
RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 108, NO. 6, 25 MARCH 2015 1138 

*For correspondence. (e-mail: yousef.nazal@gmail.com) 

23. McCloskey, D., Palsson, B. O. and Feist, A. M., Basic and applied 
uses of genome-scale metabolic network reconstructions of  
Escherichia coli. Mol. Syst. Biol., 2013, 9, 661; doi:10.1038/ 
msb.2013.18.  

24. Varma, A., Boesch, B. W. and Palsson, B. O., Stoichiometric inter-
pretation of Escherichia coli glucose catabolism under various oxy-
genation rates. Appl. Environ. Microbiol., 1993, 59, 2465–2473. 

25. Fischer, E., Zamboni, N. and Sauer, U., High-throughput meta-
bolic flux analysis based on gas chromatography–mass spectrome-
try derived 13C constraints. Anal. Biochem., 2004, 325, 308–316; 
doi:http://dx.doi.org/10.1016/j.ab.2003.10.036. 

26. Le Novere, N. et al., BioModels database: a free, centralized data-
base of curated, published, quantitative kinetic models of bio-
chemical and cellular systems. Nucleic Acids Res., 2006, 34, 
D689–D691; doi:10.1093/nar/gkj092.  

27. Mattam, A. J., Clomburg, J. M., Gonzalez, R. and Yazdani, S. S., 
Fermentation of glycerol and production of valuable chemical and 
biofuel molecules. Biotechnol. Lett., 2013, 35, 831–842; 
doi:10.1007/s10529-013-1240-4.  

28. Jin, P., Li, S., Lu, S. G., Zhu, J. G. and Huang, H., Improved 1,3-
propanediol production with hemicellulosic hydrolysates (corn 
straw) as cosubstrate: impact of degradation products on Kleb-
siella pneumoniae growth and 1,3-propanediol fermentation.  
Bioresour. Technol., 2011, 102, 1815–1821; doi:10.1016/ 
j.biortech.2010.09.048.  

29. Lin, H., Bennett, G. N. and San, K. Y., Metabolic engineering of 
aerobic succinate production systems in Escherichia coli to  
improve process productivity and achieve the maximum theoreti-
cal succinate yield. Metab. Eng., 2005, 7, 116–127; doi:10.1016/ 
j.ymben.2004.10.003. 

30. Vemuri, G. N., Eiteman, M. A. and Altman, E., Effects of growth 
mode and pyruvate carboxylase on succinic acid production by 
metabolically engineered strains of Escherichia coli. Appl. Envi-
ron. Microbiol., 2002, 68, 1715–1727; doi:10.1128/aem.68.4. 
1715-1727.2002.  

31. Cheng, K.-K. et al., Global metabolic network reorganization by 
adaptive mutations allows fast growth of Escherichia coli on glyc-
erol. Nature Commun., 2014, 5; doi:10.1038/ncomms4233. 

32. Hildebrand, A., Schlacta, T., Warmack, R., Kasuga, T. and Fan, 
Z., Engineering Escherichia coli for improved ethanol production 
from gluconate. J. Biotechnol., 2013, 168, 101–106; doi:10.1016/ 
j.jbiotec.2013.07.033.  

33. Yazdani, S. S. and Gonzalez, R., Anaerobic fermentation of  
glycerol: a path to economic viability for the biofuels industry. 
Curr. Opin. Biotechnol., 2007, 18, 213–219; doi:10.1016/j.copbio. 
2007.05.002. 

34. Dharmadi, Y., Murarka, A. and Gonzalez, R., Anaerobic fermenta-
tion of glycerol by Escherichia coli: a new platform for metabolic 
engineering. Biotechnol. Bioeng., 2005, 94, 821–829; doi:10.1002/ 
bit.21025.  

35. Stols, L. and Donnelly, M. I., Production of succinic acid through 
overexpression of NAD+-dependent malic enzyme in an Escherichia 
coli mutant. Appl. Environ. Microbiol., 1997, 63, 2695–2701. 

36. Hong, S. H. and Lee, S. Y., Metabolic flux analysis for succinic 
acid production by recombinant Escherichia coli with amplified 
malic enzyme activity. Biotechnol. Bioeng., 2001, 74, 89–95. 

