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We explore the possibility of using ‘weak measure-
ments’ without ‘weak value’ for quantum state esti-
mation. Since for weak measurements the disturbance 
caused during each measurement is small, we can  
rescue and recycle the state, unlike for the case of pro-
jective measurements. We use this property of weak 
measurements and design schemes for quantum state 
estimation for qubits and for Gaussian states. We 
show, via numerical simulations, that under certain 
circumstances, our method can outperform the esti-
mation by projective measurements. It turns out that 
ensemble size plays an important role and the scheme 
based on recycling works better for small ensembles. 
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Introduction 

THE quantum superposition principle and the wave func-
tion collapse set apart the quantum description of the 
world from its classical counterpart. As a consequence, in 
the standard paradigm, the outcome of a single measure-
ment cannot be predicted with certainty and we can only 
assign probabilities to different outcomes. As the meas-
urement process disturbs the system and in a projective 
measurement the state of the system collapses we cannot 
re-use the state for any further measurement. This neces-
sitates the use of an ensemble of identically prepared 
states to interpret quantum measurements. Ideally, in the 
large ensemble limit the ensemble average tends to the ex-
pectation value of the observable. The question that arises 
at this point is: what if we are provided with a small en-
semble of states and asked to make the best use of it? 
 Projective measurements require a large coupling be-
tween the system and the measuring device. However, if the 
coupling is made small, we inflict a very small distur-
bance to the system at the expense of extracting a corre-
spondingly small amount of information1. Such 
measurements are known as weak or unsharp measure-
ments. Such measurements have been introduced in vari-
ous forms in the past2–8. The coupling strength can be 
tuned to suit the situation and the state can subjected to 

further measurements to extract more information. 
Whenever we have a small ensemble, each member can 
be ‘weakly’ measured more than once with a possibility 
of extracting more information. 
 It is true that all quantum measurements (projective, 
non-projective, weak, etc.) can be seen as Positive Opera-
tor Valued Measures (POVM). Still it is important to 
know the details and workings of a measurement scheme. 
A POVM can also be interpreted as a projective meas-
urement on a larger Hilbert space1,9,10. For a finite en-
semble the upper bound on the amount of information 
extractable is available11. There is always a cost of infor-
mation extraction from quantum systems in terms of the 
disturbance caused and that too it has also been explored 
for the case of weak measurements12–15. 
 A recent work suggests some new possibilities that 
weak measurements can offer with respect to Heisen-
berg’s uncertainty relation and the disturbance caused to 
the state16. Oreshkov and Brun17, wrote down a weak 
measurement POVM and showed that any generalized 
measurement can be decomposed into a sequence of weak 
measurements, without using an ancilla. Lundeen et al. 
recently came up with a method employing weak values 
to directly measure the wave function of a quantum sys-
tem in a pure state18 and followed it up with a method to 
measure any general state19. For some further develop-
ments in this regard see ref. 20. Unsharp measurements 
have also been used to make sequential measurements on 
a single qubit6. Other examples of quantum state tomo-
graphy with weak measurements can be found in refs 21–
23. An approach to perform quantum state tomography 
using weak measurement POVMs was introduced by 
Hofmann24. 
 In this paper, we present some of our results on state 
estimation by ‘weak’ measurements and a more detailed 
account for the qubit case is available in our recent  
paper25. We study the case of a single qubit and show by 
explicit simulations how under certain circumstances the 
weak measurement-based state estimation scheme can 
beat the one based on projective measurements. 

Weak and unsharp measurements 

The measuring apparatus plays a crucial role in quantum 
measurements; on the one hand it interacts with the quantum 
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system and on the other hand it has classical properties 
where the outcomes can be read out and recorded. A use-
ful model of this process is available due to von Neu-
mann. Although originally this model was constructed for 
strong (projective) measurements26, it has wider applica-
tions and can also be applied to weak measurements2–8,27. 

von Neumann’s measurement model for  
discrete basis 

Consider the measurement of an observable A of a quan-
tum system with eigenvectors {|aj〉} and eigenvalues {aj}, 
j = 1,…, n. Imagine an apparatus with continuous pointer 
positions described by a variable q and its conjugate vari-
able p such that [q, p] = i. The initial state of the measur-
ing device has an initial spread of Δq with its Gaussian 
quantum state |ϕin〉 centred around zero given by 
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where κ = 1/(Δq)2 and we have taken  = 1. The system 
and the measuring device are made to interact by means 
of a Hamiltonian 
 
