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In the present study, we have attempted the delinea-
tion of limestone using different spectral mapping  
algorithms in ASTER data. Each spectral mapping  
algorithm derives limestone exposure map independ-
ently. Although these spectral maps are broadly simi-
lar to each other, they are also different at places in 
terms of spatial disposition of limestone pixels. There-
fore, an attempt is made to integrate the results of 
these spectral maps to derive an integrated map using 
minimum noise fraction (MNF) method. The first 
MNF image is the result of two cascaded principal 
component methods suitable for preserving comple-
mentary information derived from each spectral map. 
While implementing MNF, noise or non-coherent pix-
els occurring within a homogeneous patch of limestone 
are removed first using shift difference method, before 
attempting principal component analysis on input 
spectral maps for deriving composite spectral map of 
limestone exposures. The limestone exposure map is 
further validated based on spectral data and ancillary 
geological data. 
 
Keywords: Limestone, minimum noise fraction, spectral 
mapping, image processing. 
 
ADVANCED Space Borne Thermal Emission and Reflec-
tion Radiometer (ASTER) data have already shown their 
potential for mineral exploration, specially for delineating 
different alteration zones and associated lithology1–6. 
ASTER has the capability of mapping different rocks and 
minerals. ASTER data can be used for deriving different 
indices for delineating carbonate minerals7–10. Therefore, 
these data have also been successfully used for delineat-
ing limestone11,12. In these studies, efforts were focused 
to demarcate the limestone based on spectral signatures 
of pure calcite mineral as the end member. But it is always 
essential to analyse the spectral features of the target to 
be spatially mapped for understanding its diagnostic  
absorption signature. Once the diagnostic absorption sig-
nature of the target is characterized in the laboratory, it is 

essential to compare the image spectra of the target with 
its laboratory counterpart to analyse the consistency of 
diagnostic absorption feature of end members from the 
exposure to the pixel of the satellite image. 
 Moreover, as the exposure size of the target changes, 
the spectral response of the pixel containing the target 
would also vary. Therefore, we need to use different 
spectral mapping algorithms to map a target which has 
surface exposures of variable sizes under the tropical set-
up. Further, it is also essential to converge the results of 
the different spectral maps of the same target to derive a 
composite exposure map. This convergence would allow to 
preserve the commonalities of the input spectral maps. 
Therefore, the aim of the present study was to derive  
different ASTER-based spectral maps for limestone and 
converge the results of different spectral maps to derive a 
composite limestone map of the study area. 
 Integration of the results of different spectral maps to 
derive a composite map is essential for a target like lime-
stone which is known for limited exposures under tropi-
cal weathering set-up. The composite limestone exposure 
map thus derived can be used as an input for detailed 
petrographic and mineralogical study for narrowing down 
the limestone pockets suitable for mining. In order to map 
limestone based on spectral features, an attempt is also 
made to analyse the diagnostic spectral feature of lime-
stone in the laboratory and in the ASTER image to spec-
trally characterize limestone having its broad spectral 
feature recorded in the ASTER bandwidth. Spectral  
features of carbonate minerals are well studied and this 
understanding helps in identifying the diagnostic spectral 
signature of limestone12,13. 
 The study area is located in the eastern part of India in 
the state of Jharkhand (Figure 1). Jharkhand is known for 
bauxite, iron, coal, limestone, mica, uranium and base 
metal reserves of the country. Field work was carried out 
for collecting the rock samples for spectroscopic studies 
and also for updating the existing geological map based 
on field information and image interpretation of ASTER 
false colour composites (FCC). Field work is also essen-
tial to have an overall understanding of the geological 
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Figure 1. Study area shown by a rectangle in the ASTER false colour composite image derived using red–green–blue 
colour space (red is the third band, green the second band and blue the first band of ASTER image). 