37. Shams Yazdani, S. and Gonzalez, R., Engineering Escherichia 
coli for the efficient conversion of glycerol to ethanol and co-
products. Metab. Eng., 2008, 10, 340–351; doi:10.1016/j.ymben. 
2008.08.005. 

38. Wang, Q., Chen, X., Yang, Y. and Zhao, X., Genome-scale in 
silico aided metabolic analysis and flux comparisons of Esche-
richia coli to improve succinate production. Appl. Microbiol. Bio-
technol., 2006, 73, 887–894; doi:10.1007/s00253-006-0535-y.  

 

Received 15 May 2014; revised accepted 10 December 2014 

The combination of principal  
component analysis and geostatistics  
as a technique in assessment of 
groundwater hydrochemistry in arid  
environment 
 
Yousef Nazzal1,*, Faisal K. Zaidi2, Izrar Ahmed3,  
Habes Ghrefat2, Muhammad Naeem2,  
Nassir S. N. Al-Arifi2, Saeed A. Al-Shaltoni2  
and Khaled M. Al-Kahtany2 
1Department of Mathematics and Applied Sciences,  
College of Arts & Sciences, Abu Dhabi University, PO Box 59911,  
Abu Dhabi, UAE 
2Department of Geology and Geophysics, King Saud University,  
PO Box 2455, Riyadh 11451, Saudi Arabia 
3Colleges of Engineering, King Saud University, Riyadh 11451,  
Saudi Arabia 
 
Central Saudi Arabia is one of the most arid regions 
of the world with very little precipitation and extreme 
climatic conditions. In the absence of available surface 
water supplies, the non-renewable groundwater re-
sources stored in the Palaeozoic and Mesozoic sedi-
mentary formations form the most important source 
for irrigation and domestic water requirements. The 
present study deals with 97 groundwater samples col-
lected from Saq aquifer, which is the major aquifer in 
the region. The study involves the use of principal 
component analysis (PCA) and variogram analysis for 
groundwater quality mapping. PCA helped in estab-
lishing a series of factorial variables that summarize 
all the hydrochemical information. Efforts have been 
made to identify the spatial development of the prin-
cipal process acting on groundwater quality by map-
ping it using factorial variables and ordinary kriging 
techniques. Two principal components (PCs) were  
extracted revealing that the chemical characteristics 
of groundwater in the region were acquired through 
rock–water interactions and anthropogenic influences. 
Finally, by applying kriging interpolation technique 
on the factor distribution values for the two PCs in the 
area under investigation, the factor distribution maps 
were prepared. The results concluded that both natu-
ral and anthropogenic processes contribute to the 
groundwater quality, but anthropogenic impacts are 
more important and may result in further deteriora-
tion of groundwater quality if relevant protection 
methodologies are not adopted. 
 
Keywords: Arid region, geostatistics, groundwater 
quality, kriging, principal component analysis. 
 
