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The use of genome-scale models of Escherichia coli to 
guide future metabolic engineering strategies for in-
creased succinic acid production has received renewed 
attention in recent years. Substrate selectivity such as 
glycerol is of particular interest, because it is cur-
rently generated as a by-product of biodiesel industry 
and therefore can serve as a solitary carbon source. 
However, study on the prediction of gene knockout 
candidates for enhanced succinate production from 
glycerol using Minimization of Metabolic Adjustment 
Algorithm with the OptFlux software platform re-
mained underexplored. Here, we show that metabolic 
engineering interventions by gene knockout simula-
tion of some pyruvate dissimilating pathway enzymes 
(lactate dehydrogenase A and pyruvate formate lyase 
A) using E. coli genome-scale model can reduce ace-
tate flux and enhance succinic acid production under 
anaerobic conditions. The introduced genetic pertur-
bations led to substantial improvement in succinate 
flux of about 597% on glycerol and 120% on glucose 
than that of the wild-type control strain BSKO. We 
hypothesize that the deletion of pyruvate formate 
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lyase A (pflA) in E. coli can led to no acetate produc-
tion from glucose, lower acetate production from glyc-
erol and increased succinic acid productivities on both 
substrates under anaerobic conditions. Our results 
demonstrate a predicted increase in succinate produc-
tion (597% higher than the wild-type model) among 
others, from glycerol after deletion of pflA/b0902 gene 
in E. coli genome-scale model. This would open up a 
novel platform for model-guided experimental inquiry 
and/or allow a comprehensive biological discovery on 
the metabolic processes of pflA in E. coli for succinate 
production when glycerol is the substrate.  
 
Keywords: Escherichia coli, genome-scale model, gene 
knockout simulation, metabolic engineering, OptFlux 
software, succinic acid.  
 
SUCCINIC acid has been established to be one among the 
fermentation products of anaerobic metabolism in addi-
tion to being an intermediate of the tricarboxylic acid  
cycle1. The invaluable uses of succinic acid as a precursor 
for various chemicals, an iron chelator and a supplement 
to many pharmaceuticals have been recognized2. Previ-
ously, succinic acid was mostly produced using a chemi-
cal approach from maleic anhydride1. Recently, much 
research attention has been devoted to the fermentative 
production of succinic acid, as several bacteria can now 
produce the acid as major fermentation product. How-
ever, large-scale production suffered some challenges  
because of complex physiology and metabolism of some 
obligate anaerobe producers and lack of adequate genetic 
knowledge for advanced systems metabolic engineering.  
 Escherichia coli has been established to produce mixed 
acid fermentation end-products with a small amount of 
succinic acid among others3,4. The mixed acid fermenta-
tion products of E. coli are more of acetic acid, formic 
acid, lactic acid and ethanol, rather than succinic acid1. 
Thus, it is deemed necessary to redirect metabolic fluxes 
from increasing succinic acid production by knocking out 
competing pathway genes interfering with reactions that 
facilitate succinic acid production.  
 Systems metabolic engineering of E. coli has received 
renewed attention in recent times because of the avail-
ability of genome-scale metabolic models5–7. These mod-
els were found to predict reasonably well accurate growth 
rates, metabolite excretion rates and growth phenotype on 
a number of substrates and genetic conditions that are 
consistent with established experimental observations6,8,9. 
Palsson and co-workers recently reported that prediction 
of microbial growth in relation to single and double gene 
knockouts using genome-scale models coupled with the 
integration of genomic and biochemical data would  
enable large-scale prediction of cellular functions10. This 
could open an opportunity for model-guide experimental 
inquiry and biological discovery10. These efforts have 
stimulated the development of several computational 
tools/software to study the E. coli system in silico. It was 

