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The influence of sugar–phosphate backbone on the 
stacking interaction in the adenine…thymine base-pair 
dimer (A…T)2 has been studied using the density 
functional theoretic method and the dispersion-
corrected density functional BLYP-D3 and the triple-
zeta quality basis set def2-TZVP. In the absence of the 
sugar–phosphate backbone, several stacked conform-
ers were obtained with a small difference in their  
stabilization energy values (–20 to –25 kcal/mol). 
However, the presence of the sugar–phosphate back-
bone limits the movement of the two A…T units, and 
yet the stacking interaction remains significant  
(–19.4 kcal/mol). Despite the constraints imposed by 
the backbone, the dimer (A…T)2 is found to retain its 
favourable geometry. The influence of sodium ions on 
the geometry and the interaction energy is found to be 
negligible.  

 

Keywords: B-DNA helix formation, BLYP-D3, stack-

ing interaction, sugar–phosphate backbone. 

 

THE classic double-helical structure of B-DNA, proposed 

by Watson and Crick
1
, is governed by hydrogen bonds 

between the Watson–Crick (WC) base pairs of anti-

parallel strands, stacking interactions between nucleo-

bases, and covalent bonds between the base pairs and the 

sugar–phosphate units
2–4

. The stabilization energy value 

associated with the stacking interaction between adenine, 

guanine, cytosine and thymine dimers ranges from 10 to 

17 kcal/mol (ref. 3). In contrast, the strength of multiple 

hydrogen bonds between base pairs falls between 20 and 

30 kcal/mol. Therefore, it can be concluded that the con-

tribution of the stacking interaction to the overall stability 

of DNA is comparable to that of the hydrogen bonds. Al-

though it is generally perceived that hydrogen bonding is 

primarily governed by electrostatic forces and -stacking 

interaction by dispersion forces
4–7

, in the recent past there 

have been instances where such perceptions have been 

challenged
8,9

. A recent molecular dynamics (MD) simula-

tion study
10

 showed that in the absence of the dispersion 

energy component, the double-helical structure is trans-

formed into a straight ladder-like structure. The relative 
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orientation of one base pair with respect to another can be 

described using six degrees of freedom, namely, twist, 

roll and tilt, which are rotational parameters, and slide, 

shift and rise, which are translational parameters
11

.  

 Extensive quantum chemical calculations have been 

used to analyse the nature of the base-pair stacking using 

a wide range of methods and basis sets
12–16

. Hobza and 

Šponer
17

 reported the stacking energy values for 

homodimers of cytosine, guanine and uracil using the se-

cond-order Møller–Plessett perturbation (MP2) theoretic 

method in the complete basis set (CBS) limit. Subse-

quently, the interaction energy values for a set of 10 

stacked DNA base pairs representing the gas phase mini-

mum structures with respect to the helical parameters 

(rise, twist and propeller twist) were reported at the esti-

mated CCSD(T)/CBS limit
18

. Potential energy scans with 

respect to the twist parameter for each of the DNA base-

pair steps were generated by Cooper et al.
19

 using the van 

der Waals-density functional theory (vdW-DFT). This 

study reported the twist angle to be 34  10 for the en-

ergetic minimum structures, close to the average value of 

the twist angle for B-DNA (36  7)
19

.  

 A common feature of the computational studies availa-

ble so far is the use of the truncated models. DNA  

nucleosides and nucleotides are typically modelled as  

nucleobases with the sugar–phosphate backbone replaced 

by hydrogen atoms or methyl groups. The use of such 

truncated systems enables the determination of the strength 

of the stacking interaction and also keeps the computa-

tions viable. As a result, the influence of the deoxyribose 

sugar–phosphate backbone, which imposes certain con-

straints over the stacked base pairs, has not been studied 

in detail. In principle, the backbone can be considered as 

a substituent on the nucleobases and substituents have 

been shown to alter the stacking interaction and structures 

significantly
20–25

. For example, the potential energy sur-

face of benzene dimer possesses at least two energy min-

ima, one corresponding to the T-shaped geometry and the 

other to the parallel-displaced geometry. However, it is to 

be emphasized that only the T-shaped geometry of the 

benzene dimer has been observed experimentally
26

. On 

the other hand, for the pyridine dimer, antiparallel-

stacked geometry was found to be the most stable
27

. Also 

for the toluene dimer, the stacked configuration was 

found to be preferred over the T-shaped geometry, in gas 

phase as well as in aqueous medium
28

. Therefore, it can 

be deduced that the presence of heteroatoms/substitutents 

favours a stacked geometry.  