Groundwater resources worldwide are considered as pre-
cious sources for meeting the agricultural, domestic and 
industrial demands. This is especially true for arid  
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regions where rainfall is scanty and surface water sup-
plies are practically negligible. At the same time the ex-
cessive extraction of groundwater from shallow aquifers 
and their minimal recharge results in overall groundwater 
depletion and a negative water budget. Furthermore, the 
increase of chemical fertilizers for improving agricultural 
yields has led to groundwater pollution during the last 
decade1. In the arid regions, other than the severe scar-
city, water resources are also characterized by a signifi-
cant spatio-temporal variability2. 
 Geostatistical methods were used for mathematical 
modelling of spatial correlation structures with a 
variogram as the quantitative measure of this spatial cor-
relation. The variogram is commonly used in geostatistics 
and the interpolation technique known as kriging pro-
vides the best unbiased linear estimate of a regionalized 
variable in an unsampled location, where best is defined 
in a least squares sense. The emphasis is on local accu-
racy, i.e. closeness of the estimate to the actual but un-
known value without any regard for the global statistical 
properties of the estimates. The kriging estimation vari-
ances are independent of the value being estimated and 
are related only to the spatial arrangement of the sample 
data and to the model variogram3. 
 Studies undertaken in arid and semi-arid regions 
showed the importance of the groundwater assessment 
and management in any integrated development strategy. 
Accordingly, results could serve as an available scientific 
background requirement in the considered regions1. Many 
authors have used statistics and geostatistics to study 
groundwater resource management to obtain good results. 
The combination of principal component analysis (PCA) 
and kriging was originally proposed by Espinosa et al.4 to 
characterize anomalies in soil geochemical composition. 
The same approach was later used by many authors5,6 to 
characterize groundwater quality in a variety of situa-
tions. To map groundwater quality, kriging can also be 
used in combination with other techniques than PCA, 
such as cluster analysis7. Kriging, co-kriging or semi-
variance analysis have been applied for mapping spatio-
temporal fluctuations in groundwater levels in arid and 
semi-arid regions8. 
 The present study is based on hydrochemical evalua-
tion using multivariate and complex information of facto-
rial variables that summarize all the hydrochemical 
information. The integrated use of PCA and geostatistics 
helps in spatial evaluation of groundwater quality map-
ping. It is also intended to identify the spatial develop-
ment of the principal process acting on groundwater 
quality. 
 The study area is located between lat. 25N and 
26.5N, and long. 43.25E and 46.25E and forms a part 
of NW Riyadh and Qassim provinces of Saudi Arabia 
(Figure 1). The study area represents a typical arid region 
with very low average annual rainfall (<150 mm), which 
mostly occurs between November and March. The rain-

fall is torrential and may cause small run-off to wadi 
channels and low-lying areas. The average annual evapo-
ration is about 3000 mm. The region is characterized by a 
high diurnal range of temperatures, which averages from 
43C to 28C during summer and 21C to 9C during 
winter. Temperatures falling up to 0C are common in the 
area during winter. The study area hosts significant agri-
cultural farming with groundwater serving as the major 
source of irrigation. Over the past three decades cultiva-
tion has developed significantly in the area. 
 A total of 103 groundwater samples were collected 
from Saq aquifer, which is the major aquifer in the re-
gion, from the different agricultural farms lying in the 
study area (Figure 2); however, only 97 samples were 
used for the interpretation. Samples were collected in 
polyethylene bottles of 1 litre capacity. Prior to their fill-
ing with sampled water, these bottles were rinsed to 
minimize the chance of any contamination. The sample 
preservation and the used analytical techniques were in 
accordance with the standard methods provided by the 
American Public Health Association9. Unstable parame-
ters such as hydrogen ion concentration (pH), total dis-
solved solids (TDS) and electrical conductivity (EC) were 
determined at the sampling sites with the help of a pH-
meter, a portable EC-meter and a TDS-meter (Hanna In-
struments, Michigan, USA).  
 The sodium (Na+), potassium (K+), magnesium (Mg2+), 
and calcium (Ca2+) ions were determined by atomic ab-
sorption spectrophotometer (AAS). Bicarbonate (HCO–

3) 
and chloride (Cl–) were analysed by volumetric methods. 
Sulphate (SO2

4
–) was estimated by the colorimetric and 

turbid metric methods. Nitrate (NO–
3) was measured by 

ionic chromatography. 
 The statistical analysis used in the present study com-
prises of PCA. This is basically a variation reduction pro-
cedure, wherein a number of observed/measures  
parameters can be transformed into a small number of  
artificial variables known as principal components (PCs). 
The extracted PCs account for most of the variance in the 
observed parameters and can be interpreted as an inde-
pendent factor governing a given phenomenon10. 
 PC1 accounts for the greatest variability3 which can be 
seen on the scree plot. The factor loading or the PC score 
associated with each of the variables in a given PCs are 
the correlation between the original variable and the fac-
tor, and gives an idea about the processes which control 
the data variability11. A factor loading close to 1 indi-
cates a strong correlation between the given variable and 
the factor. The variables which show loadings greater 
than 0.5 are generally considered to be significant. The 
detailed mathematics behind PCA is available in numer-
ous published workss5,7,12. The statistical software used in 
the present study was the SPSS 17 software package. 
 In the present study the data are standardized to their 
corresponding Z scores (eq. (1)). Data standardization is 
essential in PCA because in the computation of the 
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Figure 1. Location of the study area. 
 
 

 
 

Figure 2. Geology of the study area and location of collected groundwater samples. 
 