 
 

 
 

Figure 2. Modified (based on interpretation of ASTER false-colour 
composite image supplemented with field survey along selected trav-
erses) geological map of the study area (original source map: Geologi-
cal Survey of India; GSI M&C Division ER/Kolkata, D.O. No. 10/ 
2006). Geological boundaries of limestone–shale and limestone–
sandstone are modified based on field exposures of limestone occur-
rences. 

setting and specially the knowledge of limestone occur-
rences in the study area. 
 Limestone of the area belongs to the proterozoic Kol-
han Group. The Kolhan Group of rocks unconformably 
overlie the granite-gneiss and are restricted to the north-
eastern, eastern and southeastern portion of the study area 
(Figures 1 and 2). The Group consists of purple sandstone 
and conglomerate at the base, followed upward succes-
sively by thick sequences of argillite, stromatolitic lime-
stone and shale/phyllite14. The general strike of the 
Kolhan Group of rocks is along NNE–SSW (Figure 2). In 
general, the entire sequence of the Kolhan Group is a  
fining upward sequence. The vertical and lateral facies 
variation in Kolhan is due to the superimposition of  
retrograding shorelines on an earlier prograding alluvial 
fan (sand complex) laid down in the embayment15. The 
Kolhan Group of rocks occurring on the Singhbhum  
craton can be lithologically correlated with the late 
Meso–Neoproterozoic successions from other cratonic 
blocks of peninsular India16. Therefore mapping of the 
limestone and carbonate-rich facies within this particular 
sedimentary succession using spectral features of lime-
stone would be significant. The spectral mapping appro-
ach of limestone delineation may also be extended to 
similar basins of other cratonic blocks in India and 
abroad16. Moreover, the study area is already well known 
for limestone mines, which provide the raw materials for 
cement industries17. At present, a few mines are operative 
in the area17; but, it is essential to extend the mine  
reserves to cater to the future requirement of the mining 
industry. Therefore, the present study aims to map lime-
stone exposures by processing ASTER data using spectral  
feature of limestone as the key. 
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Table 1. Specification of ASTER VNIR–SWIR bands (date of scene: 23 March 2006) 

Satellite   Spectral range Spatial Radiometric 
data Data product Spectral bands (m) resolution (m) resolution 
 

ASTER data VNIR 1 0.5–0.60 15 8 
  2 0.63–0.69 15 8 
  3N 0.78–0.86 15 8 
  3B 0.78–0.86 15 8 
 SWIR 4 1.60–1.70 30 8 
  5 2.145–2.185 30 8 
  6 2.185–2.225 30 8 
  7 2.235–2.285 30 8 
  8 2.295–2.365 30 8 
  9 2.360–2.430 30 8 

 

 
 

Figure 3. Flowchart of methodology. Two blocks are shown with a dashed outline. See text for more details. 
 
Materials and methodology 

ASTER Level-1B data (only visible-near infrared 
(VNIR)–shortwave infrared (SWIR) bands) are used in 
the present study. Detailed specification of ASTER 
VNIR–SWIR bands is provided in Table 1. ASTER 
SWIR bands are used for delineating limestone. The 
VNIR bands are used during pre-processing steps for 
masking the vegetation cover in the image and for vali-
dating relative reflectance image. The geological map 
prepared by the Geological Survey of India (Figure 2) is 
also used for validation of the results. 
 ASTER Level-1B VNIR–SWIR datasets (‘at-sensor’ 
radiance data with geometric correction applied to the 
data) are used in the present study as these bands are suf-
ficient to delineate limestone from the associated soil and 
forested background based on their diagnostic spectral 
signature within the VNIR–SWIR domain. Specially 
SWIR bands of ASTER channels are known for their  
potential for delineating mineralogy and different rock 
types and also suitability for spatial mapping7. The data 

are converted to scaled reflectance before using the same 
for mapping the limestone based on the ‘spectral signa-
ture’. A flow chart (Figure 3) is furnished for summariz-
ing the methodology. Preprocessing steps are grouped 
under block-1 and processing steps under block-2 of the 
flow chart. 

