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This is a limited overview of quantum non-demolition 
(QND) measurements, with brief discussions of illus-
trative examples meant to clarify the essential  
features. In a QND measurement, the predictability of 
a subsequent value of a precisely measured observable 
is maintained and any random back-action from un-
certainty introduced into a non-commuting observable 
is avoided. The fundamental ideas, relevant theory 
and the conditions and scope for applicability are dis-
cussed with some examples. Precision measurements 
have indeed gained from developing QND measure-
ments and some implementations in quantum optics, 
gravitational wave detectors and spin-magnetometry 
are discussed. 
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Introduction 

PRECISION measurements on physical systems are limited 
by various sources of noise. Of these, limits imposed by 
thermal noise and quantum noise are fundamental and 
unavoidable. There are metrological methods developed 
to circumvent these limitations in specific situations of 
measurement. Though the thermal noise can be reduced 
by cryogenic techniques and some band-limiting strate-
gies, quantum noise dictated by the uncertainty relations 
is universal and cannot be reduced. However, since it  
applies to the product of the uncertainties in non-
commuting observables, there is no fundamental limit on 
the measurement of one of these observables at the cost 
of increased uncertainty and unpredictability in the other. 
Quantum non-demolition measurements (QNDMs) are 
those in which repeated measurements of the value of an 
observable O1 is not hampered by quantum uncertainty 
generated in any other physical variable O2 as a result of 
a precision measurement of O1 (refs 1–3). One may say 
that a QNDM is achieved if repeated measurements of O1 
are possible with predictable results and if the  
back-action of the uncertainty in O2 generated by a meas-
urement of O1, due to the quantum mechanical non-
commutativity of the two operators corresponding to the 

two observables, is evaded in subsequent measurements 
of O1. This class of measurement is also called back-
action evading (BAE) measurement. According to an  
early definition by Caves2, quantum non-demolition  
refers to techniques of monitoring a weak force acting on 
a harmonic oscillator, the force being so weak that it 
changes amplitude of the oscillator by an amount less 
than the amplitude of the zero-point fluctuations. A clear-
er understanding of the basic concept is immediately 
achieved if we examine examples cited by Braginsky  
et al.1, especially the case of a free particle. 
 Consider a measurement of the position x of a particle 
of mass m, with a precision Δx1. Quantum theory does not 
restrict this precision. However, such a measurement will 
introduce an uncontrolled uncertainty of Δp ≥ /Δx1 in the 
momentum of the particle. After a duration τ, the position 
of the particle is uncertain by Δx2 j Δx1 + τΔp/m, which 
could be much larger than Δx1. Hence there is significant 
back-action on the measurement of the position. Predict-
ability of the position is demolished because of the back-
action of the measurement through the momentum uncer-
tainty. In contrast, the situation is very different for the 
measurement of the momentum observable, in principle. 
Measurement of momentum p with uncertainty Δp does 
introduce uncertainty Δx ≥ /Δp in the subsequent  
position of the particle, but this does not feed into the  
uncertainty of momentum. Δp2 = Δp1, as expected from a 
conserved constant of motion. 
 This example serves to define what a QND observable 
is. If the Hamiltonian of the system is denoted as s

ˆ ,H  
free evolution of the system observables ˆ

iO  are given by 
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ˆd ˆ ˆ[ , ].
d

i
i

O
i O H

t
=  (1) 

 
To ensure that the uncertainty in ˆ

iO  is protected inspite 
of spite of the fact that the uncertainty in a conjugate 
(non-commuting) observable ˆ

jO  will be increased by a 
measurement of ˆ ,iO  we need s

ˆ ˆ[ ,  ] 0iO H =  and this  
implies that sĤ  should not contain an observable ˆ

jO  that 
does not commute with ˆ .iO  For 2

s
ˆ ˆ /2 ,H p m=  the posi-

tion x̂  is not a QND observable, whereas p̂  is. 
 I stress the caveat that we are still discussing the issue 
in principle and in practice the measurement of the momen-
tum may boil down to the measurement of position 
against time (trajectory) and will suffer from back-action. 
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One other point to emphasize is that these measurements 
do collapse the wave function in the usual sense of the 
phrase, with precision Δx, Δp, etc. and ΔxΔp ≥ /2. 
Therefore, QNDMs are not collapse-evading measure-
ments. Nor are they the now popular weak measurements. 
 Another instructive example is that of an oscillator, 
which is archetypical for several kinds of real measure-
ments. A quantum mechanical oscillator is governed by 
the Hamiltonian 
 