 
Euclidean distances, the parameters with the highest vari-
ance tend to have greater influence over those with lower 
variance1,13,14 
 
 Z = (X – )  , (1) 
 
where X are the data, while  and  are respectively, the 
mean and standard deviation of the datasets. In the  
present study Kaiser’s normalization15 is applied. This 
criterion is widely used in factor rotation for sizing down 
the number of factors that can be included in the final 
factor model. Factors selected have eigenvalues >1 (refs 
7, 16). Varimax rotation is generally applied to all the  

extracted PCs to reduce the contribution of the variables 
which are not significant17. 
 PCA was done with SPSS software. PCA factors were 
analysed by geostatistical methods of interpolation and 
mapping. The single integrated program GS + Software 
(1988) was used to carry out the variogram analysis, 
kriging, cross validation and mapping1,7,8. The theoretical 
basis of geostatistics has been described in the litera-
ture18,19. In addition, from a hypothetical point of view 
there are widely used techniques that have appeared in 
different studies5,7,8,20,21. 
 The collected samples were analysed for physico-
chemical and major ions. Out of the total 103 samples, 
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only 97 were used for interpretation as mentioned earlier. 
The remaining six samples were removed on account of 
high ion balance error (>5%). According to WHO guide-
lines22, the pH for drinking water ranges from 6.5 to 8.5. 
In the analysed samples, the pH value ranged from 6.68 
(slightly acidic) to 8.00 (slightly basic), with an average 
of 7.15. The average EC value in the analysed ground-
water samples was 5843 S/cm and fell within the very 
high salinity hazard range. According to WHO, the 
maximum permissible value of EC for drinking water is 
1400 S/cm. The TDS content of the samples ranges 
from 352 to 8812.0 mg/l with an average of 2863.49 mg/l, 
which is much beyond the maximum permissible limit of 
500 mg/l. Descriptive statistics of chemical composition 
of the ten hydrochemical parameters monitored in 97 
boreholes is summarized in Table 1. The major ions were 
plotted on the piper diagram to understand the groundwater  
 
 

Table 1. Descriptive statistics of chemical composition (N = 97) 

    Standard 
  Minimum Maximum Mean deviation 
 

EC (S/cm) 716.00 17980.00 5843.85 4127.45 
TDS (mg/l) 352.00 8812.00 2863.75 2023.08 
T alkal (mg/l) 40.00 305.00 208.24 56.947 
HCO3 (mg/l) 49.00 372.00 255.52 68.89 
Cl (mg/l) 192.00 4652.00 1318.78 887.33 
NO3 (mg/l) 4.00 49.00 30.844 11.29 
SO4 (mg/l) 96.00 7968.00 3238.78 2378.23 
Ca (mg/l) 132.20 3152.00 1235.83 771.36 
K (mg/l) 9.00 544.00 142.27 138.95 
Mg (mg/l) 12.00 352.00 96.67 80.87 
Na (mg/l) 19.00 2370.00 821.99 665.66 

 
 
 

 
 

Figure 3. Piper plot of the analysed groundwater samples. 

classification and main groundwater facies present in the 
region (Figure 3). 
 The cationic triangle is mainly dominated by calcium 
(Ca) with a few samples falling in the ‘no dominant type 
of cations’. On the other hand, the anions fall within the 
segment of the triangle dominated by sulphate (SO4). A 
few samples fall in the segment not dominated by any of 
the anionic species and two samples fall within the ionic 
species dominated by chloride (Cl). The water in the 
study area can be classified as Ca–SO2

4
– type. All col-

lected samples fall in the zone of permanent hardness on 
the piper plot.  
 The rate of evaporation, rock composition and chemi-
cal composition of rainwater control the overall chemis-
try of the groundwater in a given area23. The log of TDS 
versus Na+/Na+ + Ca2+ and Cl–/Cl– + HCO–