 H = gδ (t – t′)A ⊗ p, (2) 
 
where p is the momentum conjugate to the variable q, and 
g is the coupling strength. The Hamiltonian is so chosen 
that the system and the device get a kick and interact 
momentarily at t = t′. Let the initial state |ψin〉 of the sys-
tem be written in terms of the eigenstates |a1〉, |a2〉,…,|an〉 
of the operator A. 
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The joint evolution of the system and the measuring  
device under the coupling Hamiltonian gives an entan-
gled state for t > t′ 
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The above state consists of a series of Gaussians centred 
at ga1, ga2, …, gan for the pointer entangled with corre-
sponding eigenstates |a1〉, |a2〉,…,|an〉 of the system. At 
this stage we invoke the fact that the apparatus is classi-
cal, because only one of the pointer positions actually 
shows up. This requires the collapse of the wave function 
which is brought in as something from outside for the 

classical apparatus! Thus the process is completed with 
the meter showing only one of the gais and the system 
state collapses into the corresponding eigenstate |ai〉. 
 The above analysis holds good only if the Gaussians 
are well separated or distinct. In contrast, when the Gaus-
sians overlap, which can happen if the coupling strength 
g is small or the initial spread in the pointer state given 
by 1/κ is large, the scenario changes2,5,28. This is called 
the weak or unsharp measurement regime. Weak meas-
urements have been employed in developing recipes for 
the violation of Bell inequalities28 and Leggett-Garg  
inequalities29. These have also been recently used to 
study super-quantum discord30. 

Weak values and post-selection 

In the treatment of weak measurement given by Aharo-
nov, Albert and Vaidmann (AAV), first a subsequent pro-
jective measurement of a second observable B is carried 
out, followed by a post-selection of the output state into 
one of the eigenstates of the second observable, say |bj〉. 
The weak value of the observable A, which was measured 
in the weak regime, is then defined as 
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When the post-selected state bj is nearly orthogonal to the 
initial state |ψin〉 eq. (5) tells us that the weak value  
becomes very large, so large that it can lie outside the  
allowed range of the eigenvalue spectrum2,27. 
 The interpretation of weak values is a current topic of 
research in quantum information theory. Weak values can 
be complex and the real and the complex parts can be  
interpreted in terms of the displacements in the position 
and momentum spaces respectively, of the measuring  
device31. Weak values have been used to reinterpret the 
flow of time in quantum mechanics32 and in the direct 
measurement of the photon wavefunction18 and in the 
amplification of small signals33–35. Another interesting 
application of weak values is in connection with quantum 
Chesire cat experiments36,37. There have been criticisms 
of the method of post-selection as well, namely that the 
process of post-selection leads to throwing away data and 
can lead to suboptimal use of information from a meas-
urement. For discussions on the same see refs 38–40. 
However, we take a different approach in our work, 
where we do not do any post-selection, i.e. we consider 
weak measurements without weak values. 

Effect of weak and strong measurement on a qubit 

How exactly do we carry out the weak measurement? 
How much is the effect of a weak measurement on the 
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system? If we carry out weak measurements on all the 
members of an identically prepared ensemble, what hap-
pens to such an ensemble? We illustrate these points by 
taking an example. Consider a measurement of σz (z 
component of spin) of a qubit in a fixed quantum state. 
Following the general prescription given in eq. (2) we 
write the interaction Hamiltonian as 
 
 H = gδ (t – t′)σz ⊗ p, (6) 
 
assuming the initial state of the pointer to be the same as 
that given in eq. (1). The qubit is taken to be in a pure 
state given by 
 

 in| cos |0 sin |1 ,
2 2
α αψ 〉 = 〉 + 〉  (7) 

 
where |0〉 and |1〉 are the eigenstates of σz with eigen val-
ues +1 and –1 respectively. The combined state of the 
system and the pointer after the interaction is given by 
taking a special case of eq. (4) 
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At this stage the apparatus and the system are in an en-
tangled state. An observation of the apparatus will lead to 
values whose distribution is determined by the above 
state. It is clear from eq. (8) that the distribution of values 
of the apparatus is a Gaussian centred around +g for the 
system input state |0〉 and is a Gaussian centred around  
−g for the system input state |1〉. The width of the Gaus-
sian in each case is given by 1/κ. By tuning the parameter 
ε = κg we can change the nature of the measurement in 
terms of its strength. In our work we have taken g = 1 so 
that we have ε = κ. For large values of ε we have a 
 