 
2

2 2 †ˆ 1 1ˆ .
2 2 2
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m

ω ω⎛ ⎞= + ≡ +⎜ ⎟
⎝ ⎠

 (2) 

 
The physical observables obey the uncertainty relation  
Δx(Δp/mω) = /2mω with Δx = Δp/mω in a ‘coherent 
state’. This defines the standard quantum limit (SQL) 
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Beating SQL implies squeezing of the uncertainties in 
one of the variables at the expense of the uncertainty in 
another. 
 The oscillator dynamics can be written in terms two 
corotating conjugate observables defined by 
 
 1/2

1 2ˆ ˆ ˆ/ (2 / ) ( i ) exp( i ),x ip m m a X X tω ω ω+ = = + −  (4) 
 
where the complex amplitude (X1 + iX2) is time-
independent and hence a constant of motion. 
 
 1

ˆ ˆ ˆcos ( / )sin ,X x t p m tω ω ω= −  
 
 2

ˆ ˆ ˆsin ( / ) cos ,X x t p m tω ω ω= +  (5) 
 
with 1 2

ˆ ˆ / 2 .X X mωΔ Δ ≥  
 The crucial difference between the observable pair 

ˆ ˆ( ,  )x p  and 1 2
ˆ ˆ( , ),X X  both of which obey the uncertainty 

relation, is that while the first pair has back-action  
dependence using the equation of motion through the free 
Hamiltonian 0Ĥ  that depends quadratically on them 
 

 0
ˆd ˆˆ[ , ],

d
x i x H
t
= −  (6) 

 
the second pair has both constants of motion 
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ˆ ˆd ˆ ˆ[ , ] 0,
d

i i
i

X X i X H
t t
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∂
 (7) 

 
ˆ(x  and p̂  are time-dependent, whereas 1X̂  and 2X̂  are 

not.) Therefore, if an interaction Hamiltonian HI such that 
1

ˆ ˆ[ , ] 0X H =  can be designed for the measurement of 1
ˆ ,X  

the observable can be measured without back-action  
from 2

ˆ ,X  which of course is disturbed by the measure-
ment of 1

ˆ .X  

What QNDM are not! 

It is perhaps important to state briefly what QNDMs are 
not and this seems necessary in the context of some dis-
missive views expressed about the essential idea, possibly 
generated by the way some measurements try to achieve a 
QNDM. An early discussion about the context and defini-
tion is given by Braginsky et al.1, who stressed the aspect 
of multiple measurements on the same physical system 
without introducing measurement-induced quantum  
uncertainty into the observable being measured. The  
essence of that discussion is that a QNDM aims to identify 
and measure a metrologically relevant variable for which 
deterministic predictability of its possibly time-dependent 
values is not demolished and obliterated by the quantum 
uncertainty introduced into another non-commuting vari-
able as a result of the measurement of the first variable. 
In particular, the idea is very different in context from 
making repeated measurements of the same variable on a 
microscopic (atomic) quantum system, as in the meas-
urement of the spin projection of an electron in a particu-
lar direction, which gives the same predictable result after 
the first unpredictable measurement. Limitations from 
quantum mechanics are to be considered not because the 
system itself is microscopic and atomic, but because the 
physical system, often macroscopic, is near its quantum 
ground state or its energy levels relevant for metrology 
need to be resolved below the zero-point contribution. 
The original context is detection of gravitational waves 
with resonant bar detectors, where it was necessary to de-
vise methods to monitor displacement amplitudes less 
than 10–20 m of the end of a macroscopic mass weighing a 
ton or more, with measurement bandwidth of 1 kHz 
(τ j 10−3 s) or so. This is comparable to the quantum 
zero-point motion of such a metal bar. A measurement 
with Δx1 ≤ 10–20 m introduces uncertainty of 
Δv ≥ τ/mΔx1 j 10−20 m/s, which will obliterate a reliable 
second measurement. ‘The first measurement plus the 
subsequent free motion of the bar has “demolished” the 
possibility of making a second measurement of the same 
precision....’ This may be contrasted with a recent criti-
cism of QNDM4: 
 

If one already knows that the system is in a particular 
eigenstate of the measuring device, then, obviously, a 
measurement on the system will produce that eigenstate 
and leave the system intact. Zero information is gained 
from the repeated measurement. On the other hand, 
when the system is not in an eigenstate of the measur-
ing device, the quantum state can be thought to collapse 
to one of its eigenstates... . 
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 In that case, information is gained from the system, 
and the QND measurement most certainly demolishes 
the system. The concept of QND measurement adds 
nothing to the usual rules of quantum measurement,  
regardless of interpretation... . 
 As a common example of an imperfect measurement, 
consider photodetection... . Sure, the photon has disap-
peared, but if our detector indicates that we had one 
photon, we can always create another and get the same 
answer again and again, exactly like a QND measure-
ment... . In every case, the concept of QND measure-
ment is confusing and unnecessary. Why not demolish 
the term ‘QND’? 