Spectral profile collection of rock samples 

Spectral profiles are collected using Fieldspec3© spectro-
radiometer (manufactured by Analytical System  
Device Inc.) under controlled laboratory environment. 
The spectroradiometer is operative in the wavelength 
domain of 350–2500 nm. It has good signal-to-noise ratio 
with finer spectral resolution (3 nm @ 700 nm and 10 nm 
@ 1400/2100 nm) and finer spectral sampling interval 
(1.4 nm @ 350–1050 nm; 2 nm @ 1000–2500 nm)18. Spe-
ctral resolution is fine enough to detect the subtle absorp-
tion features characteristic of the constituent minerals of 
the rock. Fieldspec3© spectroradiometer has two types of 
detectors: a 512 element Si photodiode detector operative 
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Figure 4. Limestone exposures in the study area. a, Location of each exposure is plotted in VNIR FCC. b–f, Field photo-
graphs of mines. b, Jhinkpani Mines; c, Surjabhasa Mines; d, Indikuri Limestone; e, Singh Pokharia limestone; f , Surface 
exposures near Singh Pokharia. 

 
Table 2. Description of few major exposures 

Sample no. Field description Latitude Longitude Place 
 

1 Thick bedded deposits 222501.97N 854348.58E Surface exposures of 
      Jhinkpani Mines 
2 Pocket deposits, small in size, 222755.98N 854549.79E Surface exposures of  
   weathered    Surjabhasa Mines 
3 Pocket deposits within shale, 222824.16N 854541.81E Surface exposures of 
   small exposures, weathered    Indikuri Limestone 
4 Bedded deposits, small exposures, 223003.42N 854743.08E Surface exposures of  
   weathered     Singh Pokharia limestone 
5 Bedded deposits, small exposures, 223004.72N 854738.80E Surface exposures near 
   weathered    Singh Pokharia 

 
in 350–1000 nm range and two separate InGaAs photo-
diodes operative in 1000–2500 nm range. The methodology 
adopted for collecting the rock spectra and post-processing 
has already been discussed in the literature19,20. 
 The samples are collected from the exposures of varied 
sizes and modes of occurrence (Figure 4). Details of the 
exposures with their geo-locations are given in Table 2. 
For each exposure, 3–4 samples are collected for spectro-
scopic studies. Rock samples are cut into 4  5 to 
5  7 rectangular pieces. The sample size range used is 
well within the size norms of the samples analysed at the 
Jet Propulsion Laboratory associated with National Aero-
nautics and Space Administration, USA21. 

 Reflectance profiles of the rock samples are collected 
by vertically pointing the measurement gun which con-
tains the fibre optics. The light source (halogen lamp)  
illuminates the sample with an angle (with respect to 
imaginary vertical drawn above the sample) and the spec-
tral profiles are collected by keeping the bare fibre optics 
of the spectroradiometer vertically over the sample. This 
makes the phase angle 45 (phase angle corresponds to 
the angle between the illumination source and measure-
ment points)19,20. The reflected energy of the rock samples 
thus collected is due to the volume scattering of the rock. 
The energy reflected by volume scattering represents  
internal chemical (mineralogical) characters as well. The 
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field-of-view of fore optics, used for reflectance meas-
urement is 25. 
 Twenty spot observations per sample are recorded and 
averaged to get the characteristic spectral curve for each 
limestone specimen. Further, spectral profiles of two or 
three sample spots are measured for each limestone sam-
ple to record the ‘representative’ spectra based on averag-
ing of the spectral profiles of each spot. Averaging of 
multiple measurements has an added advantage in sup-
pressing insignificant kinks in the spectral profiles of the 
rock. Limestone laboratory spectra of each of the signifi-
cant exposures are illustrated in Figure 5 a. Limestone 
spectra are re-sampled to ASTER wavelength to derive 
ASTER convolved laboratory spectra for limestone for 
each significant known exposure (Figure 5 b). Based on 
the inspection of laboratory derived limestone spectra and 
ASTER convolved counterparts, it is understood that 
limestone has diagnostic absorption feature at around 
2335 nm in laboratory spectra, which has been convolved 
to 2330 nm or 2.33 m in ASTER convolved counterpart 
of laboratory spectra. 