previously reported elsewhere11 that synthetic microbio-
logy and computational breakthrough could be synergis-
tically combined to improve strain performance for 
increased ethanol production11. One of the notable exam-
ples of computational breakthroughs for metabolic engi-
neering community with various applications is a 
software platform called OptFlux12. It has been developed 
and implemented with a genome scale-metabolic model 
of E. coli to predict the phenotype simulation of both 
wild-type and mutant strain using the method of flux bal-
ance analysis (FBA). We previously demonstrated the use 
of this approach for metabolic engineering interventions 
of E. coli for increased ethanol production from glu-
cose13, glycerol and xylose14. In a similar study, meta-
bolic gene knockout of enhanced D-lactate production has 
been reported15. The software is characterized with plug-
in architecture, where an algorithm called Minimization 
of Metabolic Adjustment (MOMA) was plugged in to 
simulate mutant whole-cell behaviour after genetic per-
turbation or gene knockout12,16. 
 Few studies have reported the use of computational 
tools such as Opt Knock17, for studying a number of gene 
deletions to increase the production of lactic acid using E. 
coli genome-scale model. Another study by Yim et al.18 
combined constrained based modelling, Opt Knock17 and 
biosynthetic prediction algorithms19 in guiding metabolic 
engineering interventions for the production of an impor-
tant commodity chemical called 1,4 butanediol (BDO) in 
E. coli18. It achieved a production rate of 18 g l–1 of this 
highly reduced, non-natural chemical from renewable 
carbohydrate feedstock18. In addition, Lee et al.20 have 
reported the use of MetaFluxNet for in silico comparative 
genome-scale metabolic interventions in combination 
with experimental validation for succinic acid produc-
tion1. On the other hand, Zhang et al.21 have reported re-
engineering of E. coli for increased succinate production 
from mineral salts medium with inactivation of pyruvate 
formate lyase B (pflB). In a similar study by the same 
group, glycerol was chosen as the substrate for metabolic 
engineering to increase succinate production in E. coli22. 
Their metabolic engineering interventions focused on the 
inactivation of pcK, ptsI and pflB in E. coli using the 
glycerol substrate. This indicates the significance of sub-
strate selectivity to increase succinate production using 
engineered E. coli strains. Until now, study on the in 
silico deletion of pflA/b0902 using E. coli genome-scale 
model from glycerol for increased succinate production 
remained largely underexplored. We report here a pre-
dicted increase in succinate production (597% higher than 
the wild-type model) among others, from glycerol after 
deletion of pflA/b0902 gene in E. coli genome-scale 
model using the OptFlux software platform.  
 The metabolic reconstruction of E. coli iAF1260 was 
used as a model6 for all the wild-type and mutant strains 
described herein. The model was previously tested and 
validated against experimental data, and was shown to be 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 108, NO. 6, 25 MARCH 2015 1133 

capable of predicting accurate growth rates, metabolite 
excretion rates and a growth phenotypes on a number of 
substrates and genetic conditions6,8,23. The substrates used 
in this study are glucose and glycerol, unless otherwise 
stated.  
 OptFlux software12, as an open source platform 
(www.optflux.org) and a reference computational tool for 
metabolic engineering was used for FBA. MOMA was 
used as a simulation method for gene knockouts; and it 
was implemented using Java programing within the 
framework of OptFlux. All simulations of the mutant 
strains and wild-type models were performed using the 
OptFlux v3.06.  
 The chosen solitary carbon sources were glucose and gly-
cerol, and the uptake rates for each carbon source were con-
strained to a maximum of 10 mmol g DW–1 h–1. The oxygen 
uptake rate was considered to be 0.0 mmol g DW–1 h–1, as 
the simulation condition was anaerobic for fermentative 
production of succinate. These values were chosen based 
on slightly close experimental observation of anaerobic 
growth of E. coli9,24,25.  
 Gene knockout simulation was conducted under the 
OptFlux software platform using MOMA16 as simulation 
method. FBA was used for simulation of the wild-type 
model, which predicts metabolic flux distributions at 
steady state using linear programing, whereas MOMA 
employs quadratic programing to identify the point in the 
flux space, which is closest to the wild-type point and 
consistent with the gene knockout constraint16. The wild-
type model obtained from the Biomodels database26, con-
structed by Feist et al.6 was designated as BSK and the mu-
tant model/strain with pyruvate formate lyase (b0902/ 
pflA) single gene knockout was designated as BSK101 
(flA). The mutant model/strain with lactate dehydro-
genase (b1380/ldhA) single gene knockout was desig-
nated as BSK102 (ldhA). A mutant model with double 
knockout of both the pflA and ldhA was designated as 
BSK103 (pflA ldhA). The in silico gene knockout 
simulations were run to completion using MOMA, as 
previously described in their original documentation16.  
 In this study, the E. coli genome-scale model con-
structed elsewhere6 was metabolically engineered using 
the OptFlux software platform to convert glycerol to value-
added succinate under anaerobic condition. Competing 
pathways genes such as lactate dehydrogenase (ldhA) and 
pyruvate formate lyase (pflA) were knocked out to see 
whether succinate flux can be increased. Two substrates 
(glucose and glycerol) were used in this in silico study. 
Deletion of pflA on glucose in strain BSK101 (flA) led 
to an increase in succinate production of 6.9% higher 
than that of the wild-type strain BSKO, and maintaining a 
growth rate that 98.15% of the wild-type (Table 1 and 
Figure 1). The same mutant strain BSK101 (flA) was 
simulated using glycerol as the substrate, showing a dra-
matic increase of succinate production with about 479% 
higher (fourfold) than that of the wild-type control strain 