 
Why is it that all the serious literature of QNDM is so 
easily dismissed? Unfortunately, what is referred to in 
this critical note is not QNDM at all in any of its forms. 
Such is the confusion in spite of clear examples is, in 
fact, a surprise for me, personally. However, in the con-
text of this short review, it suffices to say that QNDM is a 
distinct and useful idea within the premises of standard 
quantum measurement practice and its conceptual 
strength will be assessed properly only after one manages 
to measure quantities that are at present impossible to 
measure otherwise. The need to keep the physical state 
undemolished in a QNDM is to monitor and measure its 
tiny changes due to an external interaction, with precision 
possibly below the standard quantum limit. Indeed, the 
abstract of a seminal paper1 reads, ‘some future gravita-
tional-wave antennas will be cylinders of mass approxi-
mately 100 kg, whose end-to-end vibrations must be 
measured so accurately (10−19 cm) that they behave quan-
tum mechanically. Moreover, the vibration amplitude 
must be measured over and over again without perturbing 
it (quantum nondemolition measurement). This contrasts 
with quantum chemistry, quantum optics, or atomic, nu-
clear, and elementary particle physics, where one usually 
makes measurements on an ensemble of identical objects 
and does not care whether any single object is perturbed 
or destroyed by the measurement....’ 
 The key point is that while the measurement involves 
quantum mechanical constraints and limitations, like the 
uncertainty principle, the single physical system on which 
repeated measurements are to be made need not be  
microscopic. More importantly, the value of the physical 
observable is expected to change during the repeated 
measurement and that is precisely what is being moni-
tored without back-action of the quantum uncertainty – 
there is no metrological interest in the repeated measure-
ments of a quantity that is known to remain a constant. 

Generalized QNDM 

The basic idea of QNDM can be expanded in a useful 
way to bring in a larger class of measurements. All prac-
tical implementation of such a generalized picture of

 
 
 
 
 
 

 
Figure 1. Scheme of a quantum measurement. See text for details. 
The final stage of coupling a classical meter to the probe involves col-
lapse of the state as well as injection of quantum and other sources of 
noise back into the probe system. A proper choice of the probe observ-
able avoids back-action on the signal. 
 
QNDM involves the measurements of a system variable 
without significantly affecting the key observable of the 
system by coupling an auxiliary variable of a ‘probe’ sys-
tem to the ‘signal’ such that an observable of the probe 
faithfully represents the signal observable (Figure 1). The 
probe observable is measured by a ‘meter’ or detector by 
direct interaction such that quantum disturbance created 
in the probe variable as a result of the measurement does 
not feed back into the signal, in spite of the coupling.  
Typically this implies that the signal and probe variables 
are conjugate pairs, but belonging to two different physi-
cal systems (physically both the signal and the probe may 
be of the same physical nature, like light). The conven-
tional ‘collapse’ happens in the interaction of the probe 
and meter, and not in the interaction of the system and the 
probe. In some discussions the term ‘meter’ is used to  
refer to the probe–meter system together. 
 We can now write down the mathematical require-
ments for the definition of a QNDM. The requirement 
that the signal variable represented by the quantum  
mechanical operator ˆ ( )A t  is deterministically predictable 
implies that 
 

 ˆ ˆ[ ( ), ( )] 0,j iA t A t =  (8) 
 
for different times tk. For example, for the free particle, 
momentum satisfies this relation, being a constant of  
motion. For an oscillator, the position and momentum are 
 

 iˆ ˆ[ ( ), ( )] sin ,x t x t
m

τ ωτ
ω

+ =  

 
 ˆ ˆ[ ( ), ( )] i sin .p t p t mτ ω ωτ+ =  (9) 
 
The commutators are zero only at specific instants sepa-
rated by a half-period, for each observable, and they are 
called stroboscopic QND variables. Labelling two non-
commuting system observables as ˆ ˆ ˆ{ , }iS Q P≡  and the 
probe–meter observables as ˆ ˆ ˆ{ , },jm q p≡  with their own 
Hamiltonian evolutions and an interaction Hamiltonian 