 The conformation of the sugar moiety is considered a 

dominant factor in the determination of the type of the 

DNA helix (A, B or Z)
29

. The MP2 theory-based compu-

tations performed by Churchill et al.
30

 revealed that the 

presence of sugar–phosphate backbone has a significant 

influence over the strength of the stacking interaction. 

Further analysis showed that there is a direct interaction 

between the backbone and the base pairs, which enhances 

the stability of the overall complex
31

. In a more recent 

work, the passive role of the backbone in guiding the hel-

ical shape of DNA was predicted by Sherrill and co-

workers using the symmetry-adapted perturbation theory 

(SAPT) computations
32

. The helical parameters rise and 

twist, corresponding to the minimum energy geometry of 

the stacked base pairs were found to be in good agree-

ment with the corresponding values in the crystal struc-

ture of B-DNA.  

 There are a few studies available in the literature  

addressing the influence of sugar–phosphate backbone on 

the structure and stability of the DNA helix
33–35

. Howev-

er, a systematic theoretical investigation of the base-pair 

dimers with/without sugar–phosphate backbone would 

quantify the role of the backbone in governing the helical 

shape of B-DNA.  

 Here, we have undertaken a detailed DFT study of the 

role of the sugar–phosphate backbone on non-covalent  

interactions present in B-DNA and its importance in the 

double-helix formation. Stacking interaction energy val-

ues for the base-pair dimers with and without the back-

bone are computed. The six geometry parameters (twist, 

roll, tilt, slide, shift and rise) are estimated. The role of 

Na
+
 ions in the structure and energetics is also studied.  

 An accurate estimation of non-covalent interactions is 

a challenging task
36,37

. Density functionals like B3LYP 

and PBE seem to be reliable in describing hydrogen 

bonds, but they fail to describe the dispersion interaction, 

which is a dominant force in the stacking interaction of 

aromatic systems. Some of the recently developed func-

tionals like the dispersion-corrected density functionals 

DFT-D
38

, B2PLYP
39

 and the M05/M06 series
40

, have 

shown remarkable success in accurately accounting for 

the dispersion interaction. The DFT-D functionals were 

constructed by adding an empirical dispersion-correction 

term to the traditional DFT methods
41

. Revised disper-

sion-correction terms (DFT-D3 methods) were recently 

introduced and reported to yield accurate energies, and a 

number of new functionals like BLYP-D3, B3LYP-D3, 

and PBE-D3 are now available
42–44

. Grimme and co-

workers
45

 assessed the efficacy of various DFT function-

als in accounting for the non-covalent interaction in three  

databases (S22, S66 and S66x8) and found that BLYP-D3 

performed exceedingly well over all intermolecular dis-

tances, particularly in the long range.  

 In the present work, the influence of the sugar–

phosphate backbone on the stacking interaction present in 

B-DNA was studied by computing the stacking inter-

action energy values and the base-step parameters for the 

adenine…thymine base-pair dimer (A…T)2. Reference 

geometries of these base-pair dimers were obtained from 

high-resolution X-ray crystallographic data of the oligo-

nucleotide with nucleoside database (NDB) ID: BD0005 

(ref. 46). It is known that a small error in the experi-

mental inter-base distance can cause a major bias in the  

energy calculation, leading to a false interpretation of the 
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Figure 1. Total energy values for the fully optimized (A…T)2 geometries obtained using the DFT method and the BLYP-D3 
functional and the def2-SVP basis set.  

 

 

results. Therefore, the geometry of the base-pair dimer 

with and without the sugar–phosphate backbone was fully 

optimized using the BLYP-D3 functional and def2-SVP 

and def2-TZVP basis sets. It is to be mentioned that the 

resolution of the identity (RI) approximation was used to 

speed up the calculations
47

. All the electronic structure 

calculations were carried out using the TURBOMOLE 

suite of programs
48

. To determine the stacking interaction 

energy, the sugar–phosphate backbone atoms were re-

moved. Single-point energy calculation was carried out 

using the BLYP-D3/def2-TZVP method and the total 

stacking interaction energy value (Eint) was obtained by 

computing the interaction energy for the complex and the 

base pairs as  

 

 Eint = E [(A…T)2] – 2 [E (A…T)], (1)  

 

where A and T denote the bases adenine and thymine res-

pectively. The six base-step parameters for all the geo-

metries were determined using the web-based interface of 

3DNA suite of programs, W3DNA
49

. Electron density 

and bond critical points for the stacked pairs were ob-

tained by performing atoms-in-molecules (AIM) calcula-

tions using the AIM-2000 package
50

.  