 

 
 

Figure 1. The schematic diagram of our prescription involving two 
weak measurements of coupling strengths ε1 and ε2, allowing state re-
cycling, followed by a projective measurement. 

projective measurement, where the pointer distributions 
are well separated for the states |0〉 and |1〉. Therefore, 
each reading of the pointer tells us exactly what the state 
of the system is after the measurement. By repeatedly 
measuring the same observable we can calculate the ex-
pectation value of the observable. The state collapses 
completely in each measurement and there is no question 
of re-using these states. However, when the value of ε is 
small we have two Gaussians that overlap. From an ob-
servation of the pointer we do not learn with certainty as 
to what value to assign to the system spin z component. 
The pointer positions are weakly correlated with the  
eigenstates of σz. The state is only partially affected and 
there is a possibility of re-using the state. The effect of 
the weak measurement in this case can be explicitly cal-
culated and it turns out that there is very little change in 
the state of the system. The final state of the system can 
be calculated by taking the state in eq. (4) and then taking 
a partial trace over the apparatus’s degrees of freedom 
giving us the final mixed state corresponding to the sys-
tem alone 
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Since ε is small we can conclude that the disturbance 
caused to the system is also small. Furthermore, the  
disturbance can be controlled by changing ε. 

Quantum state estimation of a single qubit 

We now turn to the question of using weak measurements 
with state recycling for the problem of state estimation of 
a single qubit. 

The scheme 

In our prescription, we consider a finite size ensemble of 
pure or mixed states of a qubit. On every member of the 
ensemble we carry out a σz measurement whose strength 
is defined by the parameter ε1. We record the meter read-
ing in each case and keep the modified states after  
measurements to obtain a changed ensemble. This new 
ensemble is now used to measure σx in the same way but 
with a coupling strength ε2. Finally the resultant ensem-
ble is used to carry out projective measurement of σy on 
its members. The first two measurements are weak and 
the last measurement is strong or projective. To avoid 
statistical errors the results are averaged over many runs. 
The entire process is summarized in Figure 1. For both 
the weak measurements, consider a regime in which ε is 
neither too large to make the measurement projective, nor 
too small, as is done in traditional weak measurements. 
For such values of ε, the two Gaussians, representing the 
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pointer value distributions for the two eigen values of the 
observable, overlap partially with each other. When there 
is no overlap, a meter reading unambiguously indicates 
an outcome and we have a projective measurement. A 
meter reading corresponding to a point in the overlap re-
gion cannot be reliably correlated with the system being 
in one or the other eigenstate. To reduce this difficulty, 
let us define a region, midway between the centres of the 
two Gaussians, of width 2 a. We call it the discard region, 
which means that any pointer reading which falls in this 
region is rejected. For the case where we measure σz, all 
readings where the pointer position is to the right of this 
region are interpreted as indicating the value of σz to be 
+1 while the ones on the left of this region are interpreted 
as −1. Even when the outcome is discarded, the member 
of the ensemble is not rejected, but is retained to be re-
used for the next measurement. In summary, in this 
scheme as is shown in Figure 1 we first measure σz weak-
ly, followed by σx which is again measured weakly and 
last we make a projective measurement of σy. The entire 
simulation is run on identically prepared copies (ensem-
ble size) of the state of interest (pure or mixed). The  
simulation is repeated many times to avoid statistical er-
rors. 
 A general single qubit state is given by 
 
 ρ = ρ00|0〉〈0| + ρ01|0〉〈1| + ρ10|1〉〈0| + ρ11|1〉〈1|. (10) 
 