BSKO (Table 2 and Figure 2). A growth rate of about 
6.24% of the wild-type was seen when glycerol was the 
substrate (Table 2 and Figure 2). The slow growth rate 
might be attributed to the fact that the hydrolysate is not 
rich in xylose and mannose, which have been previously 
established to have effects on both cell growth and sol-
vent production27,28.  
 The slow growth rate of E. coli when glycerol is the 
substrate could be improved using co-substrates during 
fermentation such as glucose and glycerol as reported by 
Jin et al.28. In addition, other alternative strategies to 
overcome the anaerobic barrier entail the generation of 
enough biomass under aerobic conditions, and then 
switching into anaerobic conditions for succinate produc-
tion29. This strategy was shown to be effective using a 
‘dual phase’ fermentation system30. Another recent strat-
egy reported31 that an E. coli strain carrying mutations in 
the rpoC and glpK genes which was evolved from adap-
tive laboratory evolution in glycerol is capable of show-
ing fast growth rate of about 89% of the wild-type31. This 
strategy could be useful in addressing the aforementioned 
 

 
 
Figure 1. Maximum specific growth rate of E. coli BSK (WT) and 
mutants simulated using glucose as substrate with respect to succinate 
productivity. Error bars indicate standard deviation of the replicates.  
 
 

 
 
Figure 2. Maximum specific growth rates of E. coli BSK (WT) and 
mutants simulated using glycerol as substrate with respect to succinate 
productivity. Error bars indicate standard deviation of the replicates.  
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Table 1. E. coli strain design properties from glucose under the OptFlux software platform 

 Knockout  Succinate  Acetate  Biomass 
Strain genes  (mmol g DW–1 h–1)  % Succinate  (mmol g DW–1 h–1)  % Acetate  (h–1) % Biomass  
 

BSKO (WT)  Nil 0.06279  100.0  8.61685  100  0.18814504  100.0  
BSK101  pflA  0.06716  106.9  0.0  0.0  0.18466564  98.15  
BSK102  ldhA  0.06186   98.5  8.61453  99.97  0.10457363  55.58  
BSK103  pflA ldhA  0.06279  106.9  8.61147  99.93  0.18466564  98.15  

Maximum uptake rates for glycerol were set to be 10 mmol g DW–1 h–1and the corresponding oxygen uptake rate was 0.0  mmol g DW–1 h–1 for  
anaerobic simulation. 
 
 

Table 2. E. coli strain design properties from glycerol under the OptFlux software platform 

 Knockout  Succinate  Acetate  Biomass 
Strain genes  (mmol g DW–1 h–1)  % Succinate  (mmol g DW–1 h–1)  % Acetate  (h–1)  % Biomass  
 

BSKO (WT)  Nil  0.06936  100.0  16.4721  100  0.2783578  100.0  
BSK101  pflA  0.40221  579.8   15.85774  96.27    0.012968043   6.239  
BSK102  ldhA  0.08347  120.3   16.47132  99.99   0.14426926  69.41  
BSK103  pflA ldhA  0.40221  579.8   15.85774  96.7    0.012968043   6.239  

Maximum uptake rates for glycerol were set to be 10 mmol g DW–1 h–1 and the corresponding oxygen uptake rate was 0.0 mmol g DW–1 h–1 for  
anaerobic simulation. 
 
 

 
 

Figure 3. Maximum succinate productivity of E. coli BSK (WT) and mutants simulated using glucose and glyc-
erol as substrates. Error bars indicate standard deviation of the replicates.  