IĤ  for the coupling between the system and the meter 
 

 s I

ˆd ˆ ˆˆ ˆ[ , ] [ , ],
d

i
i i

S
i S H H S

t
= −  
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 I
ˆd ˆ ˆˆ ˆ[ , ] [ , ].

d
j

j m j
m

i m H H m
t

= −  (10) 

 
While the observable ˆ

iS  could be time-dependent, as in 
the case of the position of a mirror due to the interaction 
with a passing gravitational wave, QNDM demands that 
it does not change due to the interaction with the meter 
system that is used to read out the value of the variable. 
So, a QND observable of the system satisfies 

s
ˆ ˆ[ , ] 0.iS H =  For the same observable to be back-action 

evading, it should satisfy I
ˆ ˆ[ , ] 0.iS H =  Since we want the 

meter observable ˆ jm  to change due to the coupling to the 
system, for an efficient measurement I

ˆ ˆ[ , ] 0.jH m ≠  Tak-
ing the QND observable ˆ

iS  as ˆ ,Q  these requirements sug-
gest that the meter observable for readout should be p̂  and 
that the interaction Hamiltonian could be of the form 
 
 I

ˆˆ ˆ.H gQq=  (11) 
 
The back-action from the meter is evaded by choosing the 
system and meter observables with a conjugate nature, 
like intensity of the signal beam and phase of the meter 
beam in an optical QNDM. For example, in an optical 
QNDM, the system observable could be the intensity and 
the phase of the probe beam the readout observable, with 
an interaction Hamiltonian I

ˆ ˆ ˆ ,s pH n nχ=  where χ is the 
optical Kerr nonlinearity. For the measurement to qualify 
as a ‘good’ measurement, the correlation between the var-
iations in the signal and the probe has to be high enough, 
ideally unity. This is achieved by choosing the right  
Hamiltonian and the coupling g, keeping in mind that the 
choice is constrained by the need to evade back-action. 

Demonstrations 

Several demonstrations of QNDM are now available, 
mainly in the context of quantum noise-limited measure-
ments in several areas of optics and atomic physics. 
There have been some demonstrations that are in tune 
with the development of original ideas in QNDM, for 
macroscopic mechanical systems observed close to their 
quantum ground state where quantum noise is readily  
observable. We mention a limited sample to clarify the 
essential concepts. However, we omit the details of  
implementation and analysis and refer to the relevant  
papers for details. 

Opto-mechanical system 

In this example, the metrological goal is to monitor the 
quantum radiation pressure noise of an optical signal 
beam by its mechanical effect on the position of macro-
scopic mass attached to a spring, forming a classical  
oscillator (or a quantum oscillator with extremely small 

spacing in the quantized energy). A natural choice for the 
meter is another weak optical beam. The coupling  
between the signal and meter is achieved by the device of 
an optical cavity with which both light fields are resonant 
(Figure 2). The macroscopic mass oscillator is one of the 
mirrors of the cavity in the QNDM implementation5,6. 
Then the intensity fluctuations of the signal, either due to 
a modulation or due to quantum fluctuations (radiation 
noise pressure), will translate to displacement noise of the 
mirror. However, since the meter field is resonant with 
the cavity, the intensity of the reflected field is unaffected 
to first order in displacement, but the phase of the meter 
beam (with weak intensity) is linearly affected. This en-
ables a faithful measurement of the signal beam intensity 
variations, without any back-action on the intensity of the 
signal beam, through the signal obtained by forming an 
optical cavity with the oscillator mass as one of the mir-
rors. The physical system itself resembles closely the 
configurations in interferometric gravitational wave  
detectors, where the actual signal is the displacement x of 
the mirror that is measured as first-order phase changes in 
the probe light, but affected by the radiation pressure 
noise through the interaction Hamiltonian of the form 

I ˆ ˆ,H gnx=  where n̂  is the photon number operator.  
(Interaction Hamiltonian of the form I

ˆ ˆH Fxλ=  is gene-
ric for measurement of weak forces.) 
 The coupling between the signal and probe beams has 
been implemented in several experiments employing the 
nonlinear optical effects inside the cavity. 
 Successful implementations are considerably more 
complicated, done at cryogenic temperature, involving 
Hamiltonians nonlinear in the observables7 (in contrast  
to bilinear Hamiltonians with coupling coefficients repre-
senting a nonlinearity). The most important metrological 
context for optomechanical QNDM is the detection of 
gravitational waves with advanced optical interferome-
ters, which I will discuss later. 