3 of the ana-
lysed samples from the study area was plotted on the 
Gibbs diagram. Though the Gibbs plots (Figure 4) indi-
cate that evaporation is the major dominating factor con-
trolling the water chemistry of the region, but rock–water 
interaction also plays a major role which was highlighted 
in PCA. 
 PCA is one of the frequently used procedures for the 
multivariate statistical analysis of groundwater quality 
data, which helps in inferring the natural or anthropo-
genic processes controlling the groundwater chemistry of 
a given area6,10,24–27. Geostatistical methods are optimal 
when data are normally distributed and stationary (mean 
and variance do not vary significantly in space)1. Signifi-
cant deviations from normality can cause problems. The 
study was initiated with normality check through histo-
gram plot and posting of the data values in space to check 
for significant trends. Subsequently, PCA was applied to 
ten normalized variable sets, including TDS, EC, Mg2+, 
Na+, K+, HCO–

3, SO2
4

–, Cl–, NO–
3 and Ca2+. Based on the 

eigenvalues of 8.14 and 1.32 respectively, two principal 
components PC1 and PC2 were selected, which explained 
74.04% and 12.01% of the total variance respectively 
(Table 2). The application of rotation matrix method led 
to an increase in PC1 and reduction in PC2 (Table 3). The 
scatter plot (Figure 5) and correlation matrix (Table 4) 
indicate that the wide range of the variables defining the 
groundwater quality are related to the dissolved salts. 
PC1 with 74.04% variance shows positive loading of ele-
ments like Ca2+, Mg2+, Na+, K+, SO2

4
– and Cl–, thus cover-

ing almost the entire range of groundwater evolution 
processes. The main process involved here is the water–
rock interaction, high aridity and salinity due to long 
resident time, etc.28,29. PC2 (12.01% of the total variance) 
is mainly driven by NO–

3, and HCO3 with factor loading 
of 0.68 and 0.79. With this unique characteristic, PC2 
may be related to anthropogenic activities with geo-
chemical reactions at shallow groundwater levels.  
 The high factor loadings for the variables in PC1 can 
be attributed to the natural processes of dissolution of 
geological rocks components as explained below: 
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Figure 4. Gibbs plot showing the dominant factor controlling groundwater chemistry. 
 

Table 2. Loading of principle component (PCA) 

   Rotation sums 
  Initial eigenvalues Extraction sums of squared loadings of squared loadingsa 

 

Component Total Variance (%) Cumulative (%) Total Variance (%) Cumulative (%) Total 
 

 1 8.11 74.04 74.04 8.14 74.04 74.04 7.07 
 2 1.32 12.01 86.09 1.32 12.01 86.06 2.39 
 3 0.73 3.83 92.17     
 4 0.42 1.75 96.03     
 5 0.19 0.86 98.36     
 6 0.09 0.53 99.22     
 7 0.06 0.17 99.62     
 8 0.02 0.09 99.94     
 9 0.01 0.04 99.98     
10 0.004 0.02 100.00     

Extraction method: PCA. 
aWhen components are correlated, sums of squared loadings cannot be added to obtain a total variance. 

 
 

Table 3. Rotation matrixa 

 Component 
 

 1 2 
 

EC 0.949 0.180 
TDS 0.949 0.180 
T alkal 0.591 0.686 
HCO3 0.610 0.687 
Cl 0.904 0.273 
NO3 –0.140 0.791 
SO4 0.946 0.240 
Ca 0.910 0.331 
K 0.817 –0.122 
Mg 0.890 0.043 
Na 0.922 0.230 

Extraction method: PCA.  
Rotation method: Varimax with Kaiser nor-
malization. 
aRotation converged in three iterations. 

  The high correlation between Mg and Ca (r = 0.87) 
can be related to silicate weathering and dolomitization 
phenomenon. 
  The high correlation between Mg and Cl (r = 0.86) 
may be related to reverse ion exchange taking place in the 
area.  
  The high correlation between Mg and SO4 
(r = 0.90) may have its source in weathering of MgSO4 
mineral1, gypsum dissolution and evaporites. 
  The high correlation between Na and Cl (r = 0.91) 
as well as Ca and Cl (r = 0.98) may be derived by the si-
multaneous halite or silvite dissolution.  
 Based on two components (PC1 and PC2) two new 
variables, i.e. V1 and V2 were established using the  
values of principal component scores of the samples in-
cluded in the present study, which project the 97 observa-
tions into the two PCs. The geostatistical study was 
performed using GS+ software. The spatial distribution of 
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Table 4. Correlation matrix 