 
 
challenges. Despite these challenges of undergoing sev-
eral mutations to increase the growth rate of E. coli using 
glycerol substrate, glycerol still represents one of the 
most important substrates to increase the production of 
succinate in E. coli, and it is now being generated in bulk 
quantities as a by-product of biofuel industries27. Besides 
its unique features of being abundant and inexpensive, it 
can also generate more reducing equivalents than its glu-
cose and xylose counterparts27.  
 The deletion of ldhA on glycerol substrate in mutant 
strain BSK102 led to succinate production increase of 
about 120.3% (20% higher) of the wild-type control 
strain BSKO (Table 2), while maintaining a growth rate 

that is 69.4% of the wild-type (Figure 3). This significant 
increase of about 20% by deleting one of the pyruvate 
dissimilating enzymes called ldhA could guide future ex-
perimental study to increase succinic acid production by 
E. coli from glycerol substrate (Figure 3). The acetate 
produced in strain BSK101 (pflA) and BSK102 (ldhA) 
is slightly lower than the wild-type control strain BSKO 
(Table 2). Despite the deletion of pyruvate dissimilating 
enzymes (pflA and ldhA), acetate is produced. This indi-
cates that the cell might have used other alternative path-
ways such as pyruvate dehydrogenase complex (PDH) 
and/or activated pflB to produce acetyl-CoA, acetate and 
ATP (Figures 4 and 5). On the one hand, deletion of pflA 

pflA 

IdhA 

pflA IdhA 

Nil 
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Figure 4. Main fermentative pathways involved in the anaerobic fermentation of glycerol in E. coli used for metabolic flux analysis, par-
tially adapted from ref. 37. Relevant genes and corresponding enzymes are included. Ethanol, acetate, formate and succinate are the main 
products of the fermentative utilization of glycerol34. Proposed in silico genetic modifications are illustrated by enzymes in red (pflA and 
ldhA). ldhA, Lactate dehydrogenase A; pflA, Pyruvate formate lyase A; PDH, Pyruvate dehydrogenase complex; FRD, Fumarate reductase; 
adhE, Alcohol dehydrogenase; pta, Phosphate-acetyltransferase; pyk, Pyruvate kinase and AckA, Acetate kinase. 

 

 

in mutant strain BSK101 on glucose led to no acetate pro-
duction, suggesting that pflB is not activated under glu-
cose substrate anaerobic conditions, while on the other, 
the same strain BSK101 produced acetate on glycerol 
substrate under anaerobic conditions (Tables 1 and 2). 
These findings are in agreement with the results reported 
elsewhere32. We can now hypothesize that acetate pro-
duction under anaerobic condition by E. coli is substrate-
dependent, and that the use of alternative pathways to 
produce acetate could be substrate-dependent as well. It 
can be seen conspicuously that single deletion mutant 
strain BSK101 (pflA) and double deletion mutant strain 
BSK103 (pflA ldhA) have the same trend of growth 
rates and succinate productivities on both glucose and 
glycerol substrates respectively (Tables 1 and 2 and Fig-

ure 3) by deletion of pflA. As such, we can now hypothe-
size that deletion of only pflA in E. coli can led to no 
acetate production from glucose, lower acetate production 
from glycerol and increased succinate productivities from 
both substrates under anaerobic conditions (Tables 1 and 
2 and Figure 3).  
 The 579% higher succinate production in strain 
BSK101 (pflA) than that of the wild-type control stain 
BSKO, indicates that succinate production in E. coli us-
ing glycerol would provide a significant progress  
toward bio-based industrial chemical production, that is 
cheaper and hence environment-friendly. It was explicitly 
reported that crude glycerol generated by biofuel indus-
tries can be used as carbon source for microbial fermenta-
tions27. In addition, given the highly reduced nature of 
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Figure 5. The central anaerobic pathway of E. coli used for metabolic flux analysis on glucose substrate, partially adapted from ref. 38. 
Relevant genes and corresponding enzymes are included. Proposed in silico genetic modifications are illustrated by enzymes in red (pflA 
and ldhA). E1, Phosphatetransferase system (PTS); E2, Fructose 6-phosphate adolase and glucose-6-phosphate isomerase; E3, Glyceralde-
hydes phosphodehydrogenase; E4, Phosphoacetyltransferase and acetate kinase; E5, Alcohol dehydrogenase; E6, Isocitrate lyase; E7,  
Fumarate reductase; E8, Fumarase; PDH, Pyruvate dehydrogenase complex; ldhA, Lactate dehydrogenase A; pflA and pflB, Pyruvate  
formate lyase A and B. 

 
carbon in glycerol compared to sugar molecules gives it 
natural advantages when one considers biotransformation 
as a means for formation of various high-value reduced 
chemicals27. When glycerol is the substrate, twice the 
amount of reducing equivalent is generated for its con-
version to glycolytic intermediates compared to the one 
generated by the metabolism of glucose or xylose33, as 
such potential yields of fuels and other chemicals are 
higher when synthesized from glycerol as opposed to 
other monosaccharides34.  