Optical QNDM and the quantum tap 

As in other QNDM schemes in practice, optical QNDM 
couples a meter beam to a signal beam, typically through 
an atomic medium and then the strong correlation  
between the meter observable and the signal observable is 
used for a measurement of the signal by a real measure-
ment on the meter beam8–10. The observables are chosen 
 
 

 
 

Figure 2. Radiation pressure of the signal beam (S) causes fluctua-
tions in the position of the mirror on spring (M) and in turn changes the 
phase of the resonant weak probe beam (P) in the cavity configuration. 
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such that there is no back-action. Optical QNDM makes 
use of nonlinear interaction between a signal beam and a 
meter beam, through a generalized Kerr effect – intensity 
dependent changes in the effective refractive index, 
n = n0 + n2I, due to the presence of the optical beam with 
intensity I. This is characterized by a nonlinear phase 
shift proportional to intensity 
 

 2
2

,i
i i i

i

l
n I

π
φ

λ
=  (12) 

 
where the index refers to either ‘s’ or ‘m’, signal beam or 
meter beam. The cross-gain for the coupled system is 
 
 m s2 ,g φ φ=  (13) 
 
which defines how the fluctuations in one beam feed into 
the other. Denoting the fluctuations in amplitude and 
phase quadratures as δ X and δ Y, we have 
 
 s s s s m ,o i o i iX X Y Y g Xδ δ δ δ δ= = −  
 
 m m m m s ,o i o i iX X Y Y g Xδ δ δ δ δ= = −  (14) 
 
because the two intensities are decoupled but the phases 
are coupled. The amplitude quadrature fluctuation is 

/X n nδ δ=  and the phase quadrature is 2 ,Y nδ δφ=  
where n is the number of photons. 
 Since the intensity variations cause only a change in 
the phase and not the intensity of the coupled beam, 
back-action is evaded. The modulations of the signal 
beam can be measured as modulations of the phase of the 
meter beam without affecting the intensity of the signal 
beam. Though the intensity noise in the meter beam does 
affect the phase of the signal beam, it does not feed into 
the other quadrature that is being monitored. Naturally, 
an interferometric set-up in which the phase of the meter 
beam is measured with reference to the stable reference 
of a split-off part of the meter beam is required  
(Figure 3). 
 Criteria for an optical QNDM have been developed and 
discussed in the literature8,11,12. Since quantum noise is 
unavoidable, one usually has ΔXsΔXm ≥ 1, with the  
equality achieved at SQL. A QNDM is characterized  
by ΔXsΔXm < 1. Defining the signal-to-noise ratio as 
R = 〈X〉2/〈δX〉2 for the various beams, the goal is to mini-
mize additional noise in the interaction of the signal and 
meter such that the transfer function for R from input to 
output (T = Rout/Rin) is as close as possible to unity. For 
an ideal classical beam splitter (a classical optical tap), 
for example, with transmissivity t2, s 2 s

out inX t X=  and the 
meter output will have the rest of the signal beam, 

2 s
in(1 ) .t X−  Hence Ts + Tm = 1 and no classical device 

can exceed this. However, ΔXsΔXm < 1 implies 

Ts + Tm ≥ 1 and ideal QND can approach Ts + Tm = 2. One 
implementation of these ideas, with Ts + Tm > 1, was real-
ized with the nonlinear coupling generated using a three-
level atom in which the ground state is coupled to the 
strong transition by the detuned weak probe beam and 
level 2 to 3 in the ladder by the strong signal beam9,13. 
This scheme avoids absorption from the signal beam, yet 
preserving the strong coupling between the signal and the 
probe, providing a phase shift of the probe proportional 
to the intensity of the signal beam. Intensity of the signal 
beam is not affected by the increased uncertainty in the 
amplitude quadrature of the probe due to the precision 
phase measurement because it changes only the phase of 
the signal and not its amplitude, again through the Kerr 
coupling, enabling back-action evasion. 

Atomic spin systems 

Atomic spin systems offer a metrologically important 
physical scenario for implementing and testing QNDM 
schemes14,15. For individual atomic spins the projections 
alone different directions are non-commuting observ-
ables. For a spin ensemble, with total spin S = (Si, Sj, Sk) 
 

 2 2 21 .
4i j kS S S〈Δ 〉〈Δ 〉 〈Δ 〉ú  (15) 