 Several input geometries for the dimer of the adenine… 

thymine base pair (A…T)2, were constructed manually by 

shifting one base pair with respect to the other in horizon-

tal (x) and lateral (y) directions, as shown in Figure 1. 

Full geometry optimization calculations were carried out 

using the functional BLYP-D3 and the basis set def2-SVP 

to explore the potential energy surface and the local min-

ima and the results obtained are depicted in Figure 1. At 

least five local minima were observed, with the largest 

energy difference between two minima being 5 kcal/mol. 

Subsequently, for quantitative prediction the most stable 

geometry was re-optimized using the triple-zeta quality 

basis set (def2-TZVP) and the resultant geometry is 

shown in Figure 2. It can be seen from the figure that in 

the most stable geometry of (A…T)2 the individual base 

pairs form a bowl-shaped geometry and the orientation of 

one base pair is almost perpendicular with respect to the 

other. The stabilization energy for this most stable 

stacked dimer is computed to be –24.85 kcal/mol, which 

is comparable to the hydrogen bond energy between ba-

ses A and T. Therefore, it can be safely assumed that 

stacking interactions are as important as hydrogen bonds 

in stabilizing large helical structures of DNA.  

 To study the influence of the sugar–phosphate back-

bone on the structure and stability of (A…T)2, the dimer 

geometry was obtained from the high resolution X-ray 

crystallographic data of an oligonucleotide (NDB code: 

BD0005). The coordinates obtained from the X-ray data 

were fully optimized using the BLYP-D3/def2-TZVP 

method and the resulting geometry is reproduced in Fig-

ure 3. This structure contains four sugar moieties and two 

phosphate units. It is obvious that the mutual orientation 

of the two A…T base pairs in the presence of the back-

bone is significantly different from that in free (A…T)2. 

Clearly, the presence of the sugar–phosphate backbone 

imposes a constraint and hence the shift and rotation of 

the two base pairs are limited. It is to be noted that each 

of the phosphate units has a negative charge on the oxy-

gen atom. Thus, the whole structure carries a total of two 

negative charges.  

 To obtain the stacking interaction in the presence of the 

backbone, sugar–phosphate atoms were removed from 

this structure (Figure 4
 
a). The stacking interaction of the 

truncated geometry was calculated to be –19.39 kcal/mol 

at the BLYP-D3/def2-TZVP level. This is ~5 kcal/mol 

less stable than the most stable free (A...T)2. Therefore, it 

can be deduced that due to the constraints imposed by the 

sugar–phosphate backbone, (A…T)2 loses ~5 kcal/mol 

stability. Interestingly, full optimization of the truncated 

geometry (Figure 4
 
a) quickly led to a converged local 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 108, NO. 6, 25 MARCH 2015 1129 

minimum, as shown in Figure 4 b. The interaction  

energy for the optimized geometry was found to be  

–20.12 kcal/mol at the BLYP-D3/def2-TZVP level. This 

is slightly more stable (by 0.73 kcal/mol) than the con-

strained geometry (Figure 4
 
a). Also, the two geometries 

do not differ much in terms of their base step parameters 

(twist, rise, slide, etc.), as shown in Table 1. Therefore, 

despite the sugar–phosphate constraint, the stacking  

interaction between two base pairs remains significantly 

large and the geometrical parameter values with the 

backbone are found to be close to those without the back-

bone.  

 We have studied the role of the sodium ions (Na
+
) on 

the structure and energetics of (A…T)2 with the back-

bone. For this purpose, two sodium ions were placed 

close to the phosphate units, as they contain the negative 

charge. The fully optimized geometry of (A…T)2 in the 

presence of the backbone and the two Na
+
 ions at the 

BLYP-D3/def2-TZVP level is depicted in Figure 5. It can 

be seen that each of the sodium ions interacts with two 

 

 

 
 

Figure 2. Fully optimized geometry of (A…T)2 obtained using the 
DFT method and the BLYP-D3 functional and the def2-TZVP basis set. 
Colour code: Grey for carbon, blue for nitrogen, red for oxygen and 
white for hydrogen atoms.  
 
 

 
 

Figure 3. Optimized geometry of (A…T)2 in the presence of the sug-
ar–phosphate backbone obtained using the DFT method and the BLYP-
D3 functional and the def2-TZVP basis set. Colour code: Grey for car-
bon, blue for nitrogen, red for oxygen, white for hydrogen atoms and 
yellow for phosphorus atoms. 

oxygen atoms. The influence of Na
+
 on the overall structure 

was found to be minimal. The stacking interaction of the 

truncated structure (in the absence of Na
+
 and the back-

bone) was computed to be –19.57 kcal/mol, which is 

close to the interaction energy value when Na
+
 ions are 

present.  