ASTER data pre-processing 

ASTER Level 1B data are corrected for reflectance  
using FLAASH© (Fast Line of Sight Spectral Analysis of  
 
 

 
 

Figure 5. a, Laboratory spectra of limestone samples collected from 
field locations depicted in Figure 2. b, ASTER convolved laboratory 
spectra of limestone samples. Relative positions of bands 6, 8, 9 are  
illustrated over ASTER convolved image spectra. 

Spectral Hypercube) algorithm. This is a physics-based 
atmospheric correction algorithm suitable for atmospheric 
correction in VNIR and SWIR domains. FLAASH© is 
developed based on MODTRAN4© (Moderate Resolu-
tion Atmospheric Transmission) calculations (physical 
model to characterize the atmosphere) that use the solar 
angles, the mean surface elevation, etc. for calibration. 
The algorithm operates on the assumption of certain cali-
bration models using atmospheric, aerosol type and visi-
bility range22,23. Parameters such as the time of data  
acquisition, centre of the scene and average altitude  
information are also provided in the FLAASH© interface 
to calibrate the ASTER radiance image to scaled reflec-
tance image. Once the data are calibrated using 
FLAASH©, the mean image spectra of the terrain ele-
ments (deciduous forest cover and limestone) collected 
from few regions are compared with the ASTER con-
volved laboratory spectra of the respective terrain ele-
ments. Initially, it has been found that these spectra do 
not perfectly match with other. Therefore, a scalar factor 
is used to further scale the FLAASH© calibrated ASTER 
data. The scalar factor for each band is derived from the 
division of the image spectra of deciduous forest by the 
laboratory spectra of the same terrain element. The  
two-step atmospheric correction method described above 
(FLAASH© calibration followed by scaling using a  
factor for each band) is often used to minimize the  
instrument noise, solar irradiance uncertainty and also the 
atmospheric variability resulting due to topographic 
variation24. Once the apparent reflectance image is  
derived (Figure 6 a), spectral profiles of deciduous tree 
and limestone derived from the image are compared with 
the ASTER convolved (VNIR–SWIR) spectral profiles of 
the same elements collected in the laboratory (Figure 6 b 
and c). Limestone laboratory spectra are collected from 
spectral database of limestone derived from the present 
study and the representative vegetation laboratory spectra 
of deciduous tree is taken from the catalogue of labora-
tory spectra of the United States Geological Survey 
(USGS). It has been observed that the ASTER image 
spectra of the aforesaid terrain elements match well with 
the ASTER convolved laboratory spectra counterparts, 
specially for the absorption features (Figure 6 b and c). 
This justifies the accuracy of the relative reflectance  
image to be used for spectral mapping. 

ASTER data processing 

After reflection calibration, Normalized Difference Vege-
tation Index (NDVI) is calculated for masking the most 
dominant surface elements (forest cover) from the scaled 
reflectance image. Due to limited spectral dimensionality, 
terrain elements having closely spaced absorption features 
would be spectrally similar in ASTER data. Therefore, 
few end members can only be delineated in ASTER  
data based on spectral features. Vegetation masking was  
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Figure 6. a, Calibrated (apparent reflectance) ASTER data (FCC of red–green–blue colour space (band 3, 2 and 
1 respectively) as defined in Figure 1). b, Image spectra of deciduous forest plotted with the ASTER convolved 
deciduous forest spectra to show the quality of reflectance product. c, SWIR band image spectra of limestone 
plotted with representative ASTER convolved laboratory spectra. 