The diagonal elements are known as populations as they 
give the probabilities with which the states |0〉 and |1〉 are 
present in the mixture. The off-diagonal elements are 
known as coherences as these contain the phase informa-
tion of the states |0〉 and |1〉. When the state is coupled to 
a measurement device, as discussed above, the resultant 
state after unitary evolution for a strength ε, is 
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Let us consider taking out a member of the ensemble of 
system states and then coupling it with the apparatus. 
Now when the observer notes down the meter reading, 
one can see a particular reading which depends upon the 
initial states of the system and the meter and the coupling 
between the two. Though this process is not well under-
stood and von Neumann’s model is silent about this final 
step of collapse, it can be thought of as the action of the 
projector |q〉 〈q| on the meter state resulting in the meter 
reading q. 
 The probability density of obtaining the value q for the 
meter is therefore given by 
 
 P(q) = Tr(|q〉〈q|ρMD), (12) 
 
where the reduced density operator for the apparatus or 
the measuring device (MD) is obtained by taking a partial 
trace of the state ρ ′ over the system. 
 
 ρMD = Trsystem(ρ ′). (13) 
 
This probability density can now be used to calculate the 
probabilities of possible outcomes. For example, 
P(σz = 1) can be obtained by integrating the probability 
density from +a to ∞. Thus, the probabilities with which 
we obtain +1, −1 or ambiguous readings while measuring 
in the z-basis are calculated by integrating the above 
probability densities from +a to ∞, −∞ to −a and –a to +a 
respectively, and are given by 
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Further for the second weak measurement, the input state 
is the output from the first measurement described by an 
ensemble 1.ρ′  This ensemble is obtained from the state ρ ′ 
given in eq. (11) by taking a trace over the measuring de-
vice (apparatus) 
 
 1 MDTr ( ).ρ ρ′ ′=  (15) 
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The probabilities with which we obtain the value +1, −1 
or ambiguous readings while measuring in the σx-basis 
are given by 
 

 (| ; )xP σ +〉  
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After this measurement if we trace over the second appa-
ratus we obtain the ensemble represented through a density 
operator 2.ρ′′  Lastly we perform a regular strong (projec-
tive) measurement of σy and the probabilities are given by 
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In the above equations, we have used 
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These measurements when repeated over the entire  
ensemble give us an estimate of the expectation values of 
σx, σy and σz, which in turn help us locate the co-
ordinates (x, y, z) of the point inside the Bloch sphere 
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where ρ, 1ρ′  and 1ρ′′  denote the initial state of the system 
and those after the first and second measurements respec-
tively. We note that ε1 and ε2 appear in eq. (19) because 
we are interested in the expectation values of σx, σy and 
σz for the original state ρ of the system. These results are 
valid only for small values of ε1 and ε2. In subsequent 
studies we work with the simplification ε1 = ε2 = ε. 
 For a scheme based purely on projective measure-
ments, the ensemble is divided into three equal parts and 
direct measurements of σx, σy and σz are performed inde-
pendently. This leads to a direct estimate of the expecta-
tion values of these operators giving the values of (x, y, z) 
and hence an estimate of the state. The error in these es-
timates depends upon the size of the ensemble. We simu-
late both these schemes and compare the performance of 
our method with the one based on projective measure-
ments. 
 We recall that a qubit can be represented as a point in a 
Bloch sphere9,41. The Bloch sphere is a unit sphere the 
pure and mixed states of a qubit lying on the surface and 
inside the sphere respectively. The state corresponding to 
the point (x, y, z) is given by 
 

 1 ( ),
2

I nρ σ= + ⋅  (20) 

 
where ˆ ˆ ˆ ˆn xx yy zz= + +  is a vector with x = 〈σx〉, y = 〈σy〉 
and z = 〈σz〉. The pure states correspond to the case when 
the point lies on the surface and in that case n  is a unit 
vector. The expectation values of σx, σy and σz serve as a 
direct means to calculate the values of (x, y, z). Therefore, 
to carry out state estimation of a given state of a single 
qubit, we need to estimate the numbers (x, y, z). The per-
formance of our scheme is quantified using the fidelity 
measure 
 
 f = 1 – [(x – xest)2 + (y – yest)2 + (z – zest)2]. (21) 