 EC TDS T alkal HCO3 Cl NO3 SO4 Ca K Mg Na 
 

EC 1.000                     
TDS 1.000 1.000                   
T alkal 0.643 0.643 1.000                 
HCO3 0.664 0.664 0.976 1.000               
Cl 0.898 0.898 0.696 0.718 1.000             
NO3 0.031 0.031 0.253 0.260 0.063 1.000           
SO4 0.948 0.948 0.672 0.696 0.907 0.107 1.000         
Ca 0.912 0.912 0.738 0.763 0.974 0.114 0.957 1.000       
K 0.677 0.677 0.405 0.406 0.626 –0.049 0.728 0.643 1.000     
Mg 0.801 0.801 0.569 0.581 0.767 0.004 0.821 0.762 0.877 1.000   
Na 0.960 0.960 0.630 0.653 0.907 0.088 0.972 0.939 0.631 0.738 1.000 

 
 
Table 5. V1 and V2 variogram parameters and validation correlation  
 coefficient 

 Variogram parameter and correlation 
 

Parameter PCA factor-1 PCA factor-2 
 

Variogram model Spherical Gaussian 
Nugget effect 0.05 0.1 
Sill 0.6 0.45 
Range 8000 5000 

 
 

 
 

Figure 5. Scatter plot of PC1 and PC2. 
 
 
the two variables V1 and V2 over the aquifer by calculat-
ing their experimental isotropic variograms is shown in 
Figure 6. 
 Variogram parameters are shown in Table 5. The para-
meters sill and range were used to classify spatial  
dependence; however, the nugget effect shows recording 
errors1,8,20. 
 The present study shows that the range value (A) of 
spacing between 97 wells was suitable (V1 12,000, V2 
1,000). The presence of nugget effect (Co = variance of 
zero distance) implies inherited variability shorter than 
the spacing between observation wells1. The anisotropy 
of the aquifer was also checked. For this, unidirectional 

experimental semi-variogram were used. Further, the ani-
sotropy of the aquifer was constructed in the four main 
directions, i.e. E–W, NE–SW, N–S and NW–SE for both 
V1 and V2.  
 Cross validation test which helps in checking the reli-
ability of the adopted models and reliability of kriging  
estimates was performed. After cross validation which 
must be near 1, regression coefficients were obtained8. 
Regression coefficients RC1 = 0.82 and RC2 = 0.76 re-
spectively, were obtained for V1 and V2. The two regres-
sion coefficients were above 0.5. This shows that V1 is 
spatially more significant than V2. Furthermore, mapping 
of V1 and V2 was done using the point kriging method 
(Figure 7). V1 plot corresponds to the dissolution of  
saline materials with high values recorded in most of the 
selected or analysed samples.  
 The areas corresponding to high values in V1 and V2 
maps (Figure 7) are characterized by extensive agricul-
tural activities and human settlements. Moreover, high 
values of V2 may be due to an intense exploitation from 
both shallow and greater depth in these regions. More-
over rock–water interaction as well as evaporation have 
played an important role in controlling the groundwater 
chemistry. 
 The present study is based on both the hydrochemical 
evaluation in the aquifer and the physio-chemical charac-
teristics. Based on this multivariate and complex informa-
tion, using PCA, the present study aims to establish a 
series of factorial variables that summarize all the hydro-
chemical information. The study also intends to identify 
the spatial development of the principle process acting on 
groundwater quality by mapping it using these factorial 
variables and ordinary kriging techniques.  
 Based on PCA, the study came out with two important 
variables – V1 showing the influence of rock–water in-
teractions and V2 showing anthropogenic influences. By 
applying kriging interpolation technique, the spatial vari-
ability of these variables over the extent of the study area 
was mapped. The study results concluded that both  
natural and anthropogenic processes contribute to the 
groundwater quality, but anthropogenic impacts can be 
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Figure 6. Variogram of V1 and V2. 
 
 

 
 

Figure 7. Map showing distribution of (a) estimated V1 and (b) estimated V2 using point kriging. 
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considered as the most important and influential. The 
study demonstrates that the combination of PCA and geo-
statistics can be applied in cases where the aquifer is 
complex, database set is limited and with unequal spatial 
distribution of information. 
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