 
 

 
 

Figure 7. Comparison between image spectra of limestone and 
ASTER SWIR convolved laboratory spectra of limestone. 
 

essential to segregate out ‘uncovered’ pixels of the study 
area for spectral mapping. In the present study, ASTER 
channel 2 (red band) and channel 3 (NIR) are used for 
suppressing the vegetation. Masking is carried out based 
on the NDVI value of vegetation derived from the above-
mentioned ASTER channels. The masking rule (i.e. range 
of NDVI values required to be specified to suppress the 
vegetation) is selected iteratively for ensuring complete 
suppressing of forest or vegetation cover. 
 While analysing the ASTER convolved limestone spec-
tra, it is found that the characteristic absorption signature 
for limestone occurs at the SWIR domain (Figure 5 b). 
Therefore, ASTER convolved laboratory spectra of lime-
stone are further re-sampled to the bandwidth of the 
ASTER SWIR channels. These laboratory spectral pro-

files of limestone are then continuum-removed and com-
pared with the continuum-removed mean image spectra 
of limestone, collected from the pixels representing open-
cast mines. Continuum removal method is a reflectance 
normalization method applied to both the reference spec-
tra and the image for enhancing and separating the spe-
cific absorption features of interest (i.e. for limestone). 
The high degree of correlation between the continuum-
removed image spectra and the continuum-removed labo-
ratory-spectra (ASTER convolved) of limestone indicates 
the capability of ASTER data in preserving the diagnostic 
spectral feature of limestone (Figure 7). Hence the image 
spectra of limestone collected from SWIR bands of open-
cast mine have been taken as an end member for spectral 
mapping of ASTER SWIR image based on the spectral 
angle mapper and relative band depth mapping methods. 
It is important to note that the selection of the image 
spectra of the pixels of the limestone outcrops as end 
members also ensures that the spectral end member suita-
bly represents well the spectral characteristics of the sur-
face of outcrop of limestone by incorporating possible 
variations resulted from surface weathering and associa-
tion. The potential advantage and utility of image spectra 
as end member for spectral mapping has been discussed 
in the literature25–27. However, laboratory spectra (after 
convolving to the ASTER SWIR band) is utilized in sub-
pixel for spectral mapping algorithm known as con-
strained energy minimization method as these spectra are 
generally used for decomposing image spectra to their 
sub-components (i.e. target spectra and background spec-
tra) in sub-pixel mapping28. 
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Results 

As mentioned earlier, we have few selected spectral map-
ping algorithms for processing ASTER data to delineate 
limestone exposures of the study area. In this regard, both 
per-pixel and sub-pixel mapping algorithms have been 
used to delineate limestone exposures of varying sizes. In 
this regard, we have used ASTER SWIR image as input 
and ASTER SWIR image spectra of limestone as end 
member for deriving limestone distribution map using 
spectral angle mapper (SAM) and relative band width 
(RBD) algorithms. Limestone SWIR bands actually pre-
serve diagnostic absorption feature of limestone, as is 
evident from Figure 6 c. 
 As mentioned earlier, mapping algorithms used for 
limestone mapping are broadly subdivided into two seg-
ments: per-pixel mapping and sub-pixel mapping meth-
ods. Per-pixel methods are used to derive the limestone 
map based on the assumption that the spectra of lime-
stone pixel delineated by these algorithms would be simi-
lar to image spectra of limestone mines. This would be 
the case for all the limestone exposures which are large in 
size. Two per-pixel mapping methods are used in the pre-
sent study. These are SAM and RBD methods. SAM is an 
effective mapping technique suitable for per-pixel detec-
tion of targets. It is used to spatially map a target based 
on the derivation of solid angle subtended between pixel 
spectra and reference end member spectra in the n-
dimensional data space of the ASTER image (where n is 
the number of bands of the image subjected to SAM clas-
sification)29,30. The SAM rule image thus derived for 
limestone is a grey-scale image, in which pixels with 
darker tone are the spectral representatives of the desired 
target, i.e. limestone. Further, SAM map is multiplied by 
–1 to illustrate limestone pixels with brighter tone, which 
has been further density sliced with red colour (Figure 
8 a). Red colour in this map is indicative of the spectra of 
the pixels having ‘lowest spectral angle’ with respect to 
input image spectra. In addition to above, the absorption 
minima (i.e. band with lowest reflection value) and its as-
sociated shoulders (i.e. bands with highest reflectance on 
either side of the absorption band) imprinted in the reflec-
tance profile of limestone pixel have been considered as 
the criteria for deriving RBD ratio image. The band ratio, 
which is derived based on bands at the absorption depth 
and also at the shoulder of an absorption feature helps in 
understanding the depth of absorption9,26. Therefore, the 
ratio is regarded as band depth (BD) image. In this re-
gard, we have chosen 6, 8 and 9 bands of ASTER VNIR–
SWIR image (i.e. 3, 5 and 6 SWIR bands; Figure 5 b). 
This RBD image is similar to the three-point ratio image 
as proposed by earlier workers27. However, they used 
bands 7, 8 and 9 of ASTER data for delineating carbonate 
mineral. The band ratio image is also colour-graded with 
red colour to indicate limestone pixels characterizing the 
highest absorption depth in this band (Figure 8 c)9,26. 