 
A coherent spin state is one that satisfies the minimum 
uncertainty with equal uncertainties in the two directions. 
Therefore, the spin state is considered squeezed when one 
of the uncertainties 〈ΔSi〉 < (1/2)〈Sk〉. This is consistent 
with the idea that for a spin system polarized along a parti-
cular direction, the spin noise (variance) scales as the 
number of spins N. The elementary spin being /2 with 
variance 2/4, the spin S is worth 2N elementary spins 
and hence the variance of uncorrelated spins is S/2. 
Squeezing then involves generating correlations among 
the elementary spins by an interaction. A measurement of 
one projection with a precision 〈ΔSx〉 < (1/2)〈Sk〉 results in 
a spin-squeezed state with increased uncertainties in the 
other projections (a weaker condition 〈ΔSx〉 < (1/2)〈S〉 was 
 
 

 
 

Figure 3. Schematic diagram of an optical QNDM. The strong signal 
and weak probe beams interact via a Kerr nonlinearity in the atomic 
medium, causing a change in the phase of the probe proportional to the 
intensity of the signal. Intensity of the signal beam is not affected by 
the increased uncertainty in the amplitude quadrature of the probe  
because the precision phase measurement changes only the phase of the 
signal and not its amplitude, enabling back-action evasion. 



SPECIAL SECTION: QUANTUM MEASUREMENTS 
 

CURRENT SCIENCE, VOL. 109, NO. 11, 10 DECEMBER 2015 2057

shown to be sufficient for increased bandwidth of meas-
urements at the quantum limit16). The conditions on  
the Hamiltonian of the system S and the probe m are  
obvious 
 
 [Sz, HS] = 0; ensures [Sz(t2), Sz(t1)] = 0, 
 
 [Sz, HI] = 0; ensures BAE, 
 
 [sz(m), HI] ≠ 0; ensures that sz(m) is a valid probe, (16) 
 
and this suggests HI = αSzsz(m). 
 Precision magnetometry with sensitivity reaching a 
femto-Tesla is a motivating factor for QNDM on spin  
ensembles. The fundamental noise is the quantum spin 
shot noise with SQL variance of S/2 for the spin-S  
ensemble. The basic measurement scheme involves the 
Larmour precession of the spins in a weak magnetic field 
which can modulate the polarization of a weak linearly 
polarized probe beam that is detuned from the hyperfine  
resonances. With no net polarization, one obtains a polari-
metric signal of the quantum noise at the Larmour fre-
quency16,17. The goal is to implement a QNDM of a 
magnetometer signal, which is the Larmour precession  
of the coherent polarization generated in the atomic  
vapour with a circularly polarized pump beam. Imple-
mentation of QND measurement with a stroboscopic BAE 
scheme in atomic vapour of potassium is discussed by 
Shah et al.15. 

QNDM of photon number in a cavity 

An impressive application of the QND idea that goes be-
yond demonstration of principles and strategies is that of 
the measurement of the number of photons inside a high 
finesse optical cavity, without altering this number by ab-
sorption, by observation of the change in the phase of 
atomic states of a passing atomic beam that interacts with 
the photons inside the cavity18. The Stark shift (light 
shift)-induced splitting of the energy levels of the atom in 
the cavity containing n photons (obtainable from the 
Jaynes–Cummings model) is 
 

 
2 2

 ,
2 4

E nΩ Ω
Δ = +

Δ Δ
 (17a) 

 
which results in an n-dependent discrete phase shift, 
 

 
2

( ) ,
2c n nτΩ

Φ =
Δ

 (17b) 

 
the experiment is implemented as a Ramsey interferome-
ter with three microwave cavities, with the two auxiliary 
cavities for state preparation and analysis with a precisely 
tunable phase difference between them (Figure 4). A π/2 

pulse of microwave radiation is applied in the first cavity 
to atoms prepared in the excited state, which changes the 
state to a coherent superposition of the ground and  
excited states. The state will evolve due to free evolution 
as well as due to the phase acquired in the cavity. The  
final state of the atoms (e or g) is detected after a second 
π/2 pulse in the final cavity with tunable Ramsey phase 
Φ. Scanning the Ramsey phase results in sinusoidal  
modulation of the average fraction of the two atomic 
states and of the probability of detection in a particular 
state (Figure 5). For example 
 

 2 c
| |

( )
cos .