 The negligible influence of Na
+
 ions on the stacking  

interaction of (A…T)2 can be explained using the elec-

tron density and a bond critical point analysis. Parthasara-

thi et al.
51

 have pointed out the correlation between  

the electron density at the bond critical points and the 

strength of hydrogen bond and van der Waals interactions. 

We have performed an AIM analysis and the data obtained 

in terms of the electron density () and the Laplacian of 

the electron density (
2) are summarized in the  

Supporting Information (see online) along with corre-

sponding figures. The results indicate that there is no sig-

nificant change in the electron density at the (3, –1) bond 

critical points between the stacked base pairs when the 

Na
+
 ions and sugar–phosphate backbone are added. This is  

 

 
Table 1. Base-pair step parameters for (A…T)2 with and without  

  considering the sugar–phosphate backbone 

Motion  Figure 4 a  Figure 4 b  With Na+  Input (BD0005)  
 

Shift  0.03  0.02  0.0 0.1 

Slide  –0.14  –0.13  0.01 –0.3  

Rise  3.21  3.25  3.17 3.3  

Twist  43.99  43.63  40.74 38.82  

Roll  5.38  5.11  0.77 –1.94  

Tilt  –3.54  –3.01  –4.00 –0.69  

 

 
 

 
 
Figure 4. (A…T)2 geometry optimized at the DFT/BLYP-D3/def2-
TZVP level of theory in the presence (a) and absence (b) of the sugar–
phosphate backbone. Colour code: Same as in Figure 2. 
 

 

 
 
Figure 5. Optimized geometry of (A…T)2 at the DFT/BLYP-
D3/def2-TZVP level of theory in the presence of sugar–phosphate 
backbone and two Na+ ions. Colour code: Same as in Figure 2.  

http://www.currentscience.ac.in/Volumes/108/06/1126-suppl.pdf
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understandable due to the large distance (~9.0 Å) bet-

ween the Na
+
 ions and the -centre of the nucleobases.  

 The base-pair step parameters for (A…T)2 with and 

without the backbone and in the presence of Na
+
 ions are 

listed in Table 1. All six parameters for the dimer with 

and without the backbone are found to be similar. But, 

they differ significantly from those of the initial geometry 

obtained from the nucleoside database (NDB ID: 

BD0005). The difference in the geometry parameters can 

be accounted for by the difference in force-field para-

meters used during crystal structure refinement.  

 Based on our calculations of the geometry and energy 

of the (A…T)2 unit with and without the backbone, it is 

inferred that, despite the constraints imposed by the back-

bone, the (A…T)2 dimer retains its near-optimal geome-

try and the stacking interaction contributes significantly 

(~
 
–20 kcal/mol per stacked unit) to the overall stabiliza-

tion of the DNA structure. The stacking interaction be-

tween bases is comparable to the hydrogen bond energy 

between them, which is assumed to play a primary role in 

stabilizing large DNA helical structures. In the absence of 

the backbone several conformers of the dimer corre-

sponding to various local minima were obtained, with the 

most stable geometry having a stacking interaction of  

~
 
–25 kcal/mol. The influence of sodium ions on both the 

energy and the geometrical parameters was found to be 

negligible. A study of larger oligomers (trimer, tetramer 

and pentamer) and the influence of solvents on the geo-

metry is in progress.  
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The use of genome-scale models of Escherichia coli to 
guide future metabolic engineering strategies for in-
creased succinic acid production has received renewed 
attention in recent years. Substrate selectivity such as 
glycerol is of particular interest, because it is cur-
rently generated as a by-product of biodiesel industry 
and therefore can serve as a solitary carbon source. 
However, study on the prediction of gene knockout 
candidates for enhanced succinate production from 
glycerol using Minimization of Metabolic Adjustment 
Algorithm with the OptFlux software platform re-
mained underexplored. Here, we show that metabolic 
engineering interventions by gene knockout simula-
tion of some pyruvate dissimilating pathway enzymes 
(lactate dehydrogenase A and pyruvate formate lyase 
A) using E. coli genome-scale model can reduce ace-
tate flux and enhance succinic acid production under 
anaerobic conditions. The introduced genetic pertur-
bations led to substantial improvement in succinate 
flux of about 597% on glycerol and 120% on glucose 
than that of the wild-type control strain BSKO. We 
hypothesize that the deletion of pyruvate formate 




