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We discuss a recently proposed class of incompatibil-
ity measures for quantum measurements, which is
based on quantifying the effect of measurements of
one observable on the statistics of the outcome of an-
other. We summarize the properties of this class of
measures, and present a tight upper bound for the in-
compatibility of any set of projective measurements in
finite dimensions. We also discuss non-projective
measurements, and give a non-trivial upper bound on
the mutual incompatibility of a pair of Luders instru-
ments. Using the example of incompatible observables
that commute on a subspace, we elucidate how this
class of measures goes beyond uncertainty relations in
quantifying the mutual incompatibility of quantum
measurements.
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Introduction

THE existence of incompatible observables in quantum
theory is crucial to realizing several quantum information
theoretic tasks, including most quantum cryptographic
protocols. Quantifying the mutual incompatibility of a set
of quantum measurements is therefore a question of some
interest, both in quantum foundations and in quantum
information theory.

One approach for quantifying the incompatibility of a
set of quantum observables is based on uncertainty rela-
tions. In particular, lower bounds on the average uncer-
tainties associated with a set of observables, obtained in
the form of variance-based' or entropic’ uncertainty rela-
tions, are often thought to provide an appropriate measure
of incompatibility. However, this approach does not yield
an incompatibility measure valid for all sets of observ-
ables, since the lower bound on the average uncertainty
vanishes even when the observables in question are not
compatible, but share a single common eigenstate.

This has motivated the study of operational measures
of incompatibility that go beyond uncertainty relations.
One such measure based on the idea of accessible fidel-
ity*, for example, quantifies the incompatibility of a set of
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observables as manifest in the nonorthogonality of their
eigenstates”.

In this article we discuss a different approach for quan-
tifying incompatibility, based on estimating the change
due to a measurement of one observable on the statistics
of the outcomes of another’. If a pair of observables A
and B does not commute, they are not jointly measurable.
This implies that there exist states for which a measurement
of A disturbs the system in such a way that a subsequent
measurement of B yields probabilities that are different
from those associated with a measurement of B alone.
The distance between these two probability distributions —
one resulting from a B-measurement following an A-measu-
rement and the other resulting from a measurement of B
alone — is indeed a measure of how the measurement of A
affects the statistics of the outcomes of a measurement of
B, for each given state. It was proposed that maximizing
this over all the states of the system yields a measure of
incompatibility that is naturally state-independent’.

By choosing different measures of distance between
probability distributions, a class of incompatibility meas-
ures is obtained. These measures indeed go beyond un-
certainty relations in quantifying incompatibility — they
always yield a strictly positive value even if the non-
commuting observables in question share a common
eigenstate, unlike uncertainty relations which give a zero
bound in such cases. In other words, the distance-based
incompatibility measures vanish iff the observables in
question commute and are strictly non-zero otherwise.

The article is organized as follows. First, we briefly
review the earlier approach of using uncertainty relations
to quantify incompatibility in quantum theory. The dis-
tance-based incompatibility measures are then defined
and their basic properties summarized. Tight upper
bounds on the incompatibility measures are presented next.
Exact expressions for the mutual incompatibility of a pair
of qubit observables and for a specific example of incom-
patible observables that commute on a subspace are also
discussed.

Quantifying incompatibility via uncertainty
relations

The first quantitative statement on incompatibility of
non-commuting observables was formulated in terms of
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variances for canonically conjugate variables'. In particu-
lar, for a pair of observables A and B, the Robertson—
Schrédinger relation gives,

(A, AXA,,B) > % [ I[A.B] [y,

where Ay, X =y [ X? [y) = X [p)’ (X=AB) is
the variance associated with a measurement of X on dis-
tinct yet identically prepared copies of the state |y). Sub-
sequently, it was proposed to quantify uncertainty using
entropic quantities®.

For an observable A=32 aiPiA measured on state p,
the probability distribution Prﬁ ~ {pﬁ(i)} over the out-
comes of the measurement is

Pr): pl(i) = t[R pl.

For a set of measurements {A;, A,, ..., AL} with a finite
set of outcomes, an entropic uncertainty relation (EUR) is
a lower bound of the form

L
[{ZS(Aj;p)]zcs({A,-}x vp,

i1

where S(Aj;p) = S({pﬁj (i)}) is a valid entropic function
of the probability distribution Pr,’. The lower bound
cs({Aj}) is often thought of as a measure of the mutual in-
compatibility of the set of measurements {A;, A,, ..., A_}.

There always exists a state p such that S(A;; p) =0 for
one of the measurements Aj, namely, an eigenstate of A;.
Therefore, for a set of L observables in a d-dimensional
space, the uncertainty lower bound satisfies

1
(1—Ijlogd > 5 ({A}) 2 0.

If CS({_AJ-}):(I—%)logd, the set {A;} is maximally in-
compatible, implying a maximally strong uncertainty re-
lation. However, Cs({A;}) is not a satisfactory measure of
incompatibility for all sets of incompatible observables: it
can attain a trivial (zero) value even when observables do
not commute, whenever they have a single common
eigenvector.

Distance-based incompatibility measures

An alternative, operational approach to quantifying
incompatibility is based on estimating the change due to
a measurement of one observable on the statistics of the
outcomes of another which is measured subsequently. For
a pair of observables A, B, we may consider the following
two probability distributions. Let Prg ~ {pg(j)} denote
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the probability distribution over the outcomes of a

measurement of observable B in state p, and
Pr;\_’B ~{q;\_’B(j)} denote the probability distribution

over the outcomes of a B measurement when it follows a
measurement of A on the same state p. If A and B com-
mute, then the two distributions are the same on all
states.

However, if A, B do not commute, there exist states for
which a measurement of A disturbs the system, so that
Pr;\_’B and PrBE are different. Maximizing the distance
between Prﬁ ~® and Pr),3 over all the states of the system
gives a measure of incompatibility that is naturally state-
independent.

We consider the following well-known measures of
distance® between a pair of discrete probability distribu-

tions P ~ {pi} and Q ~ {q;}:

(i) Variational or L;-distance:
1
Dy (P.Q) =EZ| P —Gil.

(i1) Fidelity-based distance:

Dr (P,Q) =1~ (F(P, Q)’,

where F(P, Q) (fidelity or Bhattacharyya distance) is de-
fined as F(P, Q) = X; \/p; /0 -

(iii) Chebyshev or L,-distance:
D, (P.Q)= m?x| P — il
All three measures satisfy
0<D,(p,Q) <1, (aefl,F,o}),
with D (P, Q) = 0 if and only if P and Q are identical.
Corresponding to the distance measures, we are natu-
rally led to the following measures of incompatibility of

observable A with B’

(1) L,-distance based incompatibility measure:

Q(A—B)= SI;p D, (Pr)”% Pr)).

(i1) Fidelity-based incompatibility measure:

Qr (A— B) =sup[l- F*(Pr)® Pr))].
P

(ii1) L,-distance based incompatibility measure:
Q,(A— B)=supD,, (Pr)”",Pry).
P
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All three incompatibility measures satisfy
0<9,(A>B)<1, e{l,F, oo},

where the lower bound Q. (A — B) =0 is attained iff A
and B commute. The measures defined are not symmetric
in general: there exist observables A, B, for which,
QA - B)# Q,B — A). The incompatibility Q,(A, B)
of the pair of observables A, B, is therefore defined as

Q,(A>B)+Q,(B—> A

Q,(AB)= 1

This ensures that Q,(A, B) is large when both Q,(A — B)
and Q4B — A) are large, and vice-versa. The incompati-
bility of a set of N observables {A;, A,, ..., Ay} is there-
fore given by

QA Ao ) =253 0, (A = A,
ij

A relation between incompatibility and disturbance

For any observable A~{PiA}, the post-measurement
transformation of state p after a measurement of A is
described by a CPTP map &, given by

£%(p)= R PR".

The distance between the states £(p) and p is a valid
measure of the disturbance caused to state p by a meas-
urement of A%,

The maximal disturbance due to the measurement of A
can therefore be estimated by either of the following
measures

max 1
DM (A =sup=tr[EX(p) - p|,
p 2

FX(A) = 1=[F ™ (A = 1-[inf F(£*(p), )T
P

It has been shown that the incompatibility of A with B, as
quantified by the measures {Q,(A — B)}, is always up-
per bounded by the maximal disturbance due to observ-
able A,

Lemma 1. For a pair of observables A and B with
purely discrete spectra, the mutual incompatibility
O A —>B) (ae {l,F,©}) is bounded above by the
maximal disturbance due to the measurement of A. That
is
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Q,(A—B)< D™V (A), a=1,0,
Or (A— B)< D™ (A) =1-[F™™ (AP

The above relations between incompatibility and distur-
bance are a direct consequence of the following relations
between the quantum distance measures and their classi-
cal counterparts’

D (p,0)= max D PrM,PrM s
\(pr0)= max. Dy(Pry Pry)

F(p.0) =min F(PrM, Prh,

where the optimization is over positive operator valued
measures (POVMs).

Evaluating the incompatibility measures {Q,}

Using the relation stated in Lemma 1, we may obtain upper
bounds on the mutual incompatibility of any pair of observ-
ables. We state below the upper bound obtained for the
fidelity-based incompatibility measure Qg(A, B).

Theorem 2. For a pair of observables A and B in a
d-dimensional space, the mutual incompatibility of A and
B is bounded by

1(, 1
O (A, B)sz[l—aj.

The upper bound is attained iff A and B are non-
degenerate observables associated with mutually unbi-
ased bases.

Recall that a pair of non-degenerate observables A ~{|a;)}
and B ~{|bj)} is said to be mutually unbiased iff |<ai|b,-)|2 =
1/d, Vi, j.

Theorem 2 has the following important corollary: the
average pairwise mutual incompatibility of a set of N
observables {Aj, A,, ..., Ay} in a d-dimensional space is
bounded by

Or (A P AY) < (1—%)(1_8.

The bound is attained iff the observables are non-
degenerate and associated with mutually unbiased bases.

It is easy to see that the measures Q;(A — B) and
Q.(A — B) also attain the same value for a pair of mutu-
ally unbiased observables

Q(A>B)=0Q, (A B):l—%.
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It would therefore seem reasonable to conjecture that
both Q(A, B) and O, (A, B) are also bounded above by
%(l—%), for any pair of observables in a d-dimensional
space.

Incompatibility of qubit observables

Evaluating the incompatibility of a general set of observ-
ables involves solving a hard optimization problem.
However, all three measures Q;,, 9., and Of can be
evaluated exactly for a pair of qubit observables’. Con-
sider a pair of observables A, B on a two-dimensional
space with corresponding Bloch sphere representations
A=ol+ xa-¢ and B:ﬂlf[-i-ﬁzt;'&, where §,6€R3
are unit vectors and {¢;, fi} € R. Using this parameteri-
zation, it is possible to show that

0, (A>B)=Q(A> B):%./l—(éﬁ)z,
QF(A—>B)=%(1—(3~5)2)- ()

As expected, all three measures coincide for the limiting
cases. That is, (a) when A and B commute, (a-b)* =1 and
all three measures give 0, and, (b) when A and B are mu-
tually unbiased, a-b =0, and Q;(A > B)=Q.,(A—>B)=
Or (A > B)=1/2. For any other pair of qubit observ-
ables, the fidelity-based measure Of (A, B) is in general
smaller than Q,(A, B) and QO.(A, B).

Non-projective measurements: incompatibility of a
pair of Liders instruments

The measures of incompatibility defined above can also
be extended to the case of general quantum measure-
ments, beyond the class of projective measurements.
Consider the class of POVMs A with discrete outcomes
described by a collection of positive operators
{0 < A; <1} satisfying >A; = 1. One simple implementa-
tion of a measurement of a POVM A is given by the
so-called Liders instrument ®%, in which the post-
measurement state after a measurement of observable A
on state p is given by’

(Dé(p)zzpﬁl/szI/Z~
i=1

The incompatibility of a pair of POVMs A and B, with
finite number of outcomes N and Ng, and corresponding
Liiders channels

NA NB
o7 ()= ApA”% ©L(p)=D B pBj7,
i=1 j=1
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can be shown to be bounded by’

1
O (@7 > dY)y<1-——.
I\IA

Observables that commute on a subspace

Finally, we consider an example which shows clearly that
the class of measures {Q,} goes beyond uncertainty rela-
tions in quantifying incompatibility. Consider a pair of
non-degenerate observables A, B that commutes over a
subspace of dimension d,, such that, A, B share d
common eigenvectors, and are mutually unbiased in the
(d — d;) dimensional subspace where they do not com-
mute.

In other words, the eigenstates {|aj)} and {[b;)} of A
and B satisfy

|a|>:‘b|>, Vi=l,...,dc,

for i<dg,j>d,

0
| (a; [bj) = 0 for i>d,,j<d,
1

W for i,j>dc

c

The mutual incompatibility of A and B is then given by,

1 1
QF(AaB)_E[l_d —dcj.

Clearly, Op(A,B)>0 for 0<d.<d—1. On the other
hand, the entropic uncertainty lower bound vanishes for
such a pair of observables, for any d. > 0. Interestingly,
even optimal entropic uncertainty relations formulated for
the successive measurement scenario yield a trivial lower
bound of zero, when the observables in question share a
single eigenvector''.

Summary

We have summarized a novel approach to quantify the
mutual incompatibility of quantum observables, in terms
of the change caused by a measurement of one observ-
able on the statistics of the outcomes of a subsequent
measurement of the other observable. The class of meas-
ures discussed here is indeed distinct from the incompatibil-
ity measure defined in Bandyopadhyay and Mandayam®
based on the accessible fidelity, though all measures co-
incide for the limiting cases of commuting and mutually
unbiased observables. The operational setting motivating
these measures is a commonly encountered one in the
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context of quantum cryptography, and it is the subject of
ongoing work to see if these measures can play a direct
role in analysing the security of quantum cryptographic
protocols. While the incompatibility measures {Q,} are
hard to evaluate in general, recent investigations show
that non-trivial lower bounds can be obtained’, which are
efficiently computable using convex optimization tech-
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