2e g
n

P 〉→ 〉
Φ + Φ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (18) 

 
There are two observables, atom in the ground state and 
atom in the excited state, which are complementary. 
Since the probability depends on the discrete number of 
photons in the main cavity, the sinusoidal probability 
curve will shift in phase by a discrete jump when one 
photon is added or subtracted from the cavity. Therefore, 
each set of measurements of P|e〉→|g〉 or P|e〉 → |e〉  
determines the photon number probabilistically. 
 If the atom prepared in a excited state comes out in  
excited state after the interaction with the cavity, then its 
phase is shifted by 0 or 2π and the photon number in the 
cavity is most probably 0 or n, with sinusoidal variation  
 
 

 
 

Figure 4. QND–BAE measurement of the number of microwave 
quanta in the cavity. The central cavity has a small number of photons 
that change the relative phase of the superposition of the excited and 
ground states of the passing atoms. The two auxiliary cavities define a 
Ramsey interferometer with a scannable relative phase. Final state se-
lective detection enables an iterative determination of the number state 
inside the main cavity. See text for more details. 
 
 

 
 

Figure 5. The probability to get a particular final state as a function 
of the Ramsey phase. The three curves are for three different photon 
numbers inside the cavity. 
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of the probability for other photons numbers (the interac-
tion is tuned to get a particular predetermined phase shift 
of 2π for n photons). If the atom is detected in the ground 
state, the phase is π/2 and the probability peaks at pho-
tons number n/2. Since the detuning is large, only the 
phase of the atoms is affected and there is no photon  
absorption or stimulated emission, maintaining the QND 
nature of the measurement. The interaction with the  
atoms does feed back to the phase of the cavity field, but 
that does have any back-action on the photon number. 
 In this example, the observables do not return definite 
values, but only a probability distribution. The measure-
ment is characterized as a two-element POVM (positive 
operator valued measure) Sj corresponding to the state of 
the detected atom (S0 + S1 = I), which in turn determines 
a partial (probabilistic) measurement of the photon  
number †ˆ( )n a a=  in the cavity. 
 

 
†

2 ( )cos .
2j

a a jS π⎛ ⎞Φ + Φ −
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (19) 

 
If ρ is the initial state of the field, the probability of find-
ing the atom in state j is 
 
 Pj(ρi) = Tr(ρSj) (20) 
 
A detection of the atom in state j projects the field state to 
 

 ( ) .
Tr( )

j j
p

j

S S
p j

S
ρ
ρ

=  (21) 

 
One is effectively starting with a uniform initial density 
matrix (probability being equal for photon numbers from 
0 to n) and then building up ρp( j ) in repeated QNDMs. 
This is one case where repeated measurement without 
demolition of the state is achieved with new information 
gained in each step of the experiment, providing a strong 
counter example to the criticism expressed by Monroe4. 
 Braginsky19, who is one of the originators of the 
QNDM idea, remarked about these measurements: 
 

Several years ago, S. Haroche and his colleagues suc-
cessfully demonstrated absorption-free counting of mi-
crowave quanta. In my opinion, this is one of the most 
outstanding experiments conducted during the second 
half of the 20th century. 

Squeezed light in gravitational wave detection 

Since the focus has now shifted from resonant metal  
oscillator detectors to optical interferometers for the  
detection of gravitational waves, beating the standard 
quantum limit for measurements also is focused in the  
optical domain, specifically in the use of quantum noise- 

squeezed light and its vacuum state. Indeed this direction 
of research has turned out to be successful in practical 
terms for the gravitational wave (GW) detector, and the 
advanced interferometer detectors that are being commis-
sioned for observations have been tested with squeezed 
light, with promising benefits in sensitivity and stability 
of operation. Referring back to our discussion on QND 
with a mechanical oscillator and light, we can sketch the 
basic idea. The gravitational wave causes small oscilla-
tions of the suspended mirrors of the optical cavity and 
this causes first-order changes in the phase of the stored 
light and only second-order changes in its intensity  
(being locked to the peak of a Fabry–Perot resonance). 
Hence the gravitational wave signal is in the phase quad-
rature, contaminated by the minimum uncertainty noise in 
the same quadrature of the coherent state vacuum. The 
noise in the intensity quadrature is radiation pressure 
noise that affects the position of the mirror, causing addi-
tional noise in the phase quadrature, if large. The detec-
tion shot noise in the phase quadrature relevant for the 
interferometer sensitivity decreases as 1/2 ,n −  where n  is 
the average number of photons in the detection band, 
whereas radiation pressure noise on the mirror is the fluc-
tuation in the momentum transfer ( 2 /p nh cν= h and in-
creases as 1/2.n  The two variances add and determine the 
SQL. However, the radiation pressure noise is frequency-
dependent when translated into the actual mirror motion 
because the mirrors are suspended as pendula and the re-
sponse decreases as 1/f 2, where f is the natural frequency. 
 In the real situation, the radiation pressure noise is sig-
nificant only at low frequencies (below 50 Hz or so) and 
the photon shot noise dominates the high-frequency  
region of the detection band. The physical picture is that 
 
 

 
 

Figure 6. Scheme of noise reduction by squeezing the vacuum noise, 
shown here for squeezing in the phase quadrature. The GW signal is in 
the phase quadrature (X2) and its measurement is limited by the quan-
tum shot noise as well as the radiation pressure noise (dotted arrow). 
Squeezing the phase quadrature reduces phase noise and improves that 
sensitivity to GW, but it also increases the radiation pressure noise  
because the amplitude (X1) uncertainty increases (back-action). This 
extra noise is avoided at high frequency because of the mirror pendu-
lum response, but it limits sensitivity at low frequency. So sensitivity 
below shot noise is achieved at high frequency (adapted from Virgo-
Ego Scientific Forum 2012 Summer School lecture slides by Stefan 
Hild, University of Glasgow, UK). 
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the vacuum noise enters the output port of the interfer-
ometer and adds to the gravitational wave signal in the 
phase quadrature. Hence, any squeezing of the phase  
quadrature, at the expense of increased noise in the  
amplitude quadrature, reduces noise in the high-frequency 
detection band where back-action from the amplitude  
quadrature through radiation pressure noise on the mirror 
is insignificant (Figure 6). This is then equivalent to the 
use of higher laser power (more photons) in the interfer-
ometer, reducing the quantum shot noise. However at low 
frequencies, the increased noise in the amplitude  
quadrature will cause increased noise for gravitational 
wave detection. This can be avoided only by frequency-
dependent squeezing, where the phase quadrature is 
squeezed at high frequencies and amplitude quadrature is 
squeezed at low frequencies. Implementation of sensiti-
vity significantly below shot noise in the relevant detec-
tion band is yet to be demonstrated in full-scale GW 
detectors, but feasibility has been demonstrated in these 
very detectors at high frequency20,21. 

Renewed relevance of QNDM 

The efforts to detect gravitational waves have shifted  
focus from cryo-cooled resonant detectors to interfero-
meter-based detectors with free mirrors as the sensing 
masses. In such detectors, the expected displacement of 
the masses is less than 10–19 m, which is smaller than the 
quantum zero-point motion of these suspended mirrors. 
More seriously, the thermal motion is over a million 
times larger, unlike in the cryo-cooled bar detectors 
where residual thermal and quantum motions are compa-
rable. However, effective metrology is possible because 
the pendular suspensions of the mirrors have very high Q 
(quality factor), and nearly the entire thermal and quantum 
energies are concentrated at the oscillation frequency of 
about 1 Hz. Non-dissipative feedback techniques are used 
to keep these motions within certain limits and the actual 
detection bandwidth starts 20–30 times higher in fre-
quency where the residuals from the quantum and thermal 
motions are below the levels that can affect the measure-
ment. So, there is a clear separation between the detection 
bandwidth and resonance bandwidth, in contrast to the 
resonant detectors where both merge. Since resonant bar 
GW detector was the only metrological scenario that nec-
essarily needed a QND–BAE measurement for its success 
when these ideas originated, one may wonder about the 
relevance of such ideas in the context of advanced inter-
ferometer detectors. However, as we have seen, the inter-
ferometric measurement is also limited by quantum noise 
in the optical phase and amplitude quadratures and QND 
techniques with squeezed light are turning out to be  
essential for the efficient operation of such detectors. 
Also, QND metrology may significantly improve sensiti-
vity and bandwidth in magnetometry and rotation sensing 

(atomic gyroscopes) with spin-polarized atomic ensembles. 
Another area of application where QNDM is indispensa-
ble is in feedback cooling of macroscopic oscillators to 
their quantum ground state7,22, which requires back-action 
evading measurements for noise-free feedback. 

Summary remarks 

A survey of the experimental implementations of quan-
tum non-demolition measurements with back-action  
evasion, nearly four decades after such ideas were first 
proposed, suggests that QNDM is maturely understood 
and has been demonstrated in multiple physical systems. 
QNDM is demonstrated to be a useful, superior tool in 
those situations where metrology has to be done close to 
the quantum noise level. Implementations are now a grow-
ing list, including high-precision magnetometry and sev-
eral types of optical measurements. QNDM is crucially 
useful when not even measurements at the standard quan-
tum limit can take one to the goal of the measurement, as 
in the gravitational wave detectors. Squeezed light tech-
nology as implemented in optical interferometers may 
prove to be the single-most important technology push 
that is required to usher in gravitational wave astronomy. 
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