sent approach can be replicated in other ecosystems with 
publicly available satellite datasets utilized in this study. 
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