 In addition, the in silico results reported herein on the 
use of glycerol for succinate production in E. coli mutant 
strain BSK101 (pflA) informed other studies that E. coli 
deficient of pflA could increase succinate production 
dramatically without over-expression of malate enzymes. 
This result indicates that the choice of substrates and  
alternative pathways (Figures 4 and 5) to be used in  
metabolically engineered E. coli to increase succinate 
production is critical. Other workers reported the inacti-
vation of pfl and ldh coupled with over-expression of  
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malic enzymes35,36 to increase succinate production on 
glucose substrate in E. coli mutant strain35,36.  
 The two substrates (glucose and glycerol) used in this 
study have shown a significant predicted succinate pro-
duction in E. coli (Figure 3). Eliminating or inactivating 
competing pathways of succinate such as ldh and pfl have 
been reported previously to increase succinate production 
on glucose35,36. These findings are in agreement with 
those reported in this in silico study. This indicates that 
the OptFlux software platform using MOMA can effec-
tively predict metabolic engineering strategies based on 
gene knockout simulation for increased succinic acid 
production by E. coli.  
 E. coli carries out mixed acid fermentation reactions 
under anaerobic condition and produces acetate, formate, 
lactate, ethanol and succinate. When ldhA is deleted in E. 
coli under anaerobic condition on glucose and glycerol 
substrates, there is usually a large accumulation of pyru-
vate and acetyl-CoA, as previously established29. The  
pyruvate branching partitioning initiates the NADH-
consuming reaction for lactate production using ldhA, but 
this reaction was blocked and so no lactate was produced 
(Figures 4 and 5). On the one hand, the accumulated  
pyruvate could initiate succinate production using glyox-
alate cycle via isocitate, while on the other hand the  
succinate production could be channelled via phosphoe-
nolpyruvate to oxaloacetate alternative routes (Figure 5).  
 This work demonstrates the feasibility of using genome-
scale in silico metabolic model of E. coli to simulate gene 
knockout from glycerol substrates with the OptFlux soft-
ware platform, which could guide future experimental 
works for enhanced succinic acid production. The current 
study further pinpoints conspicuously how significant the 
substrate selectivity is in relation to increasing succinate 
production in engineered E. coli model strains. Using a 
rational engineering approach, we report, a predicted mu-
tant model, lacking pflA/b0902 gene, capable of increased 
succinate production of nearly fivefold (497% higher) 
from the wild-type control model, when glycerol is the 
substrate. Its glucose counterpart showed a succinate pro-
duction increase of only 20% of the wild-type control 
model. This would pave the way for a comprehensive 
model-guided experimental inquiry and/or biological dis-
covery on the metabolic processes of the pflA in E. coli 
for succinate production when glycerol is the substrate.  
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Central Saudi Arabia is one of the most arid regions 
of the world with very little precipitation and extreme 
climatic conditions. In the absence of available surface 
water supplies, the non-renewable groundwater re-
sources stored in the Palaeozoic and Mesozoic sedi-
mentary formations form the most important source 
for irrigation and domestic water requirements. The 
present study deals with 97 groundwater samples col-
lected from Saq aquifer, which is the major aquifer in 
the region. The study involves the use of principal 
component analysis (PCA) and variogram analysis for 
groundwater quality mapping. PCA helped in estab-
lishing a series of factorial variables that summarize 
all the hydrochemical information. Efforts have been 
made to identify the spatial development of the prin-
cipal process acting on groundwater quality by map-
ping it using factorial variables and ordinary kriging 
techniques. Two principal components (PCs) were  
extracted revealing that the chemical characteristics 
of groundwater in the region were acquired through 
rock–water interactions and anthropogenic influences. 
Finally, by applying kriging interpolation technique 
on the factor distribution values for the two PCs in the 
area under investigation, the factor distribution maps 
were prepared. The results concluded that both natu-
ral and anthropogenic processes contribute to the 
groundwater quality, but anthropogenic impacts are 
more important and may result in further deteriora-
tion of groundwater quality if relevant protection 
methodologies are not adopted. 
 
Keywords: Arid region, geostatistics, groundwater 
quality, kriging, principal component analysis. 
 
Groundwater resources worldwide are considered as pre-
cious sources for meeting the agricultural, domestic and 
industrial demands. This is especially true for arid  