 There are exposures which have spatial size smaller 
than the size of ASTER SWIR pixels. In such cases, 
spectra of limestone-bearing pixels (modified due to 
spectral mixing) would be subdued in comparison to the 
pixels occupied entirely by limestone. The spectra of 
these pixels have been decomposed based on the input 
reference ASTER convolved laboratory spectra in two 
segments; one is the target and the other is background 
based on the implementation of CEM method. In this 
method, the spectral character of background is mathe-
matically derived from the covariance matrix of ASTER 
data based on the diagnostic spectral profile of the target. 
CEM method is suitable for mapping a target which has a 
wide distribution, as is the case in the present study 
area31. CEM method is effective, provided background 
and foreground are linearly mixed25,31. 
 Different spectral maps derived using the aforesaid 
methods could delineate limestone pixels with similar 
spatial distribution although have subtle variations (Fig-
ure 8 a–c). The spatial distribution of limestone pixels 
varies from place to place in these maps. For example, 
colour-shaded SAM, CEM and RBD images have slightly 
different distribution of limestone on the edge of the 
limestone quarry. This has been illustrated in the zoomed 
part of colour-shaded spectral maps; where limestone 
pixels are demarcated with red colour (Figure 8 a–c). 
 However, it is always preferable to derive a conclusive 
map for targeting economic rocks like limestone by 
bringing together complementary information from each 
spectral map. Therefore two-cascaded principal compo-
nent method, known as a minimum noise fraction (MNF) 
method, is used to integrate these spectral maps to derive 
a composite map. In general, MNF image is used to bring 
together the complementary information of different 
spectral maps by removing noise and reducing dimen-
sionality in hyperspectral data. MNF is used to order 
spectral bands according to the information content based 
on the assumption that noise is non-correlative in each 
input band6,32,33. MNF is a suitable approach to condense 
most of the important spectral information in one or few 
bands. Further, MNF images have also been used to de-
tect targets, specially different alteration minerals associ-
ated with hydrothermal deposits34,35. Here, we have used 
MNF to converge the result of different spectral mapping 
algorithms used to delineate limestone. In each spectral 
map, noises are represented either by non-coherent pixels 
occurring within continuous limestone patch or randomly 
distributed at the edge of homogeneous patches of lime-
stone exposures. A non-coherent distributions of pixels 
are evident at the edge of the big limestone quarry (zoomed 
part of Figure 8 a–c). These pixels are eliminated at the 
first stage of MNF computation based on shift difference 
method. For calculating noise, shift difference method is 
performed on the pixel clusters (specified by the user) by 
calculating the differences in the value of each pixel from 
the adjacent one occurring below or to the right of
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Figure 8. Inverted spectral angle mapper (SAM) (a), constrained energy minimization (CEM) (b) image and 
relative band depth (RBD) image (band 6 + band 9)/2*band 7 (c). ASTER FCC image showing limestone open 
cast is also provided for visual comparison. Carbonate-rich zones are graded with red colour (as parameters like 
low SAM angle, high CEM value and high RBD values are illustrated with red colour in SAM, CEM, RBD map 
respectively for indicating limestone). (Inset) a–c, Colour graded open cast of limestone. 