Average performance over Bloch sphere 

We move on to test our scheme on a large number of ran-
domly generated states of a qubit and look for the average 
performance of the scheme over the Bloch sphere. The 
process is carried out for 2000 states generated randomly. 
We also study the dependence on ensemble size and use 
ensemble sizes of 30 and 60. For each case the simulation 
is repeated 1000 times to average over statistical fluctua-
tions. 
 While we average the fidelity over all states to obtain 
the average fidelity we also keep track whether the 
scheme outperformed or underperformed as compared to 
the projective measurement scheme in each case. For the 
ensemble size of 30, the results of this simulation are pre-
sented in two different ways in Figure 2. We calculate the 
mean fidelities averaged over these states, ,f  with and 
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without discard, which are then plotted against ε in  
Figure 2 a. This graph shows an improvement as we in-
crease the amount of discard. We also present our results 
through a score plot, where we compute the number of 
states out of 2000 starting states for which our scheme 
outperforms the projective measurement scheme. The 
score plot is described in Figure 2 b. Interestingly, this 
number crosses the 50% mark for a threshold value of the 
discard parameter. 
 When a study of mean fidelity, averaged over 2000 
states, f  vs ε was done, it turns out that although on the 
average the performance of projective measurements is 
better, if ambiguous meter readings are discarded, then 
the number of states for which our tomography scheme is 
successful, goes up. In fact, number of successes out of 
2000 for the discard parameter values of 0, 0.2, 0.4, 0.6 
and 0.8 are 923, 973, 1023, 1051 and 1071 respectively. 
This we think is a clear evidence that our scheme has the 
potential of unearthing more information than projective 
measurements under certain circumstances. In particular, 
if we are given 30 copies of a unknown state of a qubit, 
 
 

 
 

Figure 2. a, Plot of the mean fidelity f  for a state with ensemble 
size 30 and mean calculated over 1000 runs, further averaged over 
2000 randomly chosen states, as a function of the coupling strength ε. 
Different curves represent different values of the discard parameter a. 
The discard parameter used are a = 0 (dotted thick line), a = 0.2 (dotted 
line), a = 0.4 (dotted line), a = 0.6 (dotted line) and a = 0.8 (solid line). 
The straight dotted line represents projective measurements. The solid 
line comes very close to the projective measurements. b, Plot of the 
number of times our schemes outperform the projective measurement 
based scheme for the 2000 randomly chosen states of the qubit as a 
function of the discard parameter a. 

our scheme will be a better choice for carrying out state 
tomography. 
 We now turn to testing our scheme with increasing  
ensemble size. We repeat the simulation in exactly the 
same way for the case of ensemble size 60. The results 
are presented in a similar way in Figure 3. Increasing the  
ensemble size clearly reduces the efficacy of our scheme 
as compared to projective measurements. The score plot 
show that our scheme outperforms the projective meas-
urement scheme for ensemble size of 60 for lesser num-
ber of states and the number is less than 50%. Therefore 
we conclude that our scheme is preferable only when we 
have a small ensemble size. We would like to clarify that 
this is not due to statistical fluctuations as we have taken 
the average over a large number of runs even when the 
ensemble size is small. For a more extensive study of 
state estimation by this scheme see ref. 24. 

Concluding remarks 

We have presented a scheme for state estimation based on 
weak measurements. The weak or unsharp measurements 
 

 
 

Figure 3. a, Plot of the mean fidelity f  for a state with ensemble 
size 60 and mean calculated over 1000 runs, further averaged over 
2000 randomly chosen states, as a function of the coupling strength ε. 
Different curves represent different values of the discard parameter a. 
The discard parameter used are a = 0 (dotted thick line), a = 0.2 (dotted 
line), a = 0.4 (dotted line), a = 0.6 (dotted line) and a = 0.8 (solid line). 
The straight dotted line represents the projective measurements. b, Plot 
of the number of times our schemes outperform the projective meas-
urement based scheme for the 2000 randomly chosen states of the  
qubit as a function of the discard parameter a. The success rate goes 
down with an increase in ensemble size from 30 to 60. 
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that we have used are those where the apparatus system 
coupling is weak. In this regime, although the informa-
tion obtained from the system is limited, the correspond-
ing disturbance caused to the state is also small. Thus the 
possibility of re-using the states becomes available. We 
show that for small ensemble sizes, the weak measure-
ment based scheme can outperform the projective meas-
urement based scheme. This opens up new possibilities 
for extracting information from quantum systems. 
 We have recently extended these results to the domain 
of continuous variable systems with one degree of free-
dom. We explore how a weak measurement tomography 
scheme can be used to estimate the Gaussian state of such 
systems. We have interesting and encouraging prelimi-
nary findings in this context, which will be presented in a 
forthcoming publication. 
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