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Unitary evolution and projective measurement are 
fundamental axioms of quantum mechanics. Even 
though projective measurement yields one of the ei-
genstates of the measured operator as the outcome, 
there is no theory that predicts which eigenstate will 
be observed in which experimental run. There exists 
only an ensemble description, which predicts prob-
abilities of various outcomes over many experimental 
runs. We propose a dynamical evolution equation for 
the projective collapse of the quantum state in indi-
vidual experimental runs, which is consistent with the 
well-established framework of quantum mechanics. In 
case of gradual weak measurements, its predictions 
for ensemble evolution are different from those of the 
Born rule. It is an open question whether or not suita-
bly designed experiments can observe this alternate 
evolution.  
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The problem 

THIS talk is about filling a gap in the existing framework 
of quantum mechanics. At its heart, quantum mechanics 
contains two distinct dynamical rules for evolving a state. 
One is unitary evolution, specified by the Schrödinger 
equation 
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It is continuous, reversible and deterministic. The other is 
the von Neumann projective measurement, which gives 
one of the eigenvalues of the measured observable as the 
measurement outcome and collapses the state to the cor-
responding eigenvector. With Pi denoting the projection 
operator for the eigenvalue λi, 
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This change is discontinuous, irreversible and probabilis-
tic in the choice of ‘i’. It is consistent on repetition, i.e. a 
second measurement of the same observable on the same 
system gives the same result as the first one.  
 Both these evolutions, not withstanding their dissimilar 
properties, take pure states to pure states. They have been 
experimentally verified so well that they are accepted as 
axioms in the standard formulation of quantum mechan-
ics. Nonetheless, the formulation misses something: 
While the set of projection operators {Pi} is fixed by the 
measured observable, only one ‘i’ occurs in a particular 
experimental run, and there is no prediction for which ‘i’ 
that would be. 
 What appears instead in the formulation is the prob-
abilistic Born rule, requiring an ensemble interpretation 
for verification. Measurement of an observable on a  
collection of identically prepared quantum states gives 
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This rule evolves pure states to mixed states. All predicted 
quantities are expectation values obtained as averages over 
many experimental runs. The appearance of a mixed state 
also necessitates a density matrix description, instead of a 
ray in the Hilbert space description for a pure state. 
 Over the years, many attempts have been made to 
combine these two distinct quantum evolution rules in a 
single framework. Although the problem of which ‘i’ will 
occur in which experimental run has remained unsolved, 
progress has been achieved in understanding the ‘ensem-
ble evolution’ of a quantum system. 

Environmental decoherence 

The system, the measuring apparatus as well as the envi-
ronment – all are ultimately made from the same set of 
fundamental building blocks. With quantum theory suc-
cessfully describing the dynamical evolution of all the 
fundamental blocks, it is logical to consider the proposi-
tion that the whole universe is governed by the same set 
of basic quantum rules. The essential difference between 
the system and the environment is that the degrees  
of freedom of the system are observed while those of  
the environment are not. (In a coarse-grained view,  
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unobserved degrees of freedom of the system can be 
treated in the same manner as those of the environment.) 
All the unobserved degrees of freedom then need to be 
‘summed over’ to determine how the remaining observed 
degrees of freedom evolve. 
 No physical system is perfectly isolated from its sur-
roundings. Interactions between the two, with a unitary 
evolution for the whole universe, entangles the observed 
degrees of freedom of the system with the unobserved 
degrees of freedom of the environment. When the unob-
served degrees of freedom are summed over, a pure but 
entangled state for the universe reduces to a mixed state 
for the system 
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In general, the evolution of a reduced density matrix is 
linear, Hermiticity preserving, trace preserving and posi-
tive, but not unitary. Using a complete basis for the envi-
ronment {|μ〉E}, such a superoperator evolution can be 
expressed in the Kraus decomposition form 
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This description explains the probabilistic ensemble evo-
lution of quantum mechanics in a language similar to that 
of classical statistical mechanics. But it still has no me-
chanism to explain the projective collapse of a quantum 
state. (Ensemble averaging is often exchanged for ergodic 
time averaging in equilibrium statistical mechanics, but 
that option is not available in unitary quantum mechan-
ics.) 
 Generically the environment has a much larger number 
of degrees of freedom than the system. Then, in the Mar-
kovian approximation which assumes that information 
leaked from the system does not return, the evolution of 
the reduced density matrix can be converted to a differen-
tial equation. With the expansion 
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eq. (5) leads to the Lindblad master equation1,2 
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The terms on the r.h.s. involving sum over μ modify the 
unitary Schrödinger evolution, while Tr(dρ/dt) = 0 pre-
serves the total probability. When H = 0, the fixed point 
of the evolution is a diagonal ρ, in the basis that diago-
nalizes {Lμ}. This preferred basis is determined by the 
system-environment interaction. (When there is no dia-
gonal basis for {Lμ}, the evolution leads to equipartition, 
i.e. ρ ∝ I.) Furthermore, the off-diagonal components of 
ρ decay due to destructive interference among environ-
mental contributions with varying phases, which is 
known as decoherence. 
 This modification in the evolution of a quantum sys-
tem, due to its coupling to unobserved environmental  
degrees of freedom provides the correct ensemble inter-
pretation and a quantitative understanding of how the  
off-diagonal components of ρ decay3,4. Still the quantum  
theory is incomplete and we need to look further to solve 
the ‘measurement problem’ till it can predict the outcome 
of a particular experimental run. 

Going beyond 

A wide variety of theoretical approaches have been pro-
posed to get around the quantum measurement problem. 
Some of them are physical, e.g. introduction of hidden 
variables with novel dynamics, and breakdown of quan-
tum rules due to gravitational interactions. Some others 
are philosophical, e.g. questioning what is real and what 
is observable, in principle as well as by human beings 
with limited capacity. Given the tremendous success of 
quantum theory, realized with a ‘shut up and calculate’ 
attitude, and the stringent constraints that follow, none of 
the theoretical approaches have progressed to the level 
where they can be connected to readily verifiable experi-
mental consequences. 
 Perhaps the least intrusive of these approaches is the 
‘many worlds interpretation’5. It amounts to assigning a 
distinct world (i.e. an evolutionary branch) to each prob-
abilistic outcome, while we only observe the outcome 
corresponding to the world we live in. (It is amusing to 
note that this discussion meeting (held at IISc, 22–24  
October 2014) is being held in a place where the slogan 
of the Department of Tourism is ‘One state, Many 
worlds’6.) Such an entanglement between the measure-
ment outcomes and the observers does not violate any 
quantum principle, although the uncountable proliferation 
of evolutionary branches it supposes is highly ungainly. 
Truly speaking, the many worlds interpretation bypasses 
the measurement problem instead of solving it. 
 With the technological progress in making quantum 
devices, we need a solution to the measurement problem, 
not only for formal theoretical reasons, but also for in-
creasing accuracy of quantum control and feedback4. A 
practical situation is that of the weak measurement7, typi-
cally realized using a weak system–apparatus coupling, 
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where information about the measured observable is  
extracted from the system at a slow rate. Such a stretching 
out of the timescale allows one to monitor how the sys-
tem state collapses to an eigenstate of the measured  
observable, and to track properties of the intermediate 
states created along the way by an incomplete measure-
ment. Knowledge of what really happens in a particular 
experimental run (and not the ensemble average) would 
be invaluable in making quantum devices more efficient 
and stable. 

A way out 

Let us assume that the projective measurement results 
from a continuous geodesic evolution of the initial quan-
tum state to an eigenstate |i〉 of the measured observable 
 
 | ( ) | / | ( ) | |, ( ) (1 ) ,i i i iQ s Q s Q s s I sPψ ψ ψ〉 → 〉 〉 = − +  (8) 

 
where the dimensionless parameter s ∈ [0, 1] represents 
the ‘measurement time’. The density matrix then evolves 
as, maintaining Tr(ρ) = 1, 
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Expansion around s = 0 yields the differential equation 
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This simple equation describing an individual quantum 
trajectory has several remarkable properties. We can ex-
plore them, putting aside the argument that led to the eq-
uation. Explicitly, 
 
• In addition to maintaining Tr(ρ) = 1, the nonlinear 

evolution preserves pure states. ρ2 = ρ implies ρPiρ = 
ρTr(Piρ), and then 
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  For pure states, with | (d / d ) | 0,sψ ψ〈 〉 =  we can also 

write ( / d ) | ( | | ) | .i id s P Pψ ψ ψ ψ〉 = − 〈 〉 〉  So the com-
ponent of the state along Pi grows at the expense of 
the other orthogonal components. 

• Each projective measurement outcome is the fixed 
point of the deterministic evolution 
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  The fixed point nature of the evolution makes the 
measurement consistent on repetition. Note that one-
dimensional projections satisfy PiρPi = Pi Tr(Piρ). 

• In a bipartite setting, the complete set of projection 
operators can be labelled as {Pi} = {Pi1 ⊗ Pi2}, with  
∑iPi = I. Since the evolution is linear in the projection 
operators, a partial trace over the unobserved degrees 
of freedom produces the same equation (and hence the 
same fixed point) for the reduced density matrix for 
the system. Purification is thus a consequence of the 
evolution; for example, a qubit state in the interior of 
the Bloch sphere evolves to the fixed point on its sur-
face. 

• At the start of measurement, we expect the parameter 
s to be proportional to the system–apparatus interac-
tion, s ~ ||HSA||t. To understand the approach towards 
the fixed point, let iPρ ρ≡ −  for a one-dimensional 
projection, which satisfies 

 

 d 2 2 Tr( ).
d i i iP P P
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  It follows that towards the end of measurement 

s → ∞, and convergence to the fixed point is exponen-
tial with 2|| || ~ e ,sρ −  similar to the charging of a  
capacitor. 

 
These properties make eq. (10) a legitimate candidate for 
describing the collapse of a quantum state during projec-
tive measurement. It represents a superoperator that pre-
serves Hermiticity, trace and positivity, but is nonlinear. 
Because of its non-stochastic nature, it can model the 
single quantum trajectory specific to a particular experi-
mental run. 
 Although eq. (10) does fill a gap in solving the meas-
urement problem, with the preferred basis {Pi} fixed by 
the system–apparatus interaction, we still need a separate 
criterion to determine which Pi will occur in a particular 
experimental run. This is a situation reminiscent of spon-
taneous symmetry breaking8, where a small external field 
(with a smooth limit to zero) picks the direction, and the 
evolution is unique given that direction (stability of the 
direction depends on the thermodynamic size of the sys-
tem). We do not have a prescription for such a choice,  
also referred to as a ‘quantum jump’. The stochastic  
ensemble interpretation of quantum measurements is  
reproduced, according to the Born rule, when a particular 
Pi is picked with probability Tr(Piρ(s = 0)). 

Combining trajectories 

The probabilistic Born rule for measurement outcomes, 
eq. (3), is rather peculiar despite being tremendously suc-
cessful. The reason is that the probabilities are deter-
mined by the initial state ρ(s = 0) and do not depend on 



SPECIAL SECTION: QUANTUM MEASUREMENTS 
 

CURRENT SCIENCE, VOL. 109, NO. 11, 10 DECEMBER 2015 2020 

the subsequent evolution of the state ρ(s ≠ 0). Any  
attempt to describe projective measurement as continuous 
evolution would run into the problem that the system 
would have to remember its state at the instant the meas-
urement started until the measurement is complete. This 
is a severe constraint for any theory of weak measure-
ment, where the measurement timescale is stretched out, 
and we can rightfully question whether the Born rule 
would hold in such a case. 
 It is possible to reconcile the Born rule with continuous 
projective measurements, by invoking retardation effects 
arising from special relativity for the speed of informa-
tion travel between the system and the apparatus. Then 
the Born rule will be followed by sudden impulsive mea-
surements with a duration shorter than the retardation 
time, but it may be violated by gradual weak measure-
ments with a duration longer than the retardation time. 
We look beyond the Born rule satisfying possibility that 
the evolution trajectory corresponding to Pi is chosen at 
the start of the measurement and remains unaltered there-
after, in order to look for more general evolutionary 
choices that may be suitable for weak measurements. 
 Let wi be the probability weight of the evolution trajec-
tory for Pi, with wi ≥ 0 and ∑iwi = 1. We have wi(s = 0) = 
ρii(s = 0) in accordance with the Born rule, while 
wi(s ≠ 0) are some functions of ρ (s). Then the trajectory 
averaged evolution of the density matrix during meas-
urement is given by 
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It still preserves pure states, as per eq. (11). In terms of a 
complete set of projection operators, we can decompose 
ρ = ∑jkPjρPk. The projected components evolve as 
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This evolution obeys the identity, independent of the 
choice of {wi}, 
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with the consequence that the diagonal projections of ρ 
completely determine the evolution of all the off-diagonal 
projections. The diagonal projections are all non-
negative. For one-dimensional projections, Pjρ(s)Pj = 
dj(s)Pj with dj ≥ 0, and we obtain 
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In particular, phases of the off-diagonal projections PjρPk 
do not evolve, in sharp contrast to what happens during 
decoherence. Also, their asymptotic values, i.e. 
Pjρ(s → ∞)Pk, may not vanish whenever more than one 
diagonal Pjρ(s → ∞)Pj remain nonzero. In a sense, deco-
hering measurements select the Cartesian components of 
the quantum state in the eigenbasis provided by the sys-
tem–apparatus interaction and lose information about the 
angular coordinates, while the collapse equation selects 
the radial components of the quantum state around the 
measurement fixed points leaving the angular compo-
nents unchanged. Mathematically speaking, both meas-
urement schemes are consistent. 
 It is easily seen that when all the wi are equal, no in-
formation is extracted from the system by the measure-
ment and ρ does not evolve. More generally, the diagonal 
projections evolve according to 
 

d 2 2 ( ) .
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Here, with ∑idi = 1, ∑i wi di ≡ w  is the weighted average 
of {wi}. Clearly, the diagonal projections with wj > w  
grow and the ones with wj < w  decay. Any dj that is  
zero initially does not change and the evolution is there-
fore restricted to the subspace spanned by all the 
Pjρ(s = 0)Pj ≠ 0. Also, all the measured observable eigen-
states, i.e. ρ = Pj with dj = 1, are fixed points of the evo-
lution. These features are stable under small perturbations 
of the density matrix. 
 Other fixed points of eq. (18) correspond to ‘degener-
ate’ situations where some of the wj (say n > 1 in number) 
are equal and all the others vanish, i.e. wj ∈ {0, 1}.n  
These fixed points are unstable under asymmetric pertur-
bations that lift the degeneracy. It may be that other terms 
in the evolution Hamiltonian, which have been ignored 
throughout in our measurement description and whose 
contribution would have to be added to eq. (14) in  
describing complete evolution of the system, can stabilize 
them and make the evolution converge towards an n-dim 
degenerate subspace. 
 An appealing choice for the trajectory weights is the 
‘instantaneous Born rule’, i.e. wj = B

jw  ≡ Tr(Pjρ(s)) 
throughout the measurement process. That avoids logical 
inconsistency in weak measurement scenarios, where one 
starts the measurement, pauses somewhere along the way, 
and then restarts the measurement. In this situation, the 
trajectory averaged evolution is 
 

 B B B 2d ( ) 2 ( ) .
d j k j k j k i

i

P P P P w w w
s

ρ ρ
⎛ ⎞
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⎝ ⎠

∑  (19) 
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This evolution converges towards the n-dimensional sub-
space specified by the dominant diagonal projections of 
the initial ρ(s = 0). It is deterministic and does not follow 
eq. (3). The measurement result remains consistent under 
repetition though. 
 The evolution can be made stochastic, in a manner simi-
lar to the Langevin equation, by adding noise to the 
weights wi while still retaining ∑iwi = 1. The weak meas-
urement process is expected to contribute such a noise9–11. 
The resultant evolution and its dependence on the magni-
tude of the noise need to be investigated. 

Relation to the master equation 

The master equation is obtained assuming that the envi-
ronmental degrees of freedom are not observed and hence 
are summed over. On the other hand, the degrees of free-
dom corresponding to the measured observable are ob-
served in any measurement process with a definite 
outcome and cannot be summed over. In analysing the 
measurement process, we need to keep track of only 
those degrees of freedom of the apparatus that have a 
one-to-one correspondence with the system’s eigenstates, 
and the rest can be kept aside. The crucial difference  
between the states of the system and the apparatus is that 
the system can be in a superposition of the eigenstates, 
but the apparatus has to end up in one of the pointer 
states only (and not their superposition). 
 In the traditional description, at the start of the meas-
urement the joint state of the system and the apparatus 
can be chosen to be ∑ici|i〉S|0〉A, with ∑i |ci|2 = 1. The sys-
tem–apparatus interaction then unitarily evolves it to the 
entangled state S A| | .i ic i iΣ 〉 〉  This evolution is a con-
trolled unitary transformation (and not a copy operation).  
The preferred measurement basis is the Schmidt decom-
position basis, ensuring a perfect correlation between the 
system eigenstate |i〉S and the measurement pointer state 

A| .i 〉  In particular, the reduced density matrices of the 
system and the apparatus are identical at this stage. The-
reafter, the state collapse picks one of the components 
| | ,i i〉 〉  without losing the perfect correlation. 
 The algebraic structure of the collapse equation, eq. 
(10), is closely related to that of the master equation, eq. 
(7). Expansion of eq. (10) around the fixed point ρ = Pi 
gives, with L[Pi]Pi = 0, 
 

 d 2 [ ] 2 2(1 ) (1 ) 2 ( ).
d i i i i i iP P P P P Tr P

s
ρ ρ ρ ρ ρ ρ= − − − − −L

 (20) 
 
The term [ ] [ ]i iP Pρ ρ=L L  on the r.h.s. decouples PiρPi 
from the rest of the density matrix by making the off-
diagonal components (PiρPj and PjρPi) decay, but does 
not alter the diagonal components. The next two terms on 
the r.h.s. make the diagonal components of ρ  decay, 

leading the evolution to the fixed point. The last term on 
the r.h.s. is of higher order in ρ . 
 The Lindblad operators also satisfy the relation, 
 
 2[ ] [ ] [ ] ( ).i i iP P P Oρ ρ ρ ρ+ = =L L L  (21) 
 
L[Pi]ρ is the influence of the apparatus pointer state on 
the system density matrix, while L[ρ]Pi is the influence 
of the system density matrix on the apparatus pointer 
state. For pure states, the collapse equation is just 
 

 d 2 [ ] .
d iP

s
ρ ρ= − L  (22) 

 
These expressions suggest an inverse relationship bet-
ween the processes of decoherence and collapse. Such an 
action–reaction relationship can follow from a conserva-
tion law. Initially, the combined system–apparatus state 
evolves unitarily, establishing perfect correlation and 
without any decoherence. The subsequent new descrip-
tion would be that during the measurement process, when 
L[ρ]Pi decoheres the apparatus pointer state Pi (it cannot 
remain in superposition), there is an equal and opposite 
effect –L[ρ]Pi on the system density matrix ρ, resulting 
in the state collapse. 

The qubit case and some tests 

All the previous results can be expressed in a considera-
bly simpler form in case of the smallest quantum system, 
i.e. the two-dimensional qubit with |0〉 and |1〉 as the mea-
surement basis vectors. Evolution of the density matrix 
during the measurement, eqs (18) and (17), is given by 
 

 00 0 1 00 11
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Selecting the trajectory weights as addition of Gaussian 
white noise to the instantaneous Born rule results in 
 
 0 1 00 11 .w w ρ ρ ξ− = − +  (25) 
 
The same evolution has been obtained by Korotkov9,  
using the Bayesian measurement formalism for a qubit. 
Our analysis is more general and is applicable to any 
quantum system. 
 For a single transmon qubit undergoing Rabi oscilla-
tions, perturbations caused by its weak measurement have 
been observed and then successfully cancelled by a  
measurement result-dependent feedback shift of the Rabi 



SPECIAL SECTION: QUANTUM MEASUREMENTS 
 

CURRENT SCIENCE, VOL. 109, NO. 11, 10 DECEMBER 2015 2022 

frequency10, all consistent with the description provided 
by eqs (23–25). We have verified the same behaviour for 
two qubit systems using numerical simulations based on 
eqs (18) and (17), and trajectory weights chosen analo-
gous to eq. (25), e.g. perturbations due to weak measure-
ments of Jz ⊗ Jz on a Bell state undergoing joint Rabi 
oscillations can be cancelled by a measurement result-
dependent Rabi frequency shift. We could not make this 
cancellation strategy work, however, with simultaneous 
measurement of more than one commuting operators and 
independent shifts of individual Rabi frequencies. 

Open questions 

Our proposed collapse equation, eq. (10), is quadratically 
nonlinear. Nonlinear Schrödinger evolution is inappropri-
ate in quantum mechanics, because it violates the  
well-established superposition principle. Nonlinear super-
operator evolution for the density matrix is also avoided 
in quantum mechanics, because it conflicts with the pro-
bability interpretation for mixtures of density matrices. 
Nevertheless, nonlinear quantum evolutions need not be 
unphysical and have been invoked in attempts to solve 
the measurement problem12,13. Equation (10) can be a 
valuable intermediate step in such attempts to interpret 
collapse as a consequence of some unknown underlying 
dynamics. It is definitely worth keeping in mind that non-
abelian gauge theories and general relativity are examples 
of well-established theories with quadratic nonlinearities 
in their dynamical equations. 
 Irrespective of the underlying dynamics that may lead 
to the collapse equation, eq. (10), it is worthwhile to test 
it at its face value. It readily produces an eigenstate of the 
measured observable as the measurement outcome, but 
predictions of its ensemble version, eq. (14), are not sto-
chastic and do not reproduce the Born rule. So to judge 
its validity, it is imperative to ask the question: Do quan-
tum systems exhibit this alternate evolution, and if so un-
der what conditions? Experimental tests would require 
determination of the density matrix evolution, in the 
presence of weak measurements and with highly sup-
pressed decoherence effects. Such tests are now techno-
logically feasible. It is indeed possible to generalize and 
extend the Bayesian measurement formalism tests for a 
single qubit by Vijay et al.10 and Murch et al.11, to larger 
quantum systems. They would clarify what trajectory 
weights wi (including stochastic noise) are appropriate for 
describing ensemble dynamics of weak measurements. 

 Finally, it is useful to note that, if the fixed point  
collapse dynamics of eq. (10) can be realized in practice, 
it would provide an unusual strategy for quantum error 
correction. After encoding the logical Hilbert space as a 
suitable subspace of the physical Hilbert space, one only 
has to perform measurements in an eigenbasis that sepa-
rates the logical subspace and the error subspace as  
orthogonal projections. The state would then return to-
wards the logical subspace as long as its projection on the 
logical subspace is larger than that on the error subspace, 
even if no feedback operations based on the measurement 
results are carried out. 
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