 

 
 

Figure 9. Limestone map showing carbonate-rich pockets (red in colour) plotted with the geological boundary 
of limestone–shale (calcareous) and limestone–sandstone. 
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Figure 10. a, MNF-1 image derived from three spectral maps (SAM, CEM, RBD) is colour-graded to illustrate 
carbonate-rich zone (the high MNF value is representative of limestone) with red colour. b, Position of image 
spectra collection point is plotted over grey scale MNF-1 image. c, Spectral profiles of surface exposures of lime-
stone as delineated from MNF-1 image of three spectral map (1–6) are compared with ASTER SWIR band con-
volved laboratory spectra of limestone samples collected in the field. 

 
 
the pixel. These differences are further averaged to calcu-
late ‘noise’29. In the second stage of MNF method, prin-
cipal component of three input spectral maps is derived to 
form MNF-1 image keeping highest complementary  
information of three input maps. The MNF-1 image  
preserves the complementary information of different 
spectral maps and therefore is regarded as the composite 
spectral map after the image is histogram-equalized and 
colour-graded (to depict the high MNF value as represen-
tative of limestone) to show limestone exposures in red 
colour. 

Discussion 

In this study, we have demonstrated how different spec-
tral maps can be used for mapping limestone, which is 
known for its diagnostic spectral feature within the SWIR 
domain. It is important to note that there are similarity in 
limestone distribution in these spectral maps (Figure 8 a–
c), although with slight variation in the limestone distri-
bution at few places. This is evident at the circular patch 
of open-cast mine, where limestone pixels are differently 
delineated as evident from each spectral map (Figure 8 a–
c). Therefore, it was essential to integrate the commonal-
ities of these spectral maps in an effective way, where 
correlative information of these spectral maps can be pre-
sented as a reliable limestone exposure map by removing 
non-coherent limestone pixels. In this regard, MNF 
method (as described earlier) is utilized efficiently to re-
move non-coherent limestone pixels of different spectral 
maps based on using ‘shift-difference method’ to derive a 
composite map. 

Conclusion 

Further, the composite map of limestone have been vali-
dated in light of existing geological and spectral data. 
This has been achieved by draping limestone boundary 
derived from a known geological map (modified after  
image interpretation and field survey) over a composite 
limestone map (Figure 9). Also, the SWIR band con-
volved image spectra of the limestone pixels of compo-
site spectral map are collected from different parts of the 
image (Figure 10 a and b). These spectra are compared 
with the representative SWIR band convolved laboratory 
spectra of limestone (Figure 10 c). The observed similar-
ity of these pixel spectra with laboratory spectra, justifies 
the composite limestone map derived using an integration 
of different spectral maps. 
 The approach of integration of spectral maps is essen-
tial to integrate the results of different spectral maps  
delineating the same target for demarcating it with better 
confidence, achieved by correlating the spectral maps. In 
the present study, MNF-based approach is used to derive 
a ‘composite’ limestone distribution map, which has a 
spatially coherent distribution of limestone pixels and the 
results are validated based on existing geological and 
spectral data. More importantly, the convergence attemp-
ted in the present study is reproducible in any other study 
where the convergence of the different spectral mapping 
algorithms are required for target mapping